Skip to main content

Generic Active Appearance Models Revisited

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

The proposed Active Orientation Models (AOMs) are generative models of facial shape and appearance. Their main differences with the well-known paradigm of Active Appearance Models (AAMs) are (i) they use a different statistical model of appearance, (ii) they are accompanied by a robust algorithm for model fitting and parameter estimation and (iii) and, most importantly, they generalize well to unseen faces and variations. Their main similarity is computational complexity. The project-out version of AOMs is as computationally efficient as the standard project-out inverse compositional algorithm which is admittedly the fastest algorithm for fitting AAMs. We show that not only does the AOM generalize well to unseen identities, but also it outperforms state-of-the-art algorithms for the same task by a large margin. Finally, we prove our claims by providing Matlab code for reproducing our experiments ( http://ibug.doc.ic.ac.uk/resources ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. CVIU 61, 38–59 (1995)

    Google Scholar 

  2. Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Pattern Recognition 41, 3054–3067 (2008)

    Article  MATH  Google Scholar 

  3. Saragih, J., Lucey, S., Cohn, J.: Face alignment through subspace constrained mean-shifts. In: ICCV (2009)

    Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. TPAMI 23, 681–685 (2001)

    Article  Google Scholar 

  5. Matthews, I., Baker, S.: Active appearance models revisited. IJCV 60, 135–164 (2004)

    Article  Google Scholar 

  6. Liu, X.: Generic face alignment using boosted appearance model. In: CVPR (2007)

    Google Scholar 

  7. Wu, H., Liu, X., Doretto, G.: Face alignment via boosted ranking model. In: CVPR (2008)

    Google Scholar 

  8. Saragih, J., Gocke, R.: Learning aam fitting through simulation. Pattern Recognition 42, 2628–2636 (2009)

    Article  MATH  Google Scholar 

  9. Saragih, J., Goecke, R.: A nonlinear discriminative approach to aam fitting. In: ICCV (2007)

    Google Scholar 

  10. Lucey, S., Wang, Y., Cox, M., Sridharan, S., Cohn, J.F.: Efficient constrained local model fitting for non-rigid face alignment. Image and Vision Computing 27, 1804–1813 (2009)

    Article  Google Scholar 

  11. Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark mean-shift. IJCV 91, 200–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: CVPR (2011)

    Google Scholar 

  13. Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: CVPR (2010)

    Google Scholar 

  14. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2887–2894 (2012)

    Google Scholar 

  15. Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23, 1080–1093 (2005)

    Article  Google Scholar 

  16. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Robust and efficient parametric face alignment. In: ICCV (2011)

    Google Scholar 

  17. Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE TPAMI (to appear)

    Google Scholar 

  18. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark estimation in the wild. In: CVPR (2012)

    Google Scholar 

  19. Cootes, T., Taylor, C.: On representing edge structure for model matching. In: CVPR (2001)

    Google Scholar 

  20. De La Torre, F., Black, M.: A framework for robust subspace learning. IJCV 54, 117–142 (2003)

    Article  MATH  Google Scholar 

  21. Baker, S., Gross, R., Matthews, I.: Lucas-kanade 20 years on: Part 3. Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-03-35 (2003)

    Google Scholar 

  22. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. IEEE TPAMI 30, 1858–1865 (2008)

    Article  Google Scholar 

  23. Navarathna, R., Sridharan, S., Lucey, S.: Fourier active appearance models. In: ICCV (2011)

    Google Scholar 

  24. Basso, C., Vetter, T., Blanz, V.: Regularized 3d morphable models. In: First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis (2003)

    Google Scholar 

  25. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2d+3d active appearance models. In: CVPR (2004)

    Google Scholar 

  26. Ramnath, K., Baker, S., Matthews, I., Ramanan, D.: Increasing the density of active appearance models. In: CVPR (2008)

    Google Scholar 

  27. Patel, A., Smith, W.A.P.: 3d morphable face models revisited. In: CVPR (2009)

    Google Scholar 

  28. Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: Xm2vtsdb: The extended m2vts database. In: 2nd International Conference on Audio and Video-Based Biometric Person Authentication, vol. 964, pp. 965–966 (1999)

    Google Scholar 

  29. Gross, R., Matthews, I., Cohn, J., Kanade, T.: Multi-pie. Image and Vision Computing 28, 807–813 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tzimiropoulos, G., Alabort-i-Medina, J., Zafeiriou, S., Pantic, M. (2013). Generic Active Appearance Models Revisited. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy