Skip to main content
Log in

Smoothed Rectangular Function-Based FIR Filter Design

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new technique for designing FIR filters where the desired frequency response is a smoothed rectangular function is proposed. Instead of choosing a suitable window in time domain, we will directly try smoothing the ideal desired response in frequency domain. The impulse response of the FIR filter is a sampled version of the inverse Fourier transform of the frequency response. In comparison with results reported in the literature, this technique provides the best performance in terms of filter specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.I. Ababneh, M.H. Bataineh, Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digit. Signal Process. 18(4), 657–668 (2008)

    Article  Google Scholar 

  2. S.U. Ahmad, A. Antoniou, A genetic algorithm approach for fractional delay FIR filters. in IEEE International Symposium on Circuits and Systems, ISCAS 2006, pp. 2517–2520

  3. K. Avci, A. Nacaroglu, Cosh window family and its application to FIR filter design. Int. J. Electron. Commun. 63, 907–916 (2009)

    Article  Google Scholar 

  4. X. Huang, S. Jing, Z. Wang, Y. Xu, Y. Zheng, Closed-form FIR filter design based on convolution window spectrum interpolation. IEEE Trans. Signal Process. 64(5), 1173–1186 (2016)

    MathSciNet  Google Scholar 

  5. J.F. Kaiser, R.W. Schafer, On the use of the IO-sinh window for spectrum analysis. IEEE Trans. Acoust. Speech Signal Process 28, 105–107 (1980)

    Article  Google Scholar 

  6. B. Luitel, G.K. Venayagamoorthy, Differential evolution particle swarm optimization for digital filter design. in IEEE Congress on Evolutionary Computation, CEC 2008, pp. 3954–3961

  7. S.K. Mitra, J.F. Kaiser, Handbook for Digital Signal Processing (Wiley, New York, 1993)

    MATH  Google Scholar 

  8. M. Najjarzadeh, A. Ayatollahi, FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. in IEEE International Symposium on Signal Processing and Information Technology, 2008, pp. 129–132

  9. Y. Neuvo, G. Rajan, S.K. Mitra, Design of narrow-band FIR bandpass digital filters with reduced arithmetic complexity. IEEE Trans. Circuits Syst. 34(4), 409–419 (1987)

    Article  Google Scholar 

  10. T. Parks, J. McClellan, Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans. Circuits Theory 19(2), 189–194 (1972)

    Article  Google Scholar 

  11. W. Parks, C.S. Burrus, DIgital Filter Design (Wiley, New York, 1987)

    MATH  Google Scholar 

  12. C. Pulikkaseril, Filter Bandwidth Definition of the WaveShaper S-series Programmable Processor, Finisar product whitepaper

  13. M. Radenkovic, T. Bose, Adaptive IIR filtering of nonstationary signals. Sig. Process. 81, 183–195 (2001)

    Article  MATH  Google Scholar 

  14. G. Rajan, Y. Neuvo, S.K. Mitra, On the design of sharp cutoff wide-band FIR filters with reduced arithmetic complexity. IEEE Trans. Circuits Syst. 35(11), 1447–1454 (1988)

    Article  MathSciNet  Google Scholar 

  15. K.S. Reddy, S.K. Sahoo, An approach for FIR filter coefficient optimization using differential evolution algorithm. AEU-Int. J. Electron. Commun. 69(1), 101–108 (2015)

    Article  Google Scholar 

  16. S.K. Saha, S.P. Ghoshal, R. Kar, D. Mandal, Cat Swarm Optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013)

    Article  Google Scholar 

  17. S. Salcedo-Sanz, F. Cruz-Roldan, C. Heneghan, X. Yao, Evolutionary design of digital filters with application to subband coding and data transmission. IEEE Trans. Signal Process. 55(4), 1193–1203 (2007)

    Article  MathSciNet  Google Scholar 

  18. T. Saramaki, A class of window functions with nearly minimum sidelobe energy for designing fir filters. in Proceedings of the IEEE International Symposium Circuits and Systems, Portland, USA, pp. 359–362 (1989)

  19. J.J. Shynk, Adaptive IIR filtering. IEEE ASSP Mag. 6, 4–21 (1989)

    Article  Google Scholar 

  20. S.D. Stearns, Error surface of recursive adaptive filters. IEEE Trans. Acoust. Speech Signal Process. 29, 763–766 (1981)

    Article  MATH  Google Scholar 

  21. P. Vaidyanathan, T. Nguyen, Eigenfilters: a new approach to least-squares FIR filter design and applications including Nyquist filters. IEEE Trans. Circuits Syst. 34(1), 11–23 (1987)

    Article  Google Scholar 

  22. Vasundhara, D. Mandal, R. Kar, S.P. Ghoshal, Digital FIR filter design using fitness based hybrid adaptive differential evolution with particle swarm optimization. Nat. Comput. 13(1), 55–64 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Boukharouba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukharouba, A. Smoothed Rectangular Function-Based FIR Filter Design. Circuits Syst Signal Process 36, 4756–4767 (2017). https://doi.org/10.1007/s00034-017-0529-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0529-2

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy