Abstract
This paper presents an optimization of the memory cost of the quantum Information Set Decoding (ISD) algorithm proposed by Bernstein (PQCrypto 2010), obtained by combining Prange’s ISD with Grover’s quantum search.
When the code has constant rate and length n, this algorithm essentially performs a quantum search which, at each iteration, solves a linear system of dimension \(\mathcal {O}(n)\). The typical code lengths used in post-quantum public-key cryptosystems range from \(10^3\) to \(10^5\). Gaussian elimination, which was used in previous works, needs \(\mathcal {O}(n^2)\) space to represent the matrix, resulting in millions or billions of (logical) qubits for these schemes.
In this paper, we propose instead to use the algorithm for sparse matrix inversion of Wiedemann (IEEE Trans. inf. theory 1986). The interest of Wiedemann’s method is that one relies only on the implementation of a matrix-vector product, where the matrix can be represented in an implicit way. This is the case here.
We give two main trade-offs, which we have fully implemented, tested on small instances, and benchmarked for larger instances. The first one is a quantum circuit using \(\mathcal {O}(n)\) qubits, \(\mathcal {O}(n^3)\) Toffoli gates like Gaussian elimination, and depth \(\mathcal {O}(n^2 \log n)\). The second one is a quantum circuit using \(\mathcal {O}(n \log ^2 n)\) qubits, \(\mathcal {O}(n^3)\) gates in total but only \(\mathcal {O}( n^2 \log ^2 n)\) Toffoli gates, which relies on a different representation of the search space.
As an example, for the smallest Classic McEliece parameters we estimate that the Quantum Prange’s algorithm can run with 18098 qubits, while previous works would have required at least half a million qubits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that we have considered here the binary case only; the case of a generic q requires more care.
References
Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Persichetti, E., , Zémor, G., Bos, J., Dion, A., Lacan, J., Robert, J.M., Véron, P.: Hamming quasi-cyclic (HQC). Submission to the NIST PQC process, Round 4 (2022), https://pqc-hqc.org/
Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC. pp. 1–9. ACM (1983). https://doi.org/10.1145/800061.808726
Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Gueron, S., Güneysu, T., Aguilar Melchor, C., Misoczki, R., Persichetti, E., Sendrier, N., Tillich, J.P., Zémor, G., Vasseur, V., Ghosh, S., Richter-Brokmann, J.: BIKE: bit flipping key encapsulation. Submission to the NIST PQC process, Round 4 (2022), https://bikesuite.org/
Bärtschi, A., Eidenbenz, S.J.: Short-depth circuits for Dicke state preparation. In: QCE. pp. 87–96. IEEE (2022). https://doi.org/10.1109/QCE53715.2022.00027
Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computing Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314. Thomson Book Company, Washington D.C. (1968). https://doi.org/10.1145/1468075.1468121
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): How \(1 + 1 = 0\) improves information set decoding. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7237, pp. 520–536. Springer (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18(4), 766–776 (1989)
Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill series in systems science, McGraw-Hill (1968), https://www.worldcat.org/oclc/00256659
Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978). https://doi.org/10.1109/TIT.1978.1055873
Bernstein, D.J.: Grover vs. mceliece. In: PQCrypto. Lecture Notes in Computer Science, vol. 6061, pp. 73–80. Springer (2010). https://doi.org/10.1007/978-3-642-12929-2_6
Bernstein, D.J.: Verified fast formulas for control bits for permutation networks. IACR Cryptol. ePrint Arch. p. 1493 (2020), https://eprint.iacr.org/2020/1493
Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram, V., von Maurich, I., Misoczki, R., Niederhagen, R., Persichetti, E., Peters, C., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M., Wang, W.: Classic McEliece: conservative code-based cryptography. Submission to the NIST PQC process, Round 4 (2022), https://classic.mceliece.org
Bernstein, D.J., Yang, B.: Asymptotically faster quantum algorithms to solve multivariate quadratic equations. In: PQCrypto. Lecture Notes in Computer Science, vol. 10786, pp. 487–506. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3_23
Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 1–27 (2022). https://doi.org/10.46586/TCHES.V2022.I1.1-27
Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: PQCrypto. Lecture Notes in Computer Science, vol. 10786, pp. 25–46. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3_2
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemporary Mathematics 305, 53–74 (2002). https://doi.org/10.1090/conm/305/05215
Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in gf(2)[x]. In: ANTS. Lecture Notes in Computer Science, vol. 5011, pp. 153–166. Springer (2008). https://doi.org/10.1007/978-3-540-79456-1_10
Cantor, D.G.: On arithmetical algorithms over finite fields. J. Comb. Theory, Ser. A 50(2), 285–300 (1989). https://doi.org/10.1016/0097-3165(89)90020-4
Chailloux, A., Debris-Alazard, T., Etinski, S.: Classical and quantum algorithms for generic syndrome decoding problems and applications to the lee metric. In: PQCrypto. Lecture Notes in Computer Science, vol. 12841, pp. 44–62. Springer (2021). https://doi.org/10.1007/978-3-030-81293-5_3
Chevignard, C., Fouque, P., Schrottenloher, A.: Reducing the number of qubits in quantum information set decoding. IACR Cryptol. ePrint Arch. p. 907 (2024), https://eprint.iacr.org/2024/907
Cooper, C.: On the distribution of rank of a random matrix over a finite field. Random Struct. Algorithms 17(3-4), 197–212 (2000)
Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit (2004)
Czumaj, A.: Random permutations using switching networks. In: STOC. pp. 703–712. ACM (2015). https://doi.org/10.1145/2746539.2746629
Dornstetter, J.: On the equivalence between Berlekamp’s and Euclid’s algorithms (corresp.). IEEE transactions on information theory 33(3), 428–431 (1987)
Ducas, L., Esser, A., Etinski, S., Kirshanova, E.: Asymptotics and improvements of sieving for codes. In: EUROCRYPT (6). Lecture Notes in Computer Science, vol. 14656, pp. 151–180. Springer (2024). https://doi.org/10.1007/978-3-031-58754-2_6
Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized quantum implementation of ISD on scalable quantum resources. IACR Cryptol. ePrint Arch. p. 1608 (2021), https://eprint.iacr.org/2021/1608
Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: Hybrid decoding - classical-quantum trade-offs for information set decoding. In: PQCrypto. Lecture Notes in Computer Science, vol. 13512, pp. 3–23. Springer (2022). https://doi.org/10.1007/978-3-031-17234-2_1
Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.: Fast quantum algorithm for solving multivariate quadratic equations. CoRR abs/1712.07211 (2017), http://arxiv.org/abs/1712.07211
Gidney, C.: Asymptotically efficient quantum karatsuba multiplication. arXiv preprint arXiv:1904.07356 (2019)
Gidney, C., Ekerå, M.: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021). https://doi.org/10.22331/Q-2021-04-15-433, https://doi.org/10.22331/q-2021-04-15-433
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC. pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866
Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding algorithm. IACR Cryptol. ePrint Arch. p. 247 (2023), https://eprint.iacr.org/2023/247
Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and LowMC. In: EUROCRYPT (2). Lecture Notes in Computer Science, vol. 12106, pp. 280–310. Springer (2020). https://doi.org/10.1007/978-3-030-45724-2_10
Kachigar, G., Tillich, J.: Quantum information set decoding algorithms. In: PQCrypto. Lecture Notes in Computer Science, vol. 10346, pp. 69–89. Springer (2017). https://doi.org/10.1007/978-3-319-59879-6_5
Kimura, N., Takayasu, A., Takagi, T.: Memory-efficient quantum information set decoding algorithm. In: ACISP. Lecture Notes in Computer Science, vol. 13915, pp. 452–468. Springer (2023). https://doi.org/10.1007/978-3-031-35486-1_20
Kirshanova, E.: Improved quantum information set decoding. In: PQCrypto. Lecture Notes in Computer Science, vol. 10786, pp. 507–527. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3_24
Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 330, pp. 275–280. Springer (1988). https://doi.org/10.1007/3-540-45961-8_25
Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.1054260
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\cal O\it (2^{0.054n})\). In: ASIACRYPT. Lecture Notes in Computer Science, vol. 7073, pp. 107–124. Springer (2011). https://doi.org/10.1007/978-3-642-25385-0_6
May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: EUROCRYPT (1). Lecture Notes in Computer Science, vol. 9056, pp. 203–228. Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_9
Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016), https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
NIST: Post-quantum cryptography: Digital signature schemes - round 1 additional signatures (2023), https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
NIST: Round 4 standardisation results for the post-quantum cryptography standardization process (2024), https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
Perriello, S.: Design and development of a quantum circuit to solve the information set decoding problem (2017)
Perriello, S., Barenghi, A., Pelosi, G.: Improving the efficiency of quantum circuits for information set decoding. ACM Transactions on Quantum Computing 4(4), 1–40 (2023)
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777
Qiskit contributors: Qiskit: An open-source framework for quantum computing (2023). https://doi.org/10.5281/zenodo.2573505
Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.E.: Quantum resource estimates for computing elliptic curve discrete logarithms. In: ASIACRYPT (2). Lecture Notes in Computer Science, vol. 10625, pp. 241–270. Springer (2017). https://doi.org/10.1007/978-3-319-70697-9_9
Sendrier, N.: Decoding one out of many. In: PQCrypto. Lecture Notes in Computer Science, vol. 7071, pp. 51–67. Springer (2011). https://doi.org/10.1007/978-3-642-25405-5_4
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: FOCS. pp. 124–134. IEEE Computer Society (1994). https://doi.org/10.1109/SFCS.1994.365700
Stern, J.: A method for finding codewords of small weight. In: Coding Theory and Applications. Lecture Notes in Computer Science, vol. 388, pp. 106–113. Springer (1988). https://doi.org/10.1007/BFB0019850
Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137
Acknowledgments.
We would like to thank the anonymous reviewers of ASIACRYPT 2024 for helpful remarks. This work has been supported by the French Agence Nationale de la Recherche through the CROWD project under Contract ANR-CE 48 2022, and through the France 2030 program under grant agreement No. ANR-22-PETQ-0008 PQ-TLS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 International Association for Cryptologic Research
About this paper
Cite this paper
Chevignard, C., Fouque, PA., Schrottenloher, A. (2025). Reducing the Number of Qubits in Quantum Information Set Decoding. In: Chung, KM., Sasaki, Y. (eds) Advances in Cryptology – ASIACRYPT 2024. ASIACRYPT 2024. Lecture Notes in Computer Science, vol 15491. Springer, Singapore. https://doi.org/10.1007/978-981-96-0944-4_10
Download citation
DOI: https://doi.org/10.1007/978-981-96-0944-4_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0943-7
Online ISBN: 978-981-96-0944-4
eBook Packages: Computer ScienceComputer Science (R0)