Skip to main content

Towards a Provably Secure DoS-Resilient Key Exchange Protocol with Perfect Forward Secrecy

  • Conference paper
Progress in Cryptology – INDOCRYPT 2011 (INDOCRYPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7107))

Included in the following conference series:

  • 917 Accesses

Abstract

Just Fast Keying (JFK) is a simple, efficient and secure key exchange protocol proposed by Aiello et al.(ACM TISSEC, 2004). JFK is well known for its novel design features, notably its resistance to denial-of-service (DoS) attacks. Using Meadows’ cost-based framework, we identify a new DoS vulnerability in JFK. The JFK protocol is claimed secure in the Canetti-Krawczyk model under the Decisional Diffie-Hellman (DDH) assumption. We show that security of the JFK protocol, when re-using ephemeral Diffie-Hellman keys, appears to require the Gap Diffie-Hellman (GDH) assumption in the random oracle model. We propose a new variant of JFK that avoids the identified DoS vulnerability and provides perfect forward secrecy even under the DDH assumption, achieving the full security promised by the JFK protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D., Reingold, O.: Just Fast Keying: Key agreement in a hostile Internet. ACM Transactions on Information and System Security 7(2), 1–30 (2004)

    Article  MATH  Google Scholar 

  2. Aura, T., Nikander, P.: Stateless Connections. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Aura, T., Nikander, P., Leiwo, J.: DOS-Resistant Authentication with Client Puzzles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and Factoring Based Schemes via Precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Castelluccia, C., Mykletun, E., Tsudik, G.: Improving secure server performance by re-balancing SSL/TLS handshakes. In: Lin, F., Lee, D., Lin, B., Shieh, S., Jajodia, S. (eds.) ASIACCS 2006, pp. 26–34. ACM (2006)

    Google Scholar 

  9. Gong, L., Syverson, P.: Fail-Stop Protocols: An Approach to Designing Secure Protocols. In: Iyer, R.K., Morganti, M., Glogor, V., Fuchs, W.K. (eds.) Proc. Dependable Computing for Critical Applications, pp. 44–55. IEEE Computer Society (1998)

    Google Scholar 

  10. Harkins, D., Carrel, D., et al.: The Internet Key Exchange, IKE (1998), http://www.ietf.org/rfc/rfc2409

  11. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: NDSS 1999, pp. 151–165. Internet Society (1999)

    Google Scholar 

  12. Kaufman, C.: Internet Key Exchange (IKEv2) protocol, RFC 4306 (December 2005)

    Google Scholar 

  13. Matsuura, K., Imai, H.: Modification of Internet Key Exchange resistant against Denial-of-Service. In: Pre-Proceeding of Internet Workshop (IWS) 2000, pp. 167–174 (February 2000)

    Google Scholar 

  14. Meadows, C.: A formal framework and evaluation method for network denial of service. In: CSFW 1999. IEEE (1999)

    Google Scholar 

  15. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.R.: Host Identity Protocol, RFC 5201 (April 2008)

    Google Scholar 

  16. Nguyen, P., Shparlinski, I., Stern, J.: Distribution of modular sums and the security of the server aided exponentiation. In: Proc. Workshop on Cryptography and Computational Number Theory (CCNT 1999), pp. 257–268. Birkhäuser (2001)

    Google Scholar 

  17. Nguyên, P.Q., Stern, J.: The Hardness of the Hidden Subset Sum Problem and Its Cryptographic Implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 31–46. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum Public-Key Cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 147–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Rangasamy, J., Stebila, D., Boyd, C., González Nieto, J.: An integrated approach to cryptographic mitigation of denial-of-service attacks. In: Sandhu, R., Wong, D.S. (eds.) ASIACCS 2011, pp. 114–123. ACM (2011)

    Google Scholar 

  20. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical Report TR-684, MIT Laboratory for Computer Science (March 1996)

    Google Scholar 

  21. Smith, J., González Nieto, J., Boyd, C.: Modelling denial of service attacks on JFK with Meadows’s cost-based framework. In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) AISW-NetSec 2006. CRPIT, vol. 54, pp. 125–134. Australian Computer Society (2006)

    Google Scholar 

  22. Stebila, D., Ustaoglu, B.: Towards Denial-of-Service-Resilient Key Agreement Protocols. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 389–406. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger Difficulty Notions for Client Puzzles and Denial-of-Service-Resistant Protocols. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 284–301. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuppusamy, L., Rangasamy, J., Stebila, D., Boyd, C., Gonzalez Nieto, J. (2011). Towards a Provably Secure DoS-Resilient Key Exchange Protocol with Perfect Forward Secrecy. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25578-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25577-9

  • Online ISBN: 978-3-642-25578-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy