Abstract
The role of dimensionality in approximation by neural networks is investigated. Methods from nonlinear approximation theory are used to describe sets of functions which can be approximated by neural networks with a polynomial dependence of model complexity on the input dimension. The results are illustrated by examples of Gaussian radial networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems. Yale University Press, London (1992)
Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39, 930–945 (1993)
Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results motivated by robust neural network learning. In: Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, pp. 303–309. The Association for Computing Machinery, New York (1993)
Girosi, F.: Approximation error bounds that use VC- bounds. In: Proceedings of ICANN 1995, Paris, pp. 295–302 (1995)
Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions. J. of Computer and System Sciences 55, 161–170 (1997)
Ito, Y.: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Networks 4, 385–394 (1991)
Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608–613 (1992)
Kůrková, V.: Dimension-independent rates of approximation by neural networks. In: K. Warwick, M. Kárný (eds.) Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, pp. 261–270. Birkhäuser (1997)
Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)
Kainen, P.C., Kůrková, V., Sanguineti, M.: On tractability of neural-network approximation. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 11–21. Springer, Heidelberg (2009)
Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. J. of Approximation Theory 147, 1–10 (2007)
Kůrková, V.: High-dimensional approximation and optimization by neural networks. In: Suykens, J., Horváth, G., Basu, S., Micchelli, C., Vandewalle, J. (eds.) Advances in Learning Theory: Methods, Models and Applications. ch. 4, pp. 69–88. IOS Press, Amsterdam (2003)
Kůrková, V.: Minimization of error functionals over perceptron networks. Neural Computation 20, 252–270 (2008)
Kůrková, V.: Model complexity of neural networks and integral transforms. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 708–717. Springer, Heidelberg (2009)
Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061–1068 (1997)
Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real–valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)
Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. of Complexity 20, 561–590 (2004)
Park, J., Sandberg, I.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)
Park, J., Sandberg, I.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)
Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d’Analyse Fonctionnelle 1981, vol. I (12). École Polytechnique, Centre de Mathématiques, Palaiseau, France (1981)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kůrková, V. (2012). Model Complexity of Neural Networks in High-Dimensional Approximation. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds) Recent Advances in Intelligent Engineering Systems. Studies in Computational Intelligence, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23229-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-23229-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23228-2
Online ISBN: 978-3-642-23229-9
eBook Packages: EngineeringEngineering (R0)