Skip to main content

Complexity Results in Graph Reconstruction

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

  • 738 Accesses

Abstract

We investigate the relative complexity of the graph isomorphism problem (GI) and problems related to the reconstruction of a graph from its vertex-deleted or edge-deleted subgraphs. We show that the problems are rather closely related for all amounts c of deletion:

  • For all c ≥ 1, GI \(\equiv^{l}_{iso}\)VDC c , GI \(\equiv^{l}_{iso}\)EDC c , GI \(\leq^{l}_{m}\)LVD c , and GI \(\equiv^{p}_{iso}\)LED c .

  • For all c ≥ 1 and k ≥ 2, \({\rm GI} \equiv^{p}_{iso} {k\textnormal{-}\rm VDC}_c\) and \({\rm GI} \equiv^{p}_{iso} {k\textnormal{-}\rm EDC}_c\).

  • For all c ≥ 1 and k ≥ 2, \({\rm GI} \leq^{l}_{m} {k\textnormal{-}\rm LVD}_c\). In particular, for all c ≥ 1, \({\rm GI} \equiv^{p}_{iso} {2\textnormal{-}\rm LVD}_c\).

  • For all c ≥ 1 and k ≥ 2, \({\rm GI} \equiv^{p}_{iso} {k\textnormal{-}\rm LED}_c\).

For many of these, even the c = 1 cases were not known.

Similar to the definition of reconstruction numbers vrn  ∃ (G) [10] and ern  ∃ (G) (see p. 120 of [17]), we introduce two new graph parameters, vrn  ∀ (G) and ern  ∀ (G), and give an example of a family {G n } n ≥ 4 of graphs on n vertices for which vrn  ∃ (G n ) < vrn  ∀ (G n ). For every k ≥ 2 and n ≥ 1, we show there exists a collection of k graphs on (2k − − 1+1)n+k vertices with 2n 1-vertex-preimages, i.e., one has families of graph collections whose number of 1-vertex-preimages is huge relative to the size of the graphs involved.

Supported in part by grants NSF-CCR-9322513, NSF-INT-9815095/DAAD-315-PPP-gü-ab, and NSF-CCR-0311021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bondy, J., Hemminger, R.: Graph reconstruction—a survey. Journal of Graph Theory 1, 227–268 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bondy, J.: On Ulam’s conjecture for separable graphs. Pacific Journal of Mathematics 31, 281–288 (1969)

    MATH  MathSciNet  Google Scholar 

  3. Bondy, J.: A graph reconstructor’s manual. In: Surveys in Combinatorics. London Mathematical Society Lecture Notes Series 66, pp. 221–252. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  4. Bryant, R.: On a conjecture concerning the reconstruction of graphs. Journal of Combinatorial Theory 11, 139–141 (1971)

    Article  MATH  Google Scholar 

  5. Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM Journal of Applied Mathematics 48, 1073–1082 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenner, S., Fortnow, L., Kurtz, S.: Gap-definable counting classes. Journal of Computer and System Sciences 48(1), 116–148 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Harary, F.: On the reconstruction of a graph from a collection of subgraphs. In: Fiedler, M. (ed.) Theory of Graphs and its Applications, pp. 47–52. Czechoslovak Academy of Sciences, Prague (1964)

    Google Scholar 

  8. Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. Harary, F., Palmer, E.: The reconstruction of a tree from its maximal subtrees. Canadian Journal of Mathematics 18, 803–810 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  10. Harary, F., Plantholt, M.: The graph reconstruction number. J. Graph Theory 9, 451–454 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kadin, J.: Restricted Turing Reducibilities and the Structure of the Polynomial Time Hierarchy. PhD thesis, Cornell University, USA (1988)

    Google Scholar 

  12. Kelly, P.: On Isometric Transformations. PhD thesis, University of Wisconsin, USA (1942)

    Google Scholar 

  13. Kelly, P.: A congruence theorem for trees. Pacific Journal of Mathematics 7, 961–968 (1957)

    MATH  MathSciNet  Google Scholar 

  14. Kratsch, D., Hemaspaandra, L.: On the complexity of graph reconstruction. Mathematical Systems Theory 27(3), 257–273 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  16. Lauri, J.: Proof of Harary’s conjecture on the reconstruction of trees. Discrete Mathematics 43, 79–90 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lauri, J., Scapellato, R.: Topics in Graph Automorphism and Reconstruction. London Mathematical Society, Cambridge University Press (2003)

    Google Scholar 

  18. Lozano, A., Torán, J.: On the non-uniform complexity of the graph isomorphism problem. In: Proceedings of the 7th Structure in Complexity Theory Conference, June 1992, pp. 118–129. IEEE Computer Society Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  19. Manvel, B.: Some basic observations on Kelly’s conjecture for graphs. Discrete Mathematics 8, 181–185 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mansfield, A.: The relationship between the computational complexities of the legitimate deck and isomorphism problems. Quart. J. Math. Ser. 33(2), 345–347 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Manvel, B.: Reconstruction of graphs: Progress and prospects. Congressus Numerantium 63, 177–187 (1988)

    MathSciNet  Google Scholar 

  22. Myrvold, W.: The ally-reconstruction number of a disconnected graph. Ars Combinat. 28, 123–127 (1989)

    MATH  MathSciNet  Google Scholar 

  23. Myrvold, W.: The ally-reconstruction number of a tree with five or more vertices is three. Journal of Graph Theory 14, 149–166 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nash-Williams, C.S.J.A.: The reconstruction problem. In: Beineke, L., Wilson, R. (eds.) Selected Topics in Graph Theory, pp. 205–236. Academic Press, London (1978)

    Google Scholar 

  25. Nýdl, V.: Graph reconstruction from subgraphs. Discrete Mathematics 235, 335–341 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ranjan, D., Rohatgi, P.: On randomized reductions to sparse sets. In: Proceedings of the 7th Structure in Complexity Theory Conference, June 1992, pp. 239–242. IEEE Computer Society Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  27. Ulam, S.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemaspaandra, E., Hemaspaandra, L.A., Radziszowski, S., Tripathi, R. (2004). Complexity Results in Graph Reconstruction. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy