Abstract
A lot of improvements and optimizations for the hardware implementation of AES algorithm have been reported. These reports often use, instead of arithmetic operations in the AES original \(\mathbb{F}_{2^8}\), those in its isomorphic tower field \(\mathbb{F}_{((2^{2})^{2})^2}\) and \(\mathbb{F}_{(2^4)^2}\). This paper focuses on \(\mathbb{F}_{(2^4)^2}\) which provides higher–speed arithmetic operations than \(\mathbb{F}_{((2^{2})^{2})^2}\). In the case of adopting \(\mathbb{F}_{(2^4)^2}\), not only high–speed arithmetic operations in \(\mathbb{F}_{(2^4)^2}\) but also high–speed basis conversion matrices from the \(\mathbb{F}_{2^8}\) to \(\mathbb{F}_{(2^4)^2}\) should be used. Thus, this paper improves arithmetic operations in \(\mathbb{F}_{(2^4)^2}\) with Redundantly Represented Basis (RRB), and provides basis conversion matrices with More Miscellaneously Mixed Bases (MMMB).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS publication 197 (2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Daemen, J., Rijmen, V.: AES Proposal: Rijndael. AES Algorithm (Rijndael) Information (1999), http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Paar, C.: Efficient VLSI Architectures for Bit–Parallel Computation in Galois Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen, Germany (1994)
Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001)
Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)
Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)
Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation of Compact Hardware Implementations for the Rijndael S-Box. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)
Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)
Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed Bases for Efficient Inversion in \(\mathbb{F}_{((2^{2})^{2})^2}\) and Conversion Matrices of SubBytes of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247. Springer, Heidelberg (2010)
Jeon, Y., Kim, Y., Lee, D.: A Compact Memory-free Architecture for the AES Algorithm Using Resource Sharing Methods. Journal of Circuits, Systems, and Computers 19(5), 1109–1130 (2010)
Mullin, R., Onyszchuk, I., Vanstone, S., Wilson, R.: Optimal Normal Bases in GF(p n). Discrete Applied Mathematics 22(2), 149–161 (1988)
Nogami, Y., Saito, A., Morikawa, Y.: Finite Extension Field with Modulus of All–One Polynomial and Representation of Its Elements for Fast Arithmetic Operations. IEICE Transactions E86-A(9), 2376–2387 (2003)
Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverse in GF(2m) Using Normal Basis. Information and Computation 78(3), 171–177 (1988)
Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nekado, K., Nogami, Y., Iokibe, K. (2012). Very Short Critical Path Implementation of AES with Direct Logic Gates. In: Hanaoka, G., Yamauchi, T. (eds) Advances in Information and Computer Security. IWSEC 2012. Lecture Notes in Computer Science, vol 7631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34117-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-34117-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34116-8
Online ISBN: 978-3-642-34117-5
eBook Packages: Computer ScienceComputer Science (R0)