Skip to main content

Finding the Maximum Module of the Roots of a Polynomial by Particle Swarm Optimization

  • Conference paper
Advances in Swarm Intelligence (ICSI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6145))

Included in the following conference series:

  • 3754 Accesses

Abstract

After the theorem which is used to determine whether all roots of a polynomial are in unit circle is given, and two particle swarm optimizations for finding the maximum module of the roots of a polynomial based on the theorem are proposed. Finally, several computer simulation results show that using these algorithms to find the maximum module of roots of a polynomial are more efficient and feasible, the convergent speed is much faster and the accuracy of results is much higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, P.A., Johnson, C.H.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  2. Farmer, M.R., Loizou, G.: Locating Multiple Zeros Interactively. Comput. Math. Appl. 11(6), 595–603 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kittaneh, F.: Singular Values of Companion Matrices and Bounds on Zeros of Polynomials. Society for Industrial and Applied Mathematics (1995)

    Google Scholar 

  4. Guan, Y.: An iterative arithmetic for the largest module of roots of a polynomial. Journal of Hangzhou Teachers College (Natural Science Edition) 4(1), 22–24 (2005) (in Chinese)

    MATH  Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  6. Shen, H.Y., Peng, X.Q., Wang, J.N., Hu, Z.K.: A mountain clustering based on improved PSO algorithm. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 477–481. Springer, Heidelberg (2005)

    Google Scholar 

  7. Eberhart, R.C., Shi, Y.: Extracting rules from fuzzy neural network by particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA (1998)

    Google Scholar 

  8. Ralston, A., Will, H.S.: Mathematical Methods for Digital Computer. John Wiley & Sons Inc., Chichester (1960)

    Google Scholar 

  9. Cheng, J.S.: A Parallel Algorithm for Finding Roots of Complex Polynomial. J. of Comput. Sci. & Technol. 5(1), 71–81 (1990)

    Article  MATH  Google Scholar 

  10. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, pp. 69–73 (1998)

    Google Scholar 

  11. Song, Y.Z.: The existence the region of polynomial zeros. ACTA Mathematic Sinica 36(2), 254–258 (1993) (in Chinese)

    MATH  Google Scholar 

  12. Zhao, W.J.: Bounds for the zeros of polynomials. Journal of Qingdao University 13(2), 14–19 (2000) (in Chinese)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, L., He, D. (2010). Finding the Maximum Module of the Roots of a Polynomial by Particle Swarm Optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13495-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13494-4

  • Online ISBN: 978-3-642-13495-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy