Skip to main content

Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions

  • Conference paper
Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

A random geometric graph (RGG) is defined by placing n points uniformly at random in [0,n 1/d]d, and joining two points by an edge whenever their Euclidean distance is at most some fixed r. We assume that r is larger than the critical value for the emergence of a connected component with Ω(n) nodes. We show that, with high probability (w.h.p.), for any two connected nodes with a minimum Euclidean distance of ω(logn), their graph distance is only a constant factor larger than their Euclidean distance. This implies that the diameter of the largest connected component is Θ(n 1/d/r) w.h.p.

We also analyze the following randomized broadcast algorithm on RGGs. At the beginning, only one node from the largest connected component of the RGG is informed. Then, in each round, each informed node chooses a neighbor independently and uniformly at random and informs it. We prove that w.h.p. this algorithm informs every node in the largest connected component of an RGG within Θ(n 1/d/r + logn) rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Networks 3, 257–279 (2005)

    Article  Google Scholar 

  2. Antal, P., Pisztora, A.: On the chemical distance for supercritical Bernoulli percolation. The Annals of Probability 24, 1036–1048 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avin, C., Ercal, G.: On the Cover Time and Mixing Time of Random Geometric Graphs. Theoretical Computer Science 380(1-2), 2–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bradonjić, M., Elsässer, R., Friedrich, T., Sauerwald, T., Stauffer, A.: Efficient broadcast on random geometric graphs. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1412–1421 (2010)

    Google Scholar 

  5. Cooper, C., Frieze, A.: The cover time of random geometric graphs. In: 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 48–57 (2009)

    Google Scholar 

  6. Deuschel, J.-D., Pisztora, A.: Surface order large deviations for high-density percolation. Probability Theory and Related Fields 104, 467–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ellis, R.B., Martin, J.L., Yan, C.: Random geometric graph diameter in the unit ball. Algorithmica 47(4), 421–438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elsässer, R., Sauerwald, T.: Broadcasting vs. Mixing and Information Dissemination on Cayley Graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 163–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Elsässer, R., Sauerwald, T.: On the runtime and robustness of randomized broadcasting. Theoretical Computer Science 410(36), 3414–3427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized Broadcast in Networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fontes, L., Newman, C.: First passage percolation for random colorings of ℤd. The Annals of Applied Probability 30(3), 746–762 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fountoulakis, N., Panagiotou, K.: Rumor Spreading on Random Regular Graphs and Expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random-arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frieze, A., Molloy, M.: Broadcasting in random graphs. Discrete Applied Mathematics 54, 77–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimmett, G.: Percolation, 2nd edn. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Higham, D., Rašajski, M., Pržulj, N.: Fitting a geometric graph to a protein–protein interaction network. Bioinformatics 24(8), 1093 (2008)

    Article  Google Scholar 

  17. Liggett, T., Schonmann, R., Stacey, A.: Domination by product measures. The Annals of Probability 25(1), 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meester, R., Roy, R.: Continuum percolation. Cambridge University Press (1996)

    Google Scholar 

  19. Ou, C.-H., Ssu, K.-F.: Sensor position determination with flying anchors in three-dimensional wireless sensor networks. IEEE Transactions on Mobile Computing 7, 1084–1097 (2008)

    Article  Google Scholar 

  20. Penrose, M., Pisztora, A.: Large deviations for discrete and continuous percolation. Advances in Applied Probability 28, 29–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penrose, M.D.: The longest edge of the random minimal spanning tree. The Annals of Applied Probability 7(2), 340–361 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Penrose, M.D.: On k-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Penrose, M.D.: Random Geometric Graphs. Oxford University Press (2003)

    Google Scholar 

  24. Pittel, B.: On spreading rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000)

    Article  Google Scholar 

  26. Ravelomanana, V.: Extremal properties of three-dimensional sensor networks with applications. IEEE Transactions on Mobile Computing 3, 246–257 (2004)

    Article  Google Scholar 

  27. Sauerwald, T.: On mixing and edge expansion properties in randomized broadcasting. Algorithmica 56, 51–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P., Gay, D., et al.: A macroscope in the redwoods. In: 3rd ACM International Conference on Embedded Networked Sensor Systems (SenSys), pp. 51–63 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedrich, T., Sauerwald, T., Stauffer, A. (2011). Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy