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Abstract.

We perform time-resolved calculations of the information transmitted about visual patterns by neurons
in primary visual and inferior temporal cortices. All measurable information is carried in an effective time-
varying firing rate, obtained by averaging the neuronal response with a resolution no finer than about 25
ms in primary visual cortex and around twice that in inferior temporal cortex. We found no better way
for a neuron receiving these messages to decode them than simply to count spikes for this long. Most
of the information tends to be concentrated in one or, more often, two brief packets, one at the very
beginning of the response and the other typically 100 ms later. The first packet is the most informative
part of the message, but the second one generally contains new information. A small but significant part
of the total information in the message accumulates gradually over the entire course of the response.
These findings impose strong constraints on the codes used by these neurons.

Keywords:

1. INTRODUCTION

Recent studies have established [16], [14], [18],
(22], [11] that neurons in the primate visual sys-
tem convey information using the timing of their
action potentials. However, very little is known
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about just how this information is represented in
their responses. In this investigation we try to
determine what features of the neurcnal response
carry information about a stimulus. We ask two
questions in particular:
1. To what degree does the information transmis-
sion depend on the precise timing of the spikes?
2. What is the time course of the signal - for ex-

ample, is the information transmitted in a sin-

gle short burst, or distributed more evenly over

the course of the response?

We address these questions in two brain areas, pri-
mary visual cortex (V1) and inferior temporal cor-
tex (IT).

A visual system neuron may be seen as a com-
munication system. The visual stimulus (a mes-
sage) is translated by the neuron (a transmitter)
into a set of neural firing patterns (a code). The
neuron (acting as a channel) passes that encoded
message on to other neurons (receivers). Ulti-
mately, the signals are used by other brain cen-
ters (the destinations) to determine the nature of
the original stimulus. In fact, information about
the stimulus is carried by many neurons in the
visual system, and, working as an ensemble, they
can transmit much more information than any one
neuron. However, our goal in this study was quan-
tify the behavior of the building blocks of the sys-
tem, individual neurons.

Probing the structure of this neuronal code re-
quires a reliable tool for estimating transmitted
information. We use an artificial neural network
designed for this task[10], [11]. The inputs to the
network are a representation of the neuronal re-
sponses. There is one output unit for each stimu-
lus. The strength of each output is an estimate of
the probability that its associated stimulus evoked
the response used as the input. The transmitted
information may be calculated in terms of these
probabilities.

We can answer the first question by represent-
ing the neuronal response in different ways at the
input layer of the network and comparing the re-
sulting estimates of transmitted information. A
given representation might capture some features
and omit others (such as high frequency compo-
nents). Finding an adequate “code” to repre-
sent the data has a twofold significance. Knowing
which code represents the signal best provides in-
sight into the coding scheme used by the neurons
themselves. Features which are necessary to con-
serve the information in the signal are probably
important in the cell’s transmission of informa-
tion. Conversely, features which are not needed
to conserve the information of the analyzed sig-
nal are probably not relevant to the cell’s inter-
nal representation of the stimulus. Secondly, an
important part of analyzing data in statistically

sound ways is choosing an appropriate represen-
tation for the data - one which makes it easier to
identify and quartify sources of error. It is useful
to have a representation which captures the im-
portant features >f the data and can be used to
eliminate error. We find strong evidence that the
low-frequency components of the signal represent
all of the stimulus-related information.

To answer our second question, we measure
how the informat on content of the signal changes
over time. Sliding narrow time windows along
the response period and calculating the informa-
tion carried in them permits us to estimate the
instantaneous transmission rate as a function of
time. We find that there is always a large burst
of information eurly in the response, but sub-
sequent neuronal firing also carries information.
The net transmitted information generally contin-
ues to grow for several hundred milliseconds after
its initial sharp rise, indicating that part of the
message carried in the later parts of the response
is new, and not a mere repetition of the message
in the initial burst.

Many of the computations reported here were
carried out as part of J. Heller’s undergraduate
thesis [8]. Some of these results have appeared in
a short abstract [¢].

2. METHODS
2.1.  Data collection

The experiments that vielded the data analyzed
here have been reported previously [17], [7]. They
were collected from two different visual areas, V1
and IT, in awake rhesus monkeys, using standard
extra-cellular recarding techniques. The times
of each action potential and each stimulus were
recorded with a resolution of 1 ms.

19 cells were recorded from V1 in three rmon-
keys. 13 produced enough data for our analyses.
All 19 were complex cells, located in the supra-
granular layers. The receptive fields were located
in the lower contralateral visual field, 1-3 degrees
from the fovea [17] Data were also recorded from
area TE of inferior temporal cortex. Of the IT
neurons, we analyzed the responses of the 11 that
had the largest amount of stimulus-related infor-
mation [7)].



The stimuli used for the studies were Walsh
patterns: two-dimensional black and white 4x4
patterns based on Walsh functions, plus their
contrast-reversed counterparts, making a total of
32 stimuli (Fig. 1).

]

, [15).
2.2.  Slatistics
Each stimulus is a possible message for the neuron

to transmit. The mutual (or transmitted) infor-
mation is

I(5,R) = <Z P(slr) log, [’;S?S)D ‘

n

where S is the set of stimuli s, R is the set of sig-
nals (here the neuronal responses) r, P(s|r) is the
conditional probability of stimulus class s given
an observed response r, and P(s) is the a priori
probability of stimulus 5. The brackets indicate
an average over the signal distribution P(r).

Estimating conditional probabilities for cate-
gorical data is a standard regression problem. We
employ a conventional measure of goodness of fit,
maximum likelihood. We select the parameters
of the model that come closest to predicting our
data, using as our cost function the negative log-
likelihood

E == log, P(s"|r"), (2)

where {s* ,r#} are the data used to make the fit:
s# is the stimulus and r# the response in trial
number g, As £ measures the degree to which
the data and the fit form of P(s|r) differ, we will
refer to it hereafter as the “fit error”, or simply
as the error. It can be calculated both for the
data used to make the fit (training error) and for
independent data (test error).

2.3, Neural network modcls

A neural network can be trained using backpropa-
gation so that given the input r its outputs provide
an estimate of the conditional probabilities P(s|r).
Our backpropagation model was very much like
the standard backpropagation model [20]. The
model is pictured in Figure 2, and described in
detail in Kjaer et al (1994)

The error (3) is used as the cost function for
the backpropagation algorithm, leading the net-
work to search for the parameters in the fit to
P(s|r) which give the largest log-likelihood. "The
learning rate 5 and the inertia o are used to con-
trol the speed/accuracy tradeoff of the learning.
a was always .4 and 7 was set between .0001 and
-001, depending on the representation and the ceil.
All of our networks had 6 hidden units.

Once we have trained the network so that its
outputs O,(r) provide a good estimate of P(s|r),
we can substitute O,(r) for P(s]r) in the expres-
sion (1) and average over a data set, {r#} to esti-
mate the transmitted information:

()_,(ru)]
Pls) |7
(3)

Lt (S5 R) = %Z O,(r*) log, [
Py

with P(s) estimated as n-! 204 Os(x*), where n
is the total number of samples.

A neural network can theoretically be trained
to an arbitrary degree of accuracy as long as the
number of samples is finite. However, at some
point, the network’s learning is based on features
of the specific sample, rather than on features of
the data in general. We used the “early stop-
ping” procedure described in Kjaer et al (1994)
to control such overfitting. We divided the data
into training and test segments.  The network
was tested on the test set while the training set
was used to drive the backpropagation algorithm.
Training was stopped when the test set ecrror
reached a minimum. The data were divided into
training and test sets at least 4 different ways for
each analysis. In order to obtain the final esti-
mates of information (1) and mean fitting error
(2), the individual estimates for the four test sets
were averaged.

Fig. 1. The Walsh patterns and their contrast-reversed counterparts.

Since our test sets were used to determine the
network training times, the correct procedure for
estimating the transmitted information would be
to perform the sample (3) over an entirely differ-
ent data set, used neither in training nor in de-
termining when to stop the training of the net-
work. However, we have found in previous inves-
tigations on these data that, within the confidence
limits estimated in the above manner, the values
of Iest(S; R) do not depend on whether the sam-
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pling is over our training data, our test data, or
such new data [11] .

2.4. Data Windowin,,

In order to examine the tine: course of the infor-
mation flow, we evaluated the response using two
different types of time windows. We derived an
estimated latency £, which was later updated to
reflect more accurate calculations, for each cell.
The first window began at ¢ and was 8 ms long.
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Fig. 8. Network performance on spontaneous activity. Fit
errors based on the count representation (c) for a 16-ms
wide window were calculated over 116 ms of spontaneous
activity (29 window positions, at 4 ms intervals). The his-
togram shows the distribution of the fit error values. The
distribution is almost normal and has a mean of 5.0021
bits and a standard deviation of .0057 bits. (5 bits is the
fit error (2) for a network with all outputs equal to the a
priori stimulus probability 1/32.) Since 4.985 bits is three
standard deviations below the mean of this distribution, we
assumed that values lower than that could be attributed to
the presence of stimulus-related information.
Succeeding windows began at time ¢ but included
more and more of the response: up to 320 ms,
(the length of the stimuli) and even 368 ms. Other
studies used what we called sliding windows. This
means that for a given iteration, a set number of
milliseconds (16, 24, 32 or 64) of the response,
starting at some time ¢, were encoded using some
representation, and the information calculations
were performed on the data within this “window” .
For succeeding iterations, ¢ was incremented by
some small value, i.e., the window was effectively
swept across the full response period.

All of the windows used in our final analysis
were square windows, because our ultimate goal
in using sliding windows was to localize features
of the data within the time domain. We wanted to
find the longest period over which the data could
be represented by a single variable. We also tried
windows with Gaussian tails, but concluded that
while those, or other types of windows, might be
relevant to how cells actually integrate responses,
square windows provided us with the most ac-
curacy in the time domain, and decided that we
would use other techniques to assess the frequency
domain.

” H

2.5.  Representations

Once a time-segment of the response had been se-
lected for study, it had 10 he represented in a form
which could be used to train the network. We used
all of the formats in ‘Table 1 for growing windows
of widths 16, 32, 64, 128 and 320. The represen-
tations were compared on the basis of their aver-
age test sel errors. Once preliminary results had
been obtained, a few representations were used on
a wider selection of widths. A few of these rep-
resentations were then used on sliding windows of
widths 16, 24, 32 and 64. All of these studies were
performed on each cell individually.

2.6. Lalency

A visual system neuron can change its firing rate
earlier in response to some stimuli than to others,
or the firing rate might not change at all. Latency
is often defined as the delay until the cell’s first
response to stimulus. However, we were specifi-
cally interested in response features that could be
used to differentiate among stimuli. Therefore we
defined an information latency as the time when
enough change had taken place in the response
that stimuli conld be discriminated at a threshold
level. To determine this threshold, we first com-
puted the test error and transmitted information
obtained when the network was trained on spon-
taneous (non-stimulus-related) activity, using a 16
ms-wide window which was swept from 100 ms
before the stimulus to 12 ms after it. The win-
dows were spaced at 4 ms intervals. Within each
window, the data were assigned to classes and en-
coded using only the count code ¢. For each cell,
we were able to obtain both fit error and informa-
tion values, with their means and standard devia-
tions, for 29 window positions (Fig. 3). The infor-
mation never dropped below 0 bits, and its distri-
bution shows a tail which extends up to about .02
bits. The distribution of the fit error has a mean
of 5.0021 and a standard deviation of .0057. Only
1.4% of the values fell below 4.985 (three stan-
dard deviations below the mean), and we used this
value as our criterion for establishing a relation-
ship between response and stimulus. We assumed
that error values higher than this indicated only
spontaneous activity, while values lower than this
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Fig. 4. Latency based on firing rate and information rate,
We calculated spike density over all stimuli as a function
of time for each cell and set the firing rate latency A as the
first time the spike density rose 20% of the way from its
baseline level to its peak. The information latency ¢ was
placed at the time when the network error was first signifi-
cantly below 5 bits (see Fig. 3). The scatterplot compares
Ato £ for all V1 and IT cells. Two dotted line shows the
times of equal latencies for the two measures. The two val-
ues fall within 4ms of each other for only 5 V1 cells and 3 IT
cells. In 8 V1 and 7 IT cells, the information latency is at
least 4 ms longer than the firing rate latency. In 2 IT cells,
the firing rate latencies we calculated are not meaningful
but the cells are included for the sake of completeness.

indicated significant differentiability among stim-
uli. To determine the information latency, we per-
formed this calculation of the mean fit error as the
16-ms wide time window was moved along into
the response period. When we reached the point
where the error fell below our criterion, we set the
latency 2 ms earlier than the end of the window.
This procedure defined the latency values ¢ used
for growing windows in all of our subsequent anal-
yses.

We also established a criterion for a firing-rate
latency, X, as follows. We summed the spikes in
each millisecond over all trials with all stimuli
and smoothed the resulting curve with a Gaus-
sian (¢ = 5 ms) to produce a spike density esti-
mate. We defined the firing rate-based latency as
the first time at which this smoothed spike density
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Fig. 5. Firing rate aad infarmation rate. We calculated
the spike density over all stirnuli as a function of time for
each cell (dotted curve ) and used that to deterniine the fir-
ing rate latency A (dashed line). A 16-ms sliding window,
represented using a count code, was used to produce infor-
mation transmission as a function of time. (solid curve),
and a related statistic the error, was used to compute the
information latency ¢. A. In 8 cells the initial response car-
ried information about which stimulus was being presented,
and the two latencies effectively coincided. B. In others the
first few ms of the response did not convey any informa-
tion about which stimulus was being presented: ¢ > ). C.
Sometimes, increased living rate did not lead to increased
information transmission. Also, there could be peaks later
in the response in the information transmission without a
corresponding rise in firing rate (A).

reached a value 20'% of the way from its sponta-

neous rate to its pek rat..
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Fig. 6. Comparison of fit errors using different response
representations. Each curve represents the performance of
one particular representation across a number of window
sizes, averaged over all cells of a particular type. The = axis
indicates the width, in ms, of the window used {all windows
began at the estimated information latency £). The y axis
shows the fit error for that representation and that window
size, averaged over all cells of that type. A. Fit errors for
V1 cells. The lowest error for V1 is with c6gpc (see Table
1), which is the spike count and the principal components
of data smoothed with a o = 5 ms Gaussian kernel. The or-
der of the representations for the entire 320-ms response is
{from best to worst): c6gpc <3gpc 3gpe Sgpc c8gpc 8gpe
c13gpc 13gpc ctpc ctl ct3 13g tpc ct 8g

t ¢ bpc bg 3g t3 t1 b. B. Fit errors for IT cells. The
lowest error for IT is with c13gpc, the count and principal
components of data smoothed with a 0 = 13 ms Gaussian.
The order here is: c13gpc cBgpc 13gpc 8gpc cbgpe ctpc
5gpc c3gpc ct3 3gpc ctl ct tpc t c 13g 8g 5g t3

3g bpc t1 b.

3. Results
8.1. Latency

The information-based latencies £ that we com-
puted using the count code within a 16-ms sliding

window coincided within 4 ms of the firing-rate
latencies A in only 5 V1 cells and 3 IT cells. In
8 V1 and 7 IT cells, the rise in information is de-
layed with respect to the earlicst change in firing
rate. In 2 IT cells, although there was stimulus-
dependent information, there was no comparable
rise in the average firing rate across all trials to all
stimuli. Figure 4 shows the relationship between
the firing rate and information rate latencies.
Fig. 5 shows plots of the information carried in
the 16-ms-wide windows as they are slid along in
time from through the onset of the response. The
three panels illustrate a case where the two laten-
cies are nearly the same, another where the infor-
mation latency is substantially greater than the
firing-rate latency, and a third where very little
information is transmitted, despite considerable
firing. These cells are typical in that changes in
information rate do not necessarily correspond to
changes in the firing rate averaged over all stimuli.

3.2.  Comparison of representations

All of the codes (representations) were tested on a
set, of windows of durations 16, 32, 64, 128 and 320
ms, all of which had their early edges aligned at €.
Each representation was tested on each window
size for each cell. For each window size in each
brain region, the test error values (Fig. 6) and the
information for a given representation were aver-
aged across all cells and ranked (Fig. 7). For small
window widths, the count code (c) did as well as
any other representation. For wider windows, it
usually carried a large proportion of the informa-
tion conveyed in the best representation. On av-
erage, this fraction was 76% +25% (sd) in V1 and
85%+13% in IT.

The binary code, (b) performed worse than all
the other representations. The principal compo-
nents of this code (bpc) performed better, but still
not as well as other representations. When the
binaries were convolved with truncated Gaussian
kernels and resampled at a lower rate (every 4 ms,
8 ms in some studies with wider Gaussians), larger
values of o provided increasingly better codes (in
both panels of Fig. 6A, the representations 13g,
8g, 5g, and 3g are ranked in that order). When
the principal components of the Gaussian-filtered
binaries (3gpc, etc.), were used differences in error
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Fig. 7. Comparison of information transmitted using dif-

ferent response representations, as in Figure 6. A. V1 cells.
B. IT cells.

due to changes in ¢ became much smalier (a few
hundredths of a bit).

For the larger windows, the best representation
was the count and principal components of the
Gaussian-smoothed data, taken together. Up to
5 principal components were needed in the opti-
mal representation for both V1 and IT cells, with
3 the most common number. A representation
using only one principal component was optimal
only for one V1 cell. The mean gain in infor-
mation from adding these principal components
to the count alone was 0.09 bits (16% of the to-
tal) in IT and 0.12 bits (24% of the total) in V1
(p < 0.01, Wilcoxon signed-rank test). When the
principal components were employed, the width of

the Gaussian smoothing kerne! made less of a dif-
ference than it did when the smoothed, resampled
time series were used directly. but was still signifi-
cant. A wide kernel (¢ = 13 ms) performed better
on the full response (320 ms) IT data than a nar-
row one (¢ = 5 ms) (p , .05, paired t-test). The
narrow kernel (¢ = 5 ms) performed somewhat,
but not significantly (p =.09). better on the full
response in V1, with an average improvement of
0.02 bit. With narrower time windows, the gap
between representations narrowed: for the win-
dow of width 16, the count alone was within 0.01
bits of the fit error achieved hv the best represen-
tation.

The times representalion (t) produced lower er-
ror values than the raw binaries (b) did, but not as
low as those obtained with the (Gaussian-smoothed
and resampled binaries. In an initial study, the in-
tervals (i) and inverse ‘ntervals (i7') always did
worse than the times and were dropped from fur-
ther analysis. In the shorter windows, the times
did well. Adding the count and taking the princi-
pal components of the times helped significantly,
but none of the times-based representations did as
well as the optimal representation in longer win-
dows

For a 320 ms window, the first three times (t3)
accounted for about 80%+28% of the information
recoverable from the times in general (t) in V1,
about 90%+14% in IT. Sometimes, the first three
times of occurence were more useful than all the
times. In those cases, any information found in
the remaining spike times was masked by noise so
that the network could not recover it.

We also measured the information carried by
the first spike time a:one (t1), i.e., the single-
response latency. It accounted for 35%+20% of
the total information in V1 and 48%+22% in I'T".
The combination cti of the first spike time and
the spike count accounted for 94%+17% of the to-
tal information in IT, but only 84%+22% in V1.

To set confidence linits on our estimates of the
fit error and information transmitted by the differ-
ent representations, we used the standard errors of
the means of these stalistics over the four different
test sets for which the fitting procedure was car-
ried out. These were generally around 0.04 bits for
V1 cells and 0.02 or smaller (because there were
more trials in the experiment) for IT cells. Fig. 8
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shows these standard errors for both statistics for

the optimal representations.

3.8. Instantaneous information rate

The instantaneous rate of information transmis-
sion was estimated as a function of time by sliding
a window along the response, as described above
under latency. However, while each window used
in the latency analysis was identified by its start-

ing point, each window used in measuring instan-
taneous information rate was identified by its cen-
ter point, so features found using sliding windows
of different widths could be compared and aligned.
For each window position, we estimated the infor-
mation using two different codes: the count (c),
and the combined code (cgbpe) consisting of the
count together with up to three principal compo-
nents of the Gaussian-smeared (0 = 5 ms) data.

We first used a 16-ms wide sliding window.
Combining the principal components with the
count did not yield higher information rates than
the count for either IT or V1 data. The same held
true for a 24-ms wide sliding window. This means
that one number, the spike count (c), is a contains
all the stimulus-related information in the data on
the 16-ms or 24-ms time scale. If there were ad-
ditional features with smaller resolution, the P('s
would have reflected that fact and carried addi-
tional information. Thus, 16 ms of a response can
be used to estimate an instantaneous baud rate as
the information conveyed in a time window cen-
tered at the time in question divided by the win-
dow duration. There are rises and falls in this
rate, as can be seen in V1 cells in Fig. 9 and IT
cells in Fig. 10. The peak baud rates observed
in different cells range from about 2 to about 30
bits/s. We experimented with even shorfer slid-
ing windows (12 ms), but the fit error values were
higher and more variable, reflecting the relative
lack of spikes in such short time intervals.

