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Abstract

In the realm of real-time semantic segmentation, deep neural networks have
demonstrated promising potential. However, current methods face challenges
when it comes to accurately segmenting object boundaries and small objects. This
limitation is partly attributed to the prevalence of convolutional neural networks,
which often involve multiple sequential down-sampling operations, resulting in
the loss of fine-grained details. To overcome this drawback, we introduce BