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Abstract

First passage time (FPT) theory is often used to estimate timescales
in cellular and molecular biology. While the overwhelming majority of
studies have focused on the time it takes a given single Brownian searcher
to reach a target, cellular processes are instead often triggered by the
arrival of the first molecule out of many molecules. In these scenarios,
the more relevant timescale is the FPT of the first Brownian searcher to
reach a target from a large group of independent and identical Brownian
searchers. Though the searchers are identically distributed, one searcher
will reach the target before the others and will thus have the fastest FPT.
This fastest FPT depends on extremely rare events and its mean can be
orders of magnitude faster than the mean FPT of a given single searcher.
In this paper, we use rigorous probabilistic methods to study this fastest
FPT. We determine the asymptotic behavior of all the moments of this
fastest FPT in the limit of many searchers in a general class of two and
three dimensional domains. We establish these results by proving that
the fastest searcher takes an almost direct path to the target.

1 Introduction

Several investigations and commentaries have recently announced a paradigm
shift in studying cellular activation rates [1, 2, 3, 4, 5, 6, 7, 8]. This work has
produced new questions, calls for more investigation, and intriguing conjectures
to explain the seeming “redundancy” that marks many biological systems [2].
Indeed, this work has led to the formulation of the so-called “redundancy prin-
ciple,” which asserts that many seemingly redundant copies of an object (cells,
proteins, molecules, etc.) are not a waste, but rather have the specific function
of accelerating cellular activation rates [2]. For example, this principle has been
used to explain (i) why thousands of neurotransmitters are released in order to
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activate only a few receptors in the synaptic cleft [9] and (ii) why 300 million
sperm cells attempt to find the oocyte in human fertilization, when only a single
sperm cell is necessary [10, 11, 12].

To give the background for this paradigm shift, many cellular processes are
triggered when a “searcher” reaches a “target” [13, 14, 15]. Some examples are
oocyte fertilization by the arrival of a sperm cell [12], calcium release triggering
by diffusing IP3 molecules that reach IP3 receptors [16], gene activation by the
arrival of a diffusing transcription factor to a certain gene [17], adaptive immune
response initiation by T cells binding to antigen presenting cells [18, 19], and
many more [13]. In these systems, the first passage time (FPT) of a searcher to
a target sets the timescale of activation.

This timescale has been estimated by calculating the mean first passage time
(MFPT) of a given single searcher to a target. Indeed, many prior studies have
calculated such MFPTs, especially for the case of a diffusing Brownian searcher
and a small target, which is the so-called narrow escape problem [20, 21, 22, 23,
24, 25, 26, 27, 28]. However, the relevant timescale in many systems is not the
MFPT of a given single searcher but rather the MFPT of the fastest searcher
out of many searchers [2, 29, 30, 31, 32]. For important earlier work on such
fastest FPTs, see [33, 34, 35, 36, 37, 38, 39, 40].

To illustrate, consider N noninteracting searchers diffusing in a bounded
domain Ω ⊂ Rd with reflecting boundary ∂Ω. The independent and identically
distributed (iid) searchers move by pure Brownian motion with diffusivity D > 0
and are each initially placed at some x0 ∈ Ω.

For these N searchers, let τ1, . . . , τN be their N iid FPTs to find a target
∂ΩT ⊂ ∂Ω. Specifically, if the position of the n-th searcher at time t ≥ 0 is
denoted by Xn(t) ∈ Ω, then

τn := inf{t > 0 : Xn(t) ∈ ∂ΩT}.

The MFPT of a given single searcher is E[τn] = E[τ1] and its behavior has been
studied extensively. However, the more relevant timescale in many biological
systems is actually the FPT of the fastest searcher,

T := min{τ1, . . . , τN}.

That is, T is the first time that any of the N searchers reaches the target.
Importantly, if there are many searchers (N � 1) and the target is small,

then these two times can be drastically different,

E[T ]� E[τ1].

The essential reason for this drastic difference in timescales is that E[τ1] de-
scribes a typical searcher that wanders around the domain before finding the
target, while E[T ] depends on extremely rare events in which a searcher hap-
pens to go directly to the target. Indeed, a significant point that is argued in
references [2, 41, 42, 43] is that the path of the fastest searcher closely follows
the shortest path from its initial position to the target, see Figure 1.
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Figure 1: The thin black curve illustrates a typical searcher path that wanders
around the domain before finding the target. The solid blue curve illustrates that
the fastest searcher out of N � 1 searchers takes a straight path to the target.
The targets ∂ΩT are the red regions and can be on the outer boundary (panel
(a) has one outer boundary target) and/or on inner boundaries of the domain
(panel (b) has one outer boundary target and one inner boundary target).

Compared to the MFPT of a given single searcher, E[τ1], much less is known
about the FPT of the fastest searcher, and this is especially true in space di-
mensions 2 and 3 (2d and 3d). However, it has been known since 1983 [33]
that in one space dimension (1d), the fastest FPT, T = T1d, has the following
asymptotic mean behavior as the number of searchers N grows,

E[T1d] ∼ z20
4D logN

as N →∞, (1.1)

where z0 is the initial distance between the searchers and the target. (Through-
out this paper, the notation “f ∼ g as N →∞” means limN→∞ f/g = 1.) More
generally, for the spherically symmetric problem of escape from a hypersphere
of radius z0 in dimension d ≥ 1,

Ω := {x ∈ Rd : ‖x‖ < z0}, ∂ΩT := ∂Ω = {x ∈ Rd : ‖x‖ = z0}, x0 = 0,

the 2001 reference [37] found the following behavior for the m-th moment of the
fastest FPT, T = Td-dim sphere, for any m ≥ 1 and d ≥ 1,

E[(Td-dim sphere)
m] ∼

( z20
4D logN

)m
as N →∞. (1.2)

The interest and development of the “redundancy principle” was started
by an important recent study that investigated E[T ] in 2d and 3d bounded
domains [1]. In [1], the authors employed formal asymptotic analysis of partial
differential equations (PDEs) to argue that the large N behavior of E[T ] in
a bounded 2d domain with a small target is the same as the 1d behavior in
(1.1), where z0 > 0 is the distance between the initial searcher position and the
target. The authors employed similar formal arguments to conclude that E[T ]
has qualitatively different behavior in bounded 3d domains. Specifically, rather
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than the (logN)−1 decay seen in 1d and 2d, the authors assert that the mean
of the 3d fastest FPT, T = T3d, decays like (

√
logN)−1 as N →∞.

In this paper, we use probabilistic methods to prove that the large N be-
havior of the fastest FPT in a general class of 2d and 3d domains is identical in
mean to the 1d behavior in (1.1). Furthermore, for this general class of 2d and
3d domains, we prove that the asymptotic behavior of the m-th moment of the
fastest FPT is identical to (1.2). That is, for any moment m ≥ 1, we prove that

E[(T3d)m] ∼ E[(T2d)m] ∼
( z20

4D logN

)m
as N →∞. (1.3)

The general class of 2d and 3d domains requires (i) that the domain contains
the straight line path from the initial searcher location to the nearest point on
the target and (ii) that a mild so-called star condition holds (see section 3 for
a precise statement, but note that a convex domain is a sufficient condition).
This corrects the aforementioned result of reference [1], which was due to a small
error (see their equation (97)) which followed several pages of innovative formal
calculations.

The rest of the paper is organized as follows. In section 2, we analyze the
fastest FPT in a simple cylindrical domain in 3d. In section 3, we extend the
methods developed for the cylindrical domain to a general class of 2d and 3d
domains. We conclude with a brief discussion highlighting additional questions
about fastest FPTs.

2 Simple cylindrical geometry

Let the spatial domain Ω ⊂ R3 be a cylinder of radius r > 0 and height h > 0,

Ω :=
{

(x, y, z) ∈ R3 : x2 + y2 < r2, z ∈ (0, h)
}
.

Suppose that the boundary ∂Ω contains a distinguished region, ∂ΩT ⊂ ∂Ω,
which we refer to as the target, which is a disk of radius a ∈ (0, r) at the
bottom of the cylinder,

∂ΩT :=
{

(x, y, 0) ∈ R3 : x2 + y2 < a2
}
.

Suppose that N ≥ 1 particles diffuse in Ω with diffusivity D > 0, reflect from
∂Ω, and are initially placed at

x0 = (0, 0, z0) with z0 ∈ (0, h).

We are interested in the first time that any of the N particles hits the target.
See Figure 2a for an illustration.

Let Zn(t) ∈ [0, h] and Rn(t) ∈ [0, r] denote the height and radial position
of the n-th particle at time t ≥ 0. Define the first time that the n-th particle
reaches the target,

τn := inf{t > 0 : Zn(t) = 0, Rn(t) < a}, n ∈ {1, . . . , N}.

4
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Figure 2: (a) The simple cylindrical geometry considered in section 2. The thin
black curve depicts a typical searcher trajectory, while the thick blue curve shows
the path of the fastest searcher. (b) The method developed for the cylinder in
section 2 is extended to more general spatial domains in section 3 by proving
that the fastest searcher never leaves a thin tube connecting the initial location
to the target.

Next, define the first time that the n-th particle reaches the bottom of the
cylinder (regardless of the radial position),

τn,z := inf{t > 0 : Zn(t) = 0}, n ∈ {1, . . . , N}.

Further, define the first time that any particle reaches the target and the first
time that any particle reaches the bottom of the cylinder,

T3d := min
n
{τn}

T1d = T1d(z0) := min
n
{τn,z}. (2.1)

We sometimes write T1d(z0) to emphasize that it is the time for a particle
diffusing in 1d to reach a target that is distance z0 > 0 from its initial position.

It is immediate that T1d ≤ T3d with probability one, since τn,z ≤ τn for each
n ∈ {1, . . . , N}. The following theorem shows that the m-th moments of T3d
and T1d for m ≥ 1 become identical as N grows. Throughout this paper, the
notation “f ∼ g as N →∞” means limN→∞ f/g = 1.

Theorem 1. For any moment m ≥ 1, we have that

E[(T3d)m] ∼ E[(T1d(z0))m] ∼
( z20

4D logN

)m
as N →∞.

We make four comments on Theorem 1. First, Theorem 1 holds for any fixed
target size (including a small target). Second, the proof of Theorem 1 relies on
proving that the path of the first particle to reach the target is almost a straight
line from the initial position to the target. Third, while Theorem 1 concerns
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a very specific spatial domain, we extend the argument to much more general
spatial domains in Section 3 (see Figure 2b for an illustration).

Fourth, we emphasize that the cylinder is assumed to be finite, meaning r <
∞ and h <∞. In fact, if r = h =∞, then the conclusion of the theorem cannot
hold since E[T3d] = ∞ for every N ≥ 1. To see this, note that since Brownian
motion is transient in 3d, each particle has a strictly positive probability of
never reaching the target,

P(τ1 =∞) > 0.

Therefore, for any N ≥ 1, there is a strictly positive probability that all of the
N particles never reach the target,

P(T3d =∞) = (P(τ1 =∞))N > 0.

Since any random variable that is infinite with strictly positive probability must
have infinite expectation, we obtain E[T3d] = ∞. We note that this is distinct
from the phenomenon where the MFPTs of single particles can be infinite while
the MFPT of the fastest particle can be finite. Indeed, in the 1d case above
with h =∞, it is known that E[τ1,z] =∞, but E[T1d] <∞ for N ≥ 3 [44].

2.1 Some lemmas and the proof of Theorem 1

Before proving Theorem 1, we outline the basic idea of the proof. Notice that
if the first particle that hits the bottom of the cylinder hits the bottom before
its radial position escapes the “inner” cylinder of radius a > 0, then T3d = T1d.
Further, since T1d → 0 almost surely as N →∞, this event happens with high
probability since the radial position has little time to escape this inner cylinder
before time T1d. Therefore, E[(T3d)m] ≈ E[(T1d)m] if N � 1.

This first preliminary lemma collects some basic bounds on the short-time
behavior of a radial diffusion process (a 2d Bessel process). In particular, it
allows us to quantify the probability that a particle quickly escapes the inner
cylinder.

Lemma 2. Let τn,side denote the first time that the n-th radial position escapes
the disk of radius a > 0,

τn,side := inf{t > 0 : Rn(t) > a}.

That is, τn,side is the first time that the n-th particle escapes the inner cylinder
of radius a > 0 through its “side.”

There exists constants C1, C2 > 0 (depending on a and D) so that for all
t > 0 sufficiently small,

P(τ1,side ≤ t) ≤ C1t
−1/2 exp(−C2t

−1).

The next lemma bounds the short-time behavior of a 1d diffusion. In par-
ticular, it allows us to quantify the rate that T1d vanishes as N →∞.
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Lemma 3. There exists constants C3, C4 > 0 (depending on z0 and D) so that
for all t > 0 sufficiently small,

P(τ1,z > t) ≤ 1− C3t
1/2 exp(−C4t

−1).

The proofs of Lemmas 2 and 3 are straightforward and collected in the
Appendix.

Proof of Theorem 1. Let nf ∈ {1, . . . , N} denote the index of the fastest particle
to reach the bottom of the cylinder. That is,

nf ∈ {1, . . . , N : Znf
(T1d) = 0}.

Since the event that two or more particles reach the bottom of the cylinder at
the same time has probability zero, the index nf is almost surely unique

Let A be the event that Rnf
(t) does not escape the disk of radius a > 0

before time T1d. That is,

A := {τnf,side > T1d} = {Rnf
(t) < a for all t ∈ [0, T1d]}.

If A happens, then T3d = T1d. In particular, if 1A denotes the indicator function
on the event A, then raising T3d and T1d to the m-th power yields

Tm3d1A = Tm1d1A almost surely.

Letting Ac denote the complement of the event A, we then have that

E[Tm3d]

E[Tm1d]
=

E[Tm1d1A]

E[Tm1d]
+

E[Tm3d1Ac ]

E[Tm1d]
= 1 +

E[(Tm3d − Tm1d)1Ac ]

E[Tm1d]
. (2.2)

Since 0 < T1d ≤ T3d ≤ τ1 almost surely, the Cauchy Schwarz inequality gives

E[(Tm3d − Tm1d)1Ac ] ≤ E[τm1 1Ac ] ≤
√

P(Ac)
√

E[τ2m1 ],

where E[τ2m1 ] <∞, since the domain is bounded. In view of (2.2), we now show
that

√
P(Ac)/E[Tm1d]→ 0 as N →∞ to complete the proof.

Since Zn and Rn are independent, we have that

P(Ac) = P(τnf,side ≤ T1d) = P(τ1,side ≤ T1d) =

∫ ∞
0

P(τ1,side ≤ t)f(t) dt, (2.3)

where f is the probability density of T1d. By independence of the FPTs τ1,z, . . . , τN,z,
we have that

f(t) := −S′(t) = N(S0(t))N−1f0(t),

where S0(t) := P(τ1,z > t) is the so-called survival probability of τ1,z, f0(t) :=
−S′0(t) is the probability density of τ1,z, and S(t) := P(T1d > t) = (S0(t))N is
the survival probability of T1d.
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Returning to (2.3), for each δ > 0, we have that

P(Ac) =

∫ δ

0

P(τ1,side ≤ t)f(t) dt+

∫ ∞
δ

P(τ1,side ≤ t)f(t) dt =: I1(δ) + I2(δ).

Since P(τ1,side ≤ t) is an increasing function of time, we have that

I1(δ) =

∫ δ

0

P(τ1,side ≤ t)f(t) dt ≤ P(τ1,side ≤ δ). (2.4)

Furthermore, since S0(t) is a decreasing function of time, we have that

I2(δ) =

∫ ∞
δ

P(τ1,side ≤ t)N(S0(t))N−1f0(t) dt

≤ N(S0(δ))N−1
∫ ∞
δ

P(τ1,side ≤ t)f0(t) dt ≤ N(S0(δ))N−1.

(2.5)

Now, setting

δ =
1√

logN

and using (2.4)-(2.5) and Lemmas 2 and 3, we have that for N sufficiently large,

P(Ac) ≤ C1(logN)1/4 exp(−C2

√
logN)

+N
[
1− C3(logN)−1/4 exp(−C4

√
logN)

]N−1
.

Therefore, using that Jensen’s inequality [45] ensures that (E[T1d])m ≤ E[Tm1d]
for m ≥ 1, we then have by (1.1) that

lim
N→∞

√
P(Ac)

E[Tm1d]
≤ lim
N→∞

√
P(Ac)

(E[T1d])m
= 0.

Therefore, (2.2) implies that E[Tm3d] ∼ E[Tm1d] as N →∞. Using (1.2) completes
the proof.

3 General 2d and 3d domains

In this section, we extend the arguments of section 2 to a general class of 2d
and 3d domains. To simplify the exposition, we first consider a 3d domain.

Let Ω ⊂ R3 be a bounded and open 3d spatial domain. Assume that the
boundary, ∂Ω, contains a distinguished region (or a collection of regions), ∂ΩT ⊂
∂Ω, which we refer to as the target. Let ∂ΩR = ∂Ω\∂ΩT denote the rest of the
boundary. We assume that ∂ΩT and ∂ΩR are smooth and that ∂ΩT is nonempty
and relatively open in ∂Ω.

Consider a set of N independent particles that diffuse in Ω ⊂ R3 with
diffusivity D > 0 and reflect from ∂Ω. Suppose the particles are initially placed
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at x0 ∈ Ω and assume there exists a “target point” xT ∈ ∂ΩT so that the
straight line path from x0 to xT does not intersect ∂Ω. That is, assume that
the following straight line lies entirely in Ω,

{(1− s)x0 + sxT ∈ R3 : s ∈ [0, 1)} ⊂ Ω. (3.1)

We note that (3.1) ensures that there are no “obstacles” in the straight line
path between x0 and xT.

Without loss of generality, we choose a Cartesian coordinate system (x, y, z)
so that (i) the target point is the origin,

xT = (0, 0, 0),

and (ii) the initial particle location is directly “above” the origin in the z direc-
tion,

x0 = (0, 0, z0) with z0 := ‖x0 − xT‖ > 0.

See Figure 2b for an illustration.
Let

Xn(t) = (Xn(t), Yn(t), Zn(t)) ∈ Ω ⊂ R3, n ∈ {1, . . . , N},

denote the position of the n-th particle at time t ≥ 0. Define the first time that
the n-th particle reaches the target,

τn := inf{t > 0 : Xn(t) ∈ ∂ΩT}, n ∈ {1, . . . , N},

and the first time any particle reaches the target,

T3d := min
n
{τn}. (3.2)

For large N , we prove that the m-th moment of the FPT (3.2) of the fastest
particle in this general 3d geometry is bounded above by the m-th moment of
the FPT in a corresponding 1d system, for any moment m ≥ 1. That is, the
following theorem ensures that E[(T3d)m] cannot be greater than E[(T1d(z0))m]
for large N , where z0 is the distance between x0 and any point xT ∈ ∂ΩT,
assuming the line from x0 to xT lies in Ω (see (3.1)).

Theorem 4. Let T3d be the FPT in (3.2) for the general 3d geometry described
above. Let T1d(z0) be the FPT defined in (2.1) for a 1d system, where z0 =
‖x0 − xT‖ is the distance between the initial particle location x0 and any point
xT in the target ∂ΩT, assuming (3.1) holds. Then, for any moment m ≥ 1, we
have that

lim sup
N→∞

E[(T3d)m]

E[(T1d(z0))m]
= lim sup

N→∞

(
z20

4D logN

)−m
E[(T3d)m] ≤ 1.
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To find the exact asymptotic behavior of E[(T3d)m] (rather than the upper
bound in Theorem 4), let x∗T ∈ ∂ΩT minimize the distance to x0. That is,
assume x∗T ∈ ∂ΩT is such that

‖x0 − x∗T‖ ≤ ‖x0 − xT‖ for all xT ∈ ∂ΩT. (3.3)

Further, assume (3.1) holds with xT replaced by x∗T,

{(1− s)x0 + sx∗T ∈ R3 : s ∈ [0, 1)} ⊂ Ω. (3.4)

In addition, letting

z0 := ‖x0 − x∗T‖, (3.5)

we also assume that the region

S := {x ∈ R3 : ‖x− x0‖ < z0} ∩ Ω ∈ R3 (3.6)

is a so-called star domain, meaning that the line from x0 to x lies in S for all
x ∈ S,

{(1− s)x0 + sx ∈ R3 : s ∈ [0, 1]} ⊂ S for all x ∈ S. (3.7)

We note that assuming the domain Ω is convex ensures that (3.7) holds (though
(3.7) can hold even if Ω is not convex).

Theorem 5. If (3.3)-(3.7) are satisfied, then for any moment m ≥ 1 we have
that

E[(T3d)m] ∼ E[(T1d(z0))m] ∼
( z20

4D logN

)m
as N →∞.

3.1 Some lemmas and the proofs of Theorems 4 and 5

The proof of Theorem 4 generalizes the methods developed in Section 2. The
essential idea is to show that the fastest particle does not leave a thin cylinder
encapsulating the straight line from x0 to xT in (3.1).

Let Σr,b,c denote the following cylinder centered on the z-axis with radius
r > 0, bottom at z = b, and top at z = c > b,

Σr,b,c := {(x, y, z) ∈ R3 : x2 + y2 < r2, z ∈ (b, c)}. (3.8)

By taking the radius r > 0 sufficiently small, we choose c and b so that

b ≤ 0 < z0 < c, Σr,z0,c ⊂ Ω, and Σr,b,c ∩ ∂Ω ⊂ ∂ΩT.

Furthermore, we choose b so that the bottom of the cylinder is completely
“below” the target, meaning

b ≤ inf{z : (x, y, z) ∈ Σr,b,z0 ∩ ∂ΩT}.
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Define the first time that the n-th particle hits either the sides or the top of
the cylinder Σr,b,c,

τn,side := inf{t > 0 : X2
n(t) + Y 2

n (t) = r2},
τn,top := inf{t > 0 : Zn(t) = c}.

To bound T3d, we define a new process Z̃n(t) which is equal to Zn(t) before
the n-th particle hits either the target or escapes the cylinder Σr,b,c, and then
diffuses independently. Specifically, define the stopping time

τn,esc := min{τn, τn,side, τn,top},

and

Z̃n(t) =

{
Zn(t) t ≤ τn,esc,
Zn(τn,esc) +

√
2DWn(t) t > τn,esc,

where Wn denotes an independent standard Brownian motion. Next, define the
first time that Z̃n hits the top or bottom of the cylinder Σr,b,c,

τ̃n,top := inf{t > 0 : Z̃n(t) = c},

τ̃n,bot := inf{t > 0 : Z̃n(t) = b}.

Next, define

τ+n :=

{
τ̃n,bot τ̃n,bot < min{τn,side, τ̃n,top},
min{τn,side, τ̃n,top}+ 1 otherwise.

Further, define

T+ := min
n
{τ+n }.

The next lemma shows that the m-th moment of T is bounded above by the
m-th moment of T+ for sufficiently large N .

Lemma 6. If m ≥ 1, then

lim sup
N→∞

E[(T3d)m]

E[(T+)m]
≤ 1.

Next, we use the methods of Section 2 to show that the large N behavior of
E[T+] is unchanged if we make the particles reflect at the sides and top of the
cylinder. The proof is similar to the argument of Section 2.

Lemma 7. If m ≥ 1, then

E[(T+)m] ∼ E[(T1d(z0 + |b|))m] ∼
( (z0 + |b|)2

4D logN

)m
as N →∞.

11



Proof of Theorem 4. Combining Lemmas 6 and 7, we have that

lim sup
N→∞

E[(T3d)m]

E[(T1d(z0 + |b|))m]
≤ 1.

Since we can take the bottom b of the cylinder in (3.8) arbitrarily close to zero
by taking the radius r of the cylinder small, and by the asymptotic behavior in
(1.2), the proof is complete.

The next lemma bounds T3d below by the escape time from a sphere of
radius z0.

Lemma 8. Assume (3.3)-(3.7) are satisfied. For each n ∈ {1, . . . , N}, let R0
n(t)

denote a 3d Bessel process satisfying

dR0
n(t) =

2D

R0
n(t)

dt+
√

2D dWn(t), R0
n(0) = 0,

where {W1, . . . ,WN} are independent, standard one-dimensional Brownian mo-
tions. Define first time that R0

n hits radius z0 > 0,

τ0n,ball := inf{t > 0 : R0
n(t) ≥ z0},

and the first time any R0
n hits radius z0 > 0,

T 0
ball := min

n
{τ0n,ball}.

Then

P(T 0
ball ≥ t) ≤ P(T3d ≥ t) for each t ≥ 0.

With these lemmas in place, the proof of Theorem 5 follows quickly.

Proof of Theorem 5. By Lemma 8, we have that( z20
4D logN

)−m
E[(T 0

ball)
m] ≤

( z20
4D logN

)−m
E[(T3d)m] for each N ≥ 1.

Therefore, (1.2) implies that

1 = lim inf
N→∞

( z20
4D logN

)−m
E[(T 0

ball)
m] ≤ lim inf

N→∞

( z20
4D logN

)−m
E[(T3d)m]

≤ lim sup
N→∞

( z20
4D logN

)−m
E[(T3d)m].

Applying Theorem 4 completes the proof.
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3.2 Space dimension d = 2

The arguments above can be immediately applied to 2d spatial domains. We
now briefly state the results.

Let Ω ⊂ R2 be a bounded and open 2d spatial domain with a target ∂ΩT ⊆
∂Ω. Assume that ∂ΩT and ∂ΩR := ∂Ω\∂ΩT are smooth and that ∂ΩT is
nonempty and relatively open in ∂Ω. Suppose N independent particles diffuse
in Ω ⊂ R2 with diffusivity D > 0 and reflect from ∂Ω. Suppose the particles are
initially placed at x0 ∈ Ω and assume there exists a “target point” xT ∈ ∂ΩT

so that

{(1− s)x0 + sxT ∈ R2 : s ∈ [0, 1)} ⊂ Ω. (3.9)

Let Xn(t) ∈ Ω ⊂ R2 denote the position of the n-th particle at time t ≥ 0.
Define the first time that the n-th particle reaches the target,

τn := inf{t > 0 : Xn(t) ∈ ∂ΩT}, n ∈ {1, . . . , N},

and the first time any particle reaches the target,

T2d := min
n
{τn}.

We now state the 2d analog of Theorem 4.

Theorem 9. Let T1d(z0) be the FPT defined in (2.1) for a 1d system, where
z0 = ‖x0 − xT‖ is the distance between the initial particle location x0 and any
point xT in the target ∂ΩT, assuming (3.9) holds. Then, for any moment m ≥ 1,
we have that

lim sup
N→∞

E[(T2d)m]

E[(T1d(z0))m]
= lim sup

N→∞

(
z20

4D logN

)−m
E[(T2d)m] ≤ 1.

To state the 2d analog of Theorem 5, let x∗T ∈ ∂ΩT minimize the distance
to x0, and assume (3.9) holds with xT replaced by x∗T. In addition, let z0 :=
‖x0 − x∗T‖, and assume that the region

S := {x ∈ R2 : ‖x− x0‖ < z0} ∩ Ω ∈ R2

is a star domain, meaning

{(1− s)x0 + sx ∈ R2 : s ∈ [0, 1]} ⊂ S for all x ∈ S. (3.10)

Again, we note that assuming the domain Ω is convex ensures that (3.10) holds
(though (3.10) can hold even if Ω is not convex).

Theorem 10. Under the assumptions just given, for any moment m ≥ 1 we
have that

E[(T2d)m] ∼ E[(T1d(z0))m] ∼
( z20

4D logN

)m
as N →∞.
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4 Discussion

In this paper, we determined the asymptotic behavior of the fastest FPT for a
collection of N � 1 identically distributed Brownian searchers to reach a target.
Our results hold in a general class of 2d and 3d spatial domains that may have
multiple targets that can be on the outer boundaries or inner boundaries of the
domain (see Figure 1b). Our main conclusion is that the leading order behavior
of the m-th moment of this fastest FPT does not depend on the details of
the spatial domain (including the dimension), but rather only depends on the
distance between the initial searcher location and the nearest target.