For 32-ms sliding windows, all of the cells
showed one or two periods early in the response,
about the time of the peak in the instauta-
neous information rate, when two principal comn-
ponents were necessary for the optimal represen-
tation (cgbpc). However, the differences between
the results with the principal components and
those based on the spike count alone were small
for most IT cells and some V1 cells. The 64-
ms sliding window shows greater discrepancies be-
tween the information conveyed by the count alone
and that carried by the count with the principal
components added, particularly at the points of
highest information (though not in all cells). In
those places, 2 or even 3 principal components are
needed (Fig. 9 and Fig. 10. panels C and D).

The count code in the 64-ms sliding window
usually carries more information than in the 32-
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including several principal components, for 4 window sizes (same sizes as in A and B). For each window, the optimal nimber
of principal components was chosen. The numbers above the 64 ms curve indicate how many principal components were
necessary for this optimal representation at each window position. Starting with the 32. and 64-ms windows, additional
principal components can capture more information than the spike count (A and B) can, particularly at points where the
information content is highest. E and F: Each point in the curve indicates the total information available using a particular
representation if all of the data from latency until that time is used. In each plot, “he solid line is the result of using
the count code c. The dotted line is the result of using the count and the optimal number of principal components of
Gaussian-smeared data for that length window. The optimal number of principal components is listed above some data
points. The Gaussian had ¢ = 5 ms. Information values rise for both representations rise (ogether in the first 30-40 me.
Then, the representations using principal components begin to outperform that using the count alone (which may actually
perform worse after more than 100 ms). This happens in almost every ceil.

ms window. However, for most V1 cells, at the
time of peak information rate, it actually carries

less information than the count in a 32 ms sliding

windows centered 01 the same point (Fig. 9, pan-
els A and B). This phenomenon was not found in
any of the IT cells we studied (Fig. 10, panels A
and B).
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Fig. 10. Temporally-resolved information transmission for typical IT cells. See the caption for Fig. 9 for details. Differences
from the V1 cases are: (1) The width of the Gaussian kernel used in the optimal representations is 13 ms. (2) Widening
the windows in A - D increases the information carried. (3) The information carried by the spike count continues to grow

throughout the entire response period.

3.4.  Cumulative transmitled information

In determining the best representation (as de-
scribed above), we measured the information car-
ried in different time-periods of the response.
These results (Fig. 8B) can be interpreted as
crude cumulative information curves that answer
the question: how much could be determined
about the stimulus by observing the response for
a specific amount of time? To answer this ques-
tion more completely, we used windows that grew
in relatively small increments (8-16 ms). For
both V1 and IT cells we used the count alone,
and the “best” representation as obtained above:

the count and the principal components of the
Gaussian-filtered binaries, with ¢ = 5 ms (c5gpc)
for V1 and ¢ = 13 ms (c13gpc) for IT. The IT
data were resampled at 8 ms, rather than 4, be-
cause a Gaussian of o = 13 ms elirninates features
of the response on the scale of 4-8 ms.

For 10 of the 13 V1 cells, the information values
for the two representations rise together steeply
for the first 30-40 ms. Then, the count code
reaches a practical maximum, and possibly de-
creases in effectiveness thereafter. The combined
code also rises steeply in the early part of the re-
sponse, but it then either levels off or continues
to rise slowly. In 9 of 11 IT cells the informa-
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tion transmission rates for both representations
rise over the first 100 ms. At that point the PC’s
gain an advantage over the count, but both then
continue rising more gently through the remainder
of the response. Examples of these curves for V1
and [T cells are shown in Figs. 9 and 10 respec-
tively, panels E and F of each figure. An examina-
tion of how many principal components are nec-
essary for a maximal representation at each stage
is also informative. More principal components
are necessary later in the response. After about
32 ms, the average number of principal compo-
nents needed for optimal representation rises to
over two, and continues rising, eventually typically
reaching a value of 3 for the whole response.

3.5. Independent messages

All of the cells showed a peak in transmission rate
early in their responses. This peak was between
2 and 40 ms (mean 21 ms) after the latency £ in
V1, between 6 and 56 ms (mean 29 ms) in IT. On
average, the 16-ms window centered on the peak
carried 58% of the total information for V1 cells
and 32% for IT cells. All of the V1 cells and 9
of the IT cells showed an additional subsequent
peak in transmission rate. In V1, this peak came
between 52 and 232 ms after latency (mean time
101 ms). In IT, it came between 48 and 216 ms
after latency (mean time 94 ms). We calculated
the combined information of the two bursts using
a combined code - the count code from 16 ms of
the first burst and the count code from 16 ms of
the second burst, to compute the combined infor-
mation, c¢. If b; is the information carried in the
first 16-ms period and by is that carried in the
second one, the fraction of b, that is new informa-
tion is (¢ — b1)/b2. On average, in V1 this fraction
is 56%+56%, and in IT it is 66%%27%. Thus,
in 22/24 cells the second information bursts carry
new information not present in the first ones. (We
emphasize that the “bursts” we describe here have
nothing to do with what is often called “bursting”
firing patterns of neurons. Qur bursts are sim-
ply local maximain the instantaneous information
transmission curves.) In some cases, the informa-
tion available from the combined code was greater
than that available from the two bursts individu-
ally.

4. Discussion

These results extend considerably our understand-
ing of temporal coding of information about visual
patterns in primates. Previously, it had been es-
tablished that neursns in V1 and IT code some
of this information m some way in the pattern of
timing of their spikes [16]. {14], {18]. Reliable cal-
culations of the magnitude of this information are
now possible{10], [11}, but very little was known
about the way the messages were coded in time.
Our results permit us to determine the temporal
resolution with which the messages transmitted by
single neurons need to be read and how the infor-
mation they convey varies in time in the course of
the response. These findings, in turn, place strong
constraints on possible codes these neurons use.

4.1.  The temporal resolution limil

Characteristic temporal resolution limiis of the or-
der of 25 ms (V1) and 50 ms (IT) emerge from
our results at several points. The first pieces of
evidence come from the comparison of the many
different representations of the response. In both
V1 and IT, the code that allowed our neural net-
work to achieve the lowest test error had the
spikes smeared by « Gaussian kernel, followed by
a Karhunen-Loeve transform truncated to 3 or 4
principal components. The best fit was achieved
when the Gaussian had ¢ = 5 ms for V1 data
and ¢ = 13 ms for IT. A Gaussian of ¢ = 5 ms
reduces all frequencies over 27 hz by 3 db. This
means that Fourier components of the responses
which are smaller than 1000/27=37 ms in period
are cut to 1/3 in magnitude. Thus the smooth-
ing effectively suppresses variations on the scale
of about half that - 18 ms. For IT, where the op-
timal Gaussian kernel has a width of 13 ms, the
corresponding argument leads to a suppression of
variations in the response shorter than 48 ms.
The truncation at a small number of principal
components introduces additional low-pass filter-
ing, so rapid variations in the response are sup-
pressed even further in both these optimal rep-
resentations, and we can be sure that very little
information is codel near the cutoff frequencies of
27 hz (V1) or 10 bz (I'T't. Nevertheless, the fact



that the narrow Gaussian kernel produced a sig-
nificantly (albeit marginally) better fit than the
wide one for V1 (and vice versa for IT) implies a
difference in the temporal resolution scales of the
messages in the two areas.

Nearly the same timescales emerge from a com-
parison of the performance of different representa-
tions in different, time windows, The codes which
are optimal for the maximal window, encompass-
ing the entire 320 ms of the response, lose much of
their advantage over other reptresentations in the
shorter time windows. In particular, it is evident
in Fig. 6 that for windows of 16 mg in VI and 32
ms or less in IT, the spike count yields a fit vir-
tually as good as the optimal code and conveys
essentially all the information it does, Thus, no
improvement would occur by analyzing changes
in firing rate on timescales shorter than these. On
the other hand, for windows wider than these, in-
formation is lost if the temporal variation of the
firing rate within the window is not taken into ac-
count. This places the temporal resolution limit
between 16 and 32 ms for V1 and between 32 and
64 ms for IT.

One can see this same transition in the more de-
tailed cumulative information curves (Figs. 9 and
10, panels E and F). At short times, the spike
count and the optimal representations transmit es-
sentially the same information, but at longer times
the curves for the two codes diverge, revealing that
temporal variation of the response within the win-
dow carries information. The characteristic times
are once again consistent with the 25 and 50 ms
identified in the two areas above,

These calculations show that at some times in
the windows longer than these values, it is neces-
sary to take into account the temporal variation
of the firing rate on these timescales to extract all
the information in the signal. The sliding-window
calculations allow us to see at what points in the
response this resolution is necessary.

We find that codes including principal compo-
nents give better fits and more information during
the portions of the response in which the informa-
tion rate is high. For V1, in such periods, more
information is transmitted by codes including sev-
eral principal components (Fig. 9, panels C and D)
than by the spike count alone (panels A and B),
whenever the window is wider than 24 ms. How-

77 13

ever, at other times, the spike count. appears to
be an adequate measure of the Eesponse even over
64-ms periods. Thus, our 25-ms temporal resolu-
tion figure is relevant only to these relatively brief
periods periods of high transmission rates.

A corresponding result, is found inIT. Employ-
ing more than one prineipal component of the re-
sponse generally leads to better fits and higher
information for 64-ms windows only around the
times of local maxima in the information rate. At
other times, the characteristic temporal resolution
is apparently larger.

4.2. The time course of tnformation flow

Deeper insight into the nature of the neural code
is obtained through our systematic measurements
of information flow using sliding and growing time
windows. The former reveal a persistent pattern
in the instantaneous transmission rate, for both
V1 and IT neurons. There is always an initial
burst, peaking very quickly after latency (as we
have defined the latter). A 16-ms window placed
over the center of this peak contains, on the ay-
erage, half the total information in the neuronal
message in V1. In IT, the figure is lower (30%),
presumably because 16 ms is too short a sampling
time for these relatively slower neurons. Then, in
both areas, there is usually another burst, typ-
ically about 100 ms later, carrying considerahle
new information. In addition, some information is
carried between and after these hursts. Its mag-
nitude varies rather irregularly in time.

The cumulative information curves tell the
same story. They are almost, invariably charac-
terized by a sharp rise at the very beginning of
the response, coinciding with the first peak in the
sliding-window curves. Most of the eventual to-
tal information is transmitted in this first period
of 30-40 ms (V1) or 100 ms (IT). The shape of
the curves after this point is somewhat more vari-
able, but the net transmitted information gener-
ally rises to a somewhat higher value (25% higher
on average) during the entire 320-ms course of the
response.

If all the information calculated in non-
overlapping sliding window segments were inde-
pendent, the integral of the sliding-window curves
would match the cumulatjve curves. This is not
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the case. A good deal of the information carried
in the sliding windows after the first burst is re-
dundant. On the other hand, some of it is new;
otherwise the cumulative curves would not con-
tinue to rise.

The peak transmission rates we find in the ini-
tial bursts of some of our cells are of the same
order as those measured by Eckhorn and Pépel in
the LGN of the cat [5], [6] and somewhat smaller
than those recorded by Bialek et al. in the H1
motion-sensitive neuron in the blowfly [4]. It is an
open question whether our cells would maintain
such rates in response to rapid changes in stimu-
lus. It is important to note that the H1 cells each
represent a large fraction of all visnal information
carried by the system, while each of the V1 and IT
cells we studied is one of many sub-channels that
carry information in primate visual cortex, and
carries only a small faction of that information.

4.8, Implications for the neural code

These results provide insight into the way these
neurons code information. They tell us just what
aspects of their spike timing carry information
to cells that receive their signals. Of course, we
have not determined whether those receiving cells
make use of all the information we measure or to
what extent signals from a population of cells may
be combined synergistically. Nonetheless, we can
place limits on the codes the brain actually uses at
the single cell level. In the following, we consider
different kinds of codes that have been suggested
and examine the implications of our findings for
them.

Abeles [1] has argued that the primate cor-
tex may compute using very precisely-timed se-
quences of spikes. His group has found evidence
for systematically-repeated patterns of activity,
with spike timing precision of 1-2 ms, in recordings
from frontal cortex[2]. These patterns appear to
be related to the tasks the monkeys are perform-
ing.

Our results offer no evidence of a role for such
precise timing in V1 or IT cortices. It is evident
in Fig. 6 that codes such as the spike times (t), or
combinations of them with the count (ct, cti,
ct3) are essentially Just as effective representa-

tions of the signal as the optimal ones. However,
even for the shortest windows, they never do bet-
ter than the opuimal ones, despite the fact that
they preserve (vifferent amounts of) exact spike
timing, informaltion that is destroyed by the low-
pass filtering in (he optimal ones. Thus spike tim-
ings more precice than the resolution limits we
have identified do not carry any information about
the patterns in these experiments.

It should be etnphasized, however, that we have
only analyzed information about stimuli. Re-
cently, Lestienne [12] analyzed the same V1 data
and reported evidence of repeated, precisely-timed
patterns in the spike trains. Qur findings imply
that these patterns do not convey any informa-
tion about stimuli beyond what can be extracted
from a strongly low-pass filtered version of the re-
sponses. It is conceivable that the brain uses dif-
ferent codes for different kinds of messages, and it
is even an appealing idea to use different frequency
bands for information about sensory stimuli and
internal processing. However, we have no evidence
that bears on this conjecture.

De Ruyter van Steveninck and Bialek carried
out an extensive analysis of short, portions of spike
trains from the H| motion-sensitive neuron in the
blowfly [19]. They found that temporal resolution
of spikes on the order of 5-10 ms did convey in-
formation. Qur Primatc neurons apparently oper-
ate with considerably less temporal precision than
theirs.

Thorpe and Imtert [21] have suggested that for
the visual system bLe able to carry out recognition
tasks as quickly ay it does, a lot of information
must be carried in the time of the first spike. (This
argument presupposes that some other neurons
fire indiscriminately in response to any stimulus,
to give a reference time with respect to measure
these first spike times.) We find that the t1 rep-
resentation accounts for only about half the total
information. This may be enough for the system
to carry out the tasks in their experiments, but, it
seems implausible to us to conclude that the brajn
wastes half the information in these signals.

It has often been assumed that, the neural code
is simply the total spike count, taken over some
interval. If we take this interval to be the entire
response period (320 ms), we find this not to be a
bad approximation. It misses about a quarter of



the total information in V1 and 15% in I'T. How-
ever, the rest of the information we have measured
is statistically significant, and a full description of
the neural code for these cells must take the cod-
ing of this additional information into account.

Tovee et al.[22] have also carried out informa-
tion measurements on IT cells. They found that
when the first 120 ms of the response was removed
from the interval analyzed for information about
the stimuli, the net information dropped slightly.
This reduced amount could be accounted for al-
most entirely in terms of firing rate alone. At-
tributing the drop when the initial part of the re-
sponse was exciuded to loss of information about
when the spike train started, they suggested that a
combination of “onset characteristics of the spike
train” and the subsequent mean firing rate car-
tied essentially all information in these cells. If
the only onset characteristic we use is the first-
spike latency, this combination is exactly our code
ct1, and in our IT cells it accounted for 94% of
the total information. In V1, it was not as success-
ful, yielding 81% of the information carried by the
optimal code. However, even in IT, the optimal
codes consisting of the spike count plus principal
components did even better than ct1, and we have
learned, moreover, that in IT no spike timing more
precise than 32 ms carries information.

