Skip to main content

Deterministic Secure Positioning in Wireless Sensor Networks

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5067))

Included in the following conference series:

  • 1128 Accesses

Abstract

Position verification problem is an important building block for a large subset of wireless sensor networks (WSN) applications. As a result, the performance of the WSN degrades significantly when misbehaving nodes report false location information in order to fake their actual position. In this paper we propose the first deterministic distributed protocol for accurate identification of faking sensors in a WSN. Our scheme does not rely on a subset of trusted nodes that cooperate and are not allowed to misbehave. Thus, any subset of nodes is allowed to try faking its position. As in previous approaches, our protocol is based on distance evaluation techniques developed for WSN.

On the positive side, we show that when the received signal strength (RSS) technique is used, our protocol handles at most \(\lfloor \frac{n}{2} \rfloor-2\) faking sensors. When the time of flight (ToF) technique is used, our protocol manages at most \(\lfloor \frac{n}{2} \rfloor - 3\) misbehaving sensors. On the negative side, we prove that no deterministic protocol can identify faking sensors if their number is \(\lceil \frac{n}{2}\rceil -1\). Thus, our scheme is almost optimal with respect to the number of faking sensors.

We discuss application of our technique in the trusted sensor model. More specifically, our results can be used to minimize the number of trusted sensors that are needed to defeat faking ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: INFOCOM, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  2. Brands, S., Chaum, D.: Distance-bounding protocols. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp. 344–359. Springer, Heidelberg (1999)

    Google Scholar 

  3. Capkun, S., Cagalj, M., Srivastava, M.B.: Secure localization with hidden and mobile base stations. In: INFOCOM, IEEE (2006)

    Google Scholar 

  4. Capkun, S., Hubaux, J.: Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications: Special Issue on Security in Wireless Ad Hoc Networks 24(2), 221–232 (2006)

    Google Scholar 

  5. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Fontana, R.J., Richley, E., Barney, J.: Commercialization of an ultra wideband precision asset location system. In: 2003 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 369–373 (2003)

    Google Scholar 

  7. He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L., Stoleru, R., Yan, T., Gu, L., Hui, J., Krogh, B.: An energy-efficient surveillance system using wireless sensor networks. In: MobiSys 2004: Proc. of the 2nd Int. Conf. on Mobile systems, applications, and services, New York, USA, pp. 270–283 (2004)

    Google Scholar 

  8. Hwang, J., He, T., Kim, Y.: Detecting phantom nodes in wireless sensor networks. In: INFOCOM, pp. 2391–2395. IEEE (2007)

    Google Scholar 

  9. Karp, B., Kung, H.T.: Gpsr: greedy perimeter stateless routing for wireless networks. In: MobiCom 2000: Proc. of the 6th Annual Int. Conf. on Mobile Computing and Networking, pp. 243–254. ACM Press, New York (2000)

    Chapter  Google Scholar 

  10. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. on Programming Lamguages and Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  11. Lazos, L., Poovendran, R.: Serloc: Robust localization for wireless sensor networks. ACM Trans. Sen. Netw. 1(1), 73–100 (2005)

    Article  Google Scholar 

  12. Lazos, L., Poovendran, R., Capkun, S.: Rope: robust position estimation in wireless sensor networks. In: IPSN, pp. 324–331. IEEE (2005)

    Google Scholar 

  13. Liu, C.H., Fang, D.J.: Propagation. in antenna handbook: Theory, applications, and design. Van Nostrand Reinhold 29, 1–56 (1988)

    Google Scholar 

  14. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzantine faults. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 212–226. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: SenSys 2004: Proc. Int. Conf. Embedded Networked Sensor Systems, pp. 214–226. ACM Press, New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sotiris E. Nikoletseas Bogdan S. Chlebus David B. Johnson Bhaskar Krishnamachari

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delaët, S., Mandal, P.S., Rokicki, M.A., Tixeuil, S. (2008). Deterministic Secure Positioning in Wireless Sensor Networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds) Distributed Computing in Sensor Systems. DCOSS 2008. Lecture Notes in Computer Science, vol 5067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69170-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69170-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69169-3

  • Online ISBN: 978-3-540-69170-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy