Abstract
This paper proposes using a mosaic image patches composed of the most informative edges found in the original blurry image for the purpose of estimating a motion blur kernel with minimum computational cost. To select these patches we develop a new image analysis tool to efficiently locate informative patches we call the informative-edge map. The combination of patch mosaic and informative patch selection enables a new motion blur kernel estimation algorithm to recover blur kernels far more quickly and accurately than existing state-of-the-art methods. We also show that patch mosaic can form a framework for reducing the computation time of other motion deblurring algorithms with minimal modification. Experimental results with various test images show that our algorithm to be 5-100 times faster than previously published blind motion deblurring algorithms while achieving equal or better estimation accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)
Cho, S., Lee, S.: Fast motion deblurring. ACM Transactions on Graphics 28 (2009)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics 27 (2008)
Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)
Jia, J.: Single image motion deblurring using transparency. In: CVPR (2007)
Joshi, N., Szeliski, R., Kriegman, D.: Psf estimation using sharp edge prediction. In: CVPR (2008)
Yuan, L., Sun, J., Quan, L., Shum, H.: Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics 26 (2007)
Cho, T.: Motion blur removal from photographs. M.I.T Ph.D dissertation (2010)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Neural Information Processing Systems (2009)
Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal of Imaging Science 1 (2009)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Transactions on Graphics 25 (2006)
Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill (1999)
Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Deconvolution using natural image priors (2007), http://groups.csail.mit.edu/graphics/CodedAperture/SparseDeconv-LevinEtAl07.pdf
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)
Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of Optics (1972)
Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal (1974)
Yang, Q., Tan, K., Ahuja, N.: Real-time o(1) bilateral filtering. In: CVPR (2009)
Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Transactions on Graphics 29 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bae, H., Fowlkes, C.C., Chou, P.H. (2013). Patch Mosaic for Fast Motion Deblurring. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-37431-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37430-2
Online ISBN: 978-3-642-37431-9
eBook Packages: Computer ScienceComputer Science (R0)