Abstract
We propose to define a new model of formal neural network. This model extends existing Hopfield networks to process temporal data and achieve a non-supervised learning of them. We propose a learning law to adress in this context the sensitivity to input changes. A spatial representation of network’s temporal activity is given by which learnt sequences can be identified. An example of such a network is given and the results of the simulation are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Gas, R. Natowicz. A model of formal neural networks for unsupervised learning of binary temporal sequences. IJCNN, Baltimore (1992).
B. Gas. Un modèle connexionniste non supervisé pour l’apprentissage et la reconnaissance de séquences tem-porelles. PhD thesis, Université de Paris X I (1994).
B. Changeux. L’Homme Neuronal. Fayard 106, 110 (1983).
J.J. Hopfield. Neural networks and physical systems with emergent collective computational abilities Proc. Nat. Acad. Sci. USA, vol. 79, pp. 2554–2558 (1982).
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer-Verlag/Wien
About this paper
Cite this paper
Gas, B., Natowicz, R. (1995). Unsupervised Learning of Temporal Sequences by Neural Networks. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7535-4_67
Download citation
DOI: https://doi.org/10.1007/978-3-7091-7535-4_67
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-82692-8
Online ISBN: 978-3-7091-7535-4
eBook Packages: Springer Book Archive