Skip to main content

Unsupervised Blind Separation and Debluring of Mixtures of Sources

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4694))

  • 1186 Accesses

Abstract

In this paper we consider the problem of separating source images from linear mixtures with unknown coefficients, in presence of noise and blur. In particular, we consider as a special case the problem of estimating the Cosmic Microwave Background from galactic and extra–galactic emissions. Like many visual inverse problems, this problem results to be ill–posed in Hadamard sense. To solve the non–blind version of the problem a classical edge–preserving regularization technique can be used. Thus, the solution is defined as the argument of the minimum of an energy function. In order to solve the blind inverse problem, in this paper a new function, called target function, is introduced. Such a function can consider constraints as the degree of Gaussianity and correlation of the results. The experimental results, considering the cosmic mixtures, have given accurate estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge, MA (1987)

    Google Scholar 

  2. Bedini, L., Gerace, I., Salerno, E., Tonazzini, A.: Models and Algorithms for Edge-Preserving Image Reconstruction. Advances in Imaging and Electron Physics 97, 86–189 (1996)

    Google Scholar 

  3. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, Bristol and Philadelphia (1998)

    Google Scholar 

  4. Bonaldi, A., Bedini, L., Salerno, E., Baccigalupi, C., De Zotti, G.: Estimating the Spectral Indices of Collerated Astrophysical Foregrounds by a Second-Order Statistical Approach. Mon. Not. R. Astr. Soc. 373, 271–279 (2006)

    Article  Google Scholar 

  5. Bertero, M., Poggio, T., Torre, V.: Ill-Posed Problems in Early Vision. IEEE Proc. 76, 869–889 (1988)

    Article  Google Scholar 

  6. Demoment, G.: Image Reconstruction and Restoration: Overview of Common Estimation Structures and Problems. IEEE Trans. Acoust. Speech, and Signal processing 37, 2024–2036 (1989)

    Article  Google Scholar 

  7. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Machine Intell. 6, 721–740 (1984)

    Article  MATH  Google Scholar 

  8. Gerace, I., Martinelli, F., Sanchini, G.: Estimation of the Free Parameters in the Problem of Edge-Preserving Image Reconstraction by a Shooting Method. In: Proc. of SMMSP 2006 Florence, Italy, pp. 205–212 (2006)

    Google Scholar 

  9. Hansen, C.: Analysis of Discrete Ill-Posed Problems By Means of the L-Curve. SIAM Review 34, 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, New York (2001)

    Google Scholar 

  11. Kuruoglu, E., Bedini, L., Paratore, M.T., Salerno, E., Tonazzini, A.: Source Separation in Astrophysical Maps using Independent Factor Analysis. Neural Networks 16, 479–491 (2003)

    Article  Google Scholar 

  12. Reginska, T.: A Regularization Parameter in Discrete Ill-Posed Problems. SIAM J. Sci. Comput. 17, 740–749 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shulman, D., Herve, J.Y.: Regularization of Discontinuous Flow Fields. In: Proceedings Workshop on Visual Motion, pp. 81–86 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedeli, L., Gerace, I., Martinelli, F. (2007). Unsupervised Blind Separation and Debluring of Mixtures of Sources. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74829-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74828-1

  • Online ISBN: 978-3-540-74829-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy