Skip to main content

Patch Mosaic for Fast Motion Deblurring

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

This paper proposes using a mosaic image patches composed of the most informative edges found in the original blurry image for the purpose of estimating a motion blur kernel with minimum computational cost. To select these patches we develop a new image analysis tool to efficiently locate informative patches we call the informative-edge map. The combination of patch mosaic and informative patch selection enables a new motion blur kernel estimation algorithm to recover blur kernels far more quickly and accurately than existing state-of-the-art methods. We also show that patch mosaic can form a framework for reducing the computation time of other motion deblurring algorithms with minimal modification. Experimental results with various test images show that our algorithm to be 5-100 times faster than previously published blind motion deblurring algorithms while achieving equal or better estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)

    Google Scholar 

  2. Cho, S., Lee, S.: Fast motion deblurring. ACM Transactions on Graphics 28 (2009)

    Google Scholar 

  3. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics 27 (2008)

    Google Scholar 

  4. Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Jia, J.: Single image motion deblurring using transparency. In: CVPR (2007)

    Google Scholar 

  6. Joshi, N., Szeliski, R., Kriegman, D.: Psf estimation using sharp edge prediction. In: CVPR (2008)

    Google Scholar 

  7. Yuan, L., Sun, J., Quan, L., Shum, H.: Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics 26 (2007)

    Google Scholar 

  8. Cho, T.: Motion blur removal from photographs. M.I.T Ph.D dissertation (2010)

    Google Scholar 

  9. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Neural Information Processing Systems (2009)

    Google Scholar 

  10. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)

    Google Scholar 

  12. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal of Imaging Science 1 (2009)

    Google Scholar 

  13. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Transactions on Graphics 25 (2006)

    Google Scholar 

  14. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill (1999)

    Google Scholar 

  15. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Deconvolution using natural image priors (2007), http://groups.csail.mit.edu/graphics/CodedAperture/SparseDeconv-LevinEtAl07.pdf

  16. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)

    Google Scholar 

  17. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of Optics (1972)

    Google Scholar 

  18. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal (1974)

    Google Scholar 

  19. Yang, Q., Tan, K., Ahuja, N.: Real-time o(1) bilateral filtering. In: CVPR (2009)

    Google Scholar 

  20. Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Transactions on Graphics 29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, H., Fowlkes, C.C., Chou, P.H. (2013). Patch Mosaic for Fast Motion Deblurring. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy