Abstract
The retina is the first stage of visual neural information coding on the visual system, and several challenges remain on its functioning. Overcoming these challenges would suppose both a step further in the general understanding of the biological neural systems and a potential way to enhance millions of people’s lives that suffer from visual degeneration or impairment. In this work, a data-driven deep learning approach is applied to learn the behavior of mice’s retinal ganglion cells in response to light, as a step towards the development of a system able to mimic a real retina in terms of neural coding of visual stimuli.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P.: Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008)
Burkitt, A.: A review of the integrate-and-fire neuron model. Biol. Cybern. 95(1–19), 97–112 (2006)
Chichilnisky, E.J.: A simple white noise analysis of neuronal light responses. Comput. Neural Syst. 12, 199–213 (2001)
Mcintosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., Stephen, A.: Deep learning models of the retinal response to natural scenes. Adv. Neural Inf. Process. Syst. 29, 1369–1377 (2016)
Crespo-Cano, R., Martínez-Álvarez, A., Díaz-Tahoces, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: On the automatic tuning of a retina model by using a multi-objective optimization genetic algorithm. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015 Part I. LNCS, vol. 9107, pp. 108–118. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_12
Turcsany, D., Bargiela, A., Maul, T.: Modelling retinal feature detection with deep belief networks in a simulated enviroment. In: Proceedings of the ECMS 2014 (2014)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
Krizhevsky, A., Sutskever, I., Geoffrey, E.: Imagenet classification with deep convolutional neural networks. In: 25th Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 34(4), 193–202 (1980)
Díaz-Tahoces, A., Martínez-Álvarez, A., García-Moll, A., Humphreys, L., Bolea, J.Á., Fernández, E.: Towards the reconstruction of moving images by populations of retinal ganglion cells. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 220–227. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_23
Fernández, E., Ferrández, J.M., Ammermuller, J., Normann, R.: Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res. 887(1), 222–229 (2000)
Bongard, M., Micol, D., Fernández, E.: NEV2lkit: a new open source tool for handling neural event files from multi-electrode recordings. Int. J. Neural Syst. 24(04) (2014)
LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). doi:10.1007/3-540-49430-8_2
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, S., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. In: Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Learning (2016)
Chollet, F.: Keras 2015. https://github.com/fchollet/keras. Accessed March 2017
Barbieri, R., Quirk, C.M., Frank, L.M., Wilson, M.A., Brown, E.N.: Construction and analysis of non-poisson stimulus-response models of neural spiking activity. J. Neurosci. Methods 105(1), 25–37 (2001)
Acknowledgements
We want to acknowledge Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, from Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lozano, A., Garrigós, J., Martínez, J.J., Ferrández, J.M., Fernández, E. (2017). Towards a Deep Learning Model of Retina: Retinal Neural Encoding of Color Flash Patterns. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-59740-9_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59739-3
Online ISBN: 978-3-319-59740-9
eBook Packages: Computer ScienceComputer Science (R0)