We proved our results assuming (i) that there exists a straight line path
from the initial particle location to a target (see (3.1)) and (ii) that a certain
so-called star condition holds (see (3.7)). These assumptions allowed us to give
relatively short proofs of our results. However, we recently developed an alterna-
tive approach which proves that these assumptions are superfluous [46]. Indeed,
this more recent work proves that the asymptotic behavior in (1.1) holds un-
der very general conditions, including (i) diffusions in Rd with space-dependent
diffusivities and drift fields and (ii) diffusions on d-dimensional smooth Rieman-
nian manifolds that may contain reflecting obstacles [46]. In addition, we have
also recently determined how the details of the spatial domain can affect the
fastest FPT statistics at second order [47]. Further, the results in [47] describe
the limiting probability distribution of the fastest FPTs in terms of a certain
Gumbel distribution involving the so-called LambertW function. For recent
works emphasizing the importance of the full first passage time distribution, see
[48, 49, 50, 51, 52].

More generally, since the fastest FPT is the minimum of a large set of iid
random variables, investigating its distribution falls into the field of extreme
statistics [53]. The theory of extreme statistics has been heavily used in disci-
plines such as finance, engineering, and earth sciences [54, 55], but the theory is
relatively unknown in biology. We expect that extreme statistics will soon find
many applications in biology. Indeed, several recent commentaries have made
this prediction and suggested various applications [1, 3, 4, 5, 6, 7, 8].

Finally, a distinguishing aspect of our approach to extreme FPT theory in
this paper is the use of probabilistic methods. In contrast, prior work has
tended to employ asymptotic and perturbation methods [1, 10, 36, 37, 56]. Our
approach thus follows some other recent studies that have applied probabilistic
methods to Brownian escape problems that are more commonly studied by PDE
asymptotics [57, 58, 59] (see also [60, 61, 62]). Going forward, we anticipate that
techniques from probability theory will continue to be useful in extreme FPT
theory.

5 Appendix

In this Appendix, we collect the proofs of all the lemmas.

Proof of Lemma 2. First notice that Rn(t) is a 2d Bessel process. In particular,
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Rn(t) has the same law as
√

2D
√
W 2

1 (t) +W 2
2 (t), where W1(t) ∈ R and W2(t) ∈

R are independent standard Brownian motions. Next, define the 3d Bessel
process,

R3d(t) :=
√

2D
√
W 2

1 (t) +W 2
2 (t) +W 2

3 (t),

where W3(t) ∈ R is a third independent standard Brownian motion. If τ is the
first time that R3d(t) hits radius a > 0,

τ := inf{t > 0 : R3d(t) = a},

then it is immediate that P(τ1,side ≤ t) ≤ P(τ ≤ t) for all t ≥ 0. Since P(τ ≤ t)
has the explicit formula (see, for example, [63]),

P(τ ≤ t) =

√
4a2

πDt

∞∑
k=0

e−a
2(n+ 1

2 )
2/(Dt),

we may take C1 = 4a(πD)−1/2 and C2 = a2/(4D) to complete the proof.

Proof of Lemma 3. Recall that τ1,z is the first time Z1(t) hits z = 0, assuming
Z1(0) = z0 > 0 and Z1(t) reflects from z = h ≥ z0. It is immediate that

P(τ1,z > t) ≤ P(τ > t),

where τ is the first time a standard Brownian motion, W (t) ∈ R, hits z0/
√

2D,

τ := inf{t > 0 : W (t) = z0/
√

2D}.

The reflection principle [45] then gives

P(τ > t) = 1− P(τ ≤ t) = 1− 2P(W (t) ≥ z0/
√

2D) = erf(z0/
√

4Dt),

where erf(x) denotes the error function, which has the large x behavior,

erf(x) :=
1√
π

∫ x

−x
e−s

2

ds = 1− e−x
2

x
√
π

(
1− 2

x2
+O(x−4)

)
as x→∞. (5.1)

Hence, we may take C3 =
√
D√
πz0

and C4 = z20/(4D) to complete the proof.

Proof of Lemma 6. Define the event

B := {τ1 < min{τ1,side, τ1,top}},

and let Bc denote its complement. It is immediate that

P(τ1 > t|B) ≤ P(τ+1 > t|B),
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since τ1 ≤ τ+1 if τ1 < min{τ1,side, τ1,top}. Next, by the definition of τ+1 , we have
that

P(τ+1 > t|Bc) = 1 for all t < 1.

Therefore

P(τ1 > t) ≤ P(τ+1 > t|B)P(B) + P(Bc) = P(τ+1 > t) for all t < 1.

Now, it is an identity that

E[Tm3d] =

∫ 1

0

(P(τ1 > t1/m))N dt+

∫ ∞
1

(P(τ1 > t1/m))N dt.

Therefore, we have that

E[Tm3d] =

∫ 1

0

(P(τ1 > t1/m))N dt+

∫ ∞
1

(P(τ1 > t1/m))N dt

≤
∫ 1

0

(P(τ+1 > t1/m))N dt+ (P(τ1 > 1))N
∫ ∞
1

P(τ1 > t1/m)

P(τ1 > 1)
dt.

Therefore, Jensen’s inequality yields

E[Tm3d]

E[Tm+ ]
≤

∫ 1

0
(P(τ+1 > t1/m))N dt+ (P(τ1 > 1))N

∫∞
1

P(τ1>t1/m)
P(τ1>1) dt

(E[T+])1/m

≤ 1 +
(P(τ1 > 1))N

(E[T+])1/m

∫ ∞
1

P(τ1 > t1/m)

P(τ1 > 1)
dt.

To complete the proof, we need only that E[T+] decays slower than (P(τ1 > 1))N

as N →∞, which is implied by Lemma 7.

Proof of Lemma 7. Let T1d be the first time that any Z̃n hits z = b,

T1d := min
n
{τ̃n,bot},

and let nf ∈ {1, . . . , N} denote the random index of this fastest Z̃n particle

nf ∈ {1, . . . , N : Z̃nf
(T1d) = b}.

Define the event that the fastest particle first escapes the cylinder through the
bottom

A := {τnf,side > T1d} ∩ {τ̃nf,top > T1d} = {T+ = T1d}.

Since

T+1A = T1d1A almost surely,
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we can apply the same argument as in Section 2 if we can manage to show that√
P(Ac)(logN)m → 0 as N →∞.
By De Morgan’s laws, we have that

P(Ac) ≤ P(τnf,side ≤ T1d) + P(τ̃nf,top ≤ T1d).

The first probability can be handled by the same argument as in Section 2.
To handle P(τ̃nf,top ≤ T1d), note that

P(τ̃nf,top ≤ T1d) ≤ P(τ̃nf,top ≤ δ) + P(T1d ≥ δ) for any δ > 0.

As in the proof of Theorem 1, we may bound P(T1d ≥ δ) for sufficiently small
δ > 0 by

P(T1d ≥ δ) =

∫ ∞
δ

N(S0(t))N−1f0(t) dt ≤ N(S0(δ))N−1

≤ N
[
1− C3δ

1/2 exp(−C4/δ)
]N−1

.

Furthermore, it is immediate that

P(τ̃nf,top ≤ δ) ≤ P(τ̃1,top ≤ δ).

Now, notice that τ̃1,top has the same law as the first time a standard Brownian

motion, W (t) ∈ R, hits (h − z0)/
√

2D. In particular, the reflection principle
[45] gives

P(τ̃1,top ≤ t) = 2P(W (t) ≥ (h− z0)/
√

2D) = 1− erf((h− z0)/
√

4Dt),

where erf(x) denotes the error function with large x behavior given in (5.1).
Hence,

P(τ̃nf,top ≤ δ) ≤
2√
π

√
4Dδ

(h− z0)
e−(h−z0)

2/(4Dδ) for sufficiently small δ > 0.

Taking δ = (logN)−1/2 completes the proof.

Proof of Lemma 8. Define the first time that the n-th particle leaves a ball
centered at x0 of radius z0 > 0,

τn,ball := inf{t > 0 : ‖Xn(t)− x0‖ ≥ z0}.

It is immediate that the n-th particle cannot reach the target ∂ΩT before time
τn,ball. That is,

τn,ball ≤ τn almost surely for each n ∈ {1, . . . , N}. (5.2)

Define the radial process

Rn(t) := ‖Xn(t)− x0‖ for t ≥ 0.

17



Notice that Rn is not a three-dimensional Bessel process, due to the reflecting
boundary ∂Ω. However, Rn does satisfy the following stochastic differential
equation,

dRn(t) = dR0
n(t) + nR(Xn(t)) dLn(t), (5.3)

where R0
n is a 3d Bessel process. In (5.3), nR is the radial component of the

inner normal field n : ∂Ω 7→ R3, and Ln(t) is the local time of Xn(t) on ∂Ω.
More precisely, Ln(t) is nondecreasing and increases only when Xn(t) is on ∂Ω.
The significance of the local time term in (5.3) is that it forces Xn(t) to reflect
from ∂Ω.

By our assumption in (3.7) that S in (3.6) is a star domain, we are assured
that nR(Xn(t)) ≤ 0 for all t ≤ τn,ball. Hence, Rn(t) ≤ R0

n(t) for all t ≤ τn,ball.
Therefore, τ0n,ball ≤ τn,ball almost surely. Hence, T 0

ball ≤ T3d almost surely by
(5.2).
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