The first 50 ms of the response of our IT neu-
rons typically contain only 2 spikes, so a single
spike can be said to carry a good deal of infor-
mation. However, apparently it is the Ppresence or
absence of these spikes in this period, not their
exact timing, that is most informative.

If “onset characteristics” is taken to mean the
spike rate in the first, say, 64 or 100 ms, the code
proposed by Tovee et al. amounts to a simple com-
bination of two numbers: the spike count in that
first interval and that in the rest of the response.
In fact, this bivariate code is not far from the op-
timal representations we find. All our results are
consistent with the hypothesis that all information
about the stimulus is carried in an effective time-
varying firing rate defined by averaging the spike
train over a suitable time window. This window
should be about 25 ms wide in V1 at times of high
information transmission rate, about 50 ms wide
in IT. Elsewhere in the response, longer averag-
ing times, perhaps 100 ms or more, are adequate.
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The extra degrees of freedom of the response af-
ter the initial burst are necessary to give the slow
rise in information seen over the entire response
period for most cells. The bivariate code approx-
imates these degrees of frecdom by a single num-
ber, the post-burst spike count. The trivariate
code (“early”, “middle”, and “late” firing rates)
proposed by Miller et al.[13] goes one step beyond
this. These are not qualitatively bad approxima-
tions, and for the 16 out of our 24 cells for which
the optimal number of principal components was
3 or less, the latter is essentially equivalent to our
optimal model. However, for the remaining 1/3 of
our cells, our optimal representations have higher
dimensionality, and they capture more informa-
tion.

In V1, the extra information rise after the ini-
tial burst is apparently due to new features of
the response (characteristic changes in firing fre-
quency), which provide new, independent infor-
mation. This is evident from the fact that the
information carried by the spike count generally
remains constant or even drops a bit after the fast
initial rise period (Fig. 9, panels D and E). The
extra principal components in the optimal repre-
sentation are necessary to capture the change that
occurs in the nature of the message.

In contrast, the information carried in the spike
count alone in IT cortex generally continues to rise
throughout the response period. This finds a nat-
ural explanation in a model where the information
is carried in a time-independent firing probabil-
ity. This probability can be estimated better if
the spike train is observed for a longer time: sim-
ple arguments give an uncertainty in frequency,
Af ~ 1/t, where t is the observation time, leading
to information o logt, which is in at least quali-
tative agreement with the variation seen in many
IT cells, including the ones in Fig. 10. However,
this agreement does not mean that an underly-
ing firing rate constitutes the code of IT neurons.
For them, just as for our V1 ones, better fits are
achieved and more information is transmitied us-
ing representations that include several principal
components, indicating that temporal variations
in the firing rate are part of the neural code.

The fact that, of the representations we tried,
ones employing principal components of the re-
sponse were optimal does not imply that the
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cells which receive the response actually perform
a principal component decomposition. However,
the fact that we could not find any better ones
does suggest that downstream neurons can gain
more information if their processing can accom-
modate the features in the temporal structure of
the signals that our analysis has identified as car-
rying information. The minimum temporal reso-
lution we have identified for the initial burst pe-
riod in V1 neurons matches well with typical cor-
tical membrane time constants. We do not know
how, or even whether, the system achieves the in-
tegration over longer periods necessary to extract
maximum information from later portions of the
response. However, this is a problem not Just for
our codes, but for any code based on firing rates
averaged over more than 20 ms or so.

Another noteworthy feature of the best repre-
sentation is that it includes the spike count. It
might seem that the first principal component,
which corresponds to the largest source of variance
among the responses, would duplicate the count.
Although the correlation coefficient between the
count and the first principal component is high
(15], [18], the first principal component represents
the extent to which the response can be approx-
imated by a specific waveform, while the count
is just an average. This means that the differ-
ence between the two is the extent to which the
actual waveform of the response differs from the
first principal component. The count and princi-
pal components always do better than the prin-
cipal components alone. This suggests that the
count conveys information which is not conveyed
by the first few principal components.

The importance of the spike count and firing
rates averaged over times ranging from 25 ms up-
ward suggests another simple hypothesis: that
variations in information transmission are a direct
consequence of temporal changes in firing rate, so
high information transmission is achieved when
and only when the firing rate, averaged over all
stimuli, is high. As was the case for other sim-
ple hypotheses we tested above, this is not a bad
approximation, and it holds approximately for a
majority of our cells, but it fails for about a third
of them (see Fig. 5).

We have also shown that for some cells there
are two distinct latencies — one which measures

the time until the firing rate rises as a result of
stimulus presentation, and the other which mea-
sures the time until different stimuli can be dis-
tinguished on the basis of the cell’s response. For
some cells, these two latencies are simultaneous.
For others, they are separated by over 10 ms.
This means that some celis in the visual system
start firing when a new stimulus is presented, but
this change in firing rate provides no information
about what the stimilus was.

Our study leaves 1 number of important ques-
tions unanswered. A particularly interesting one
is just what patterns or features in those pat-
terns can be discriminated on the basis of a neu-
ron’s response. In recent work, we have addressed
this question with rospect to the entire 320-ms
response. However, our findings here about the
detailed temporal course of the information trans-
mission raises the question of whether information
transmission about different kinds of spatial pat-
tern features (for example, low and high spatial
frequencies) follows different time courses. Explo-
ration of this questicn would extend our knowl-
edge of the neural code significantly.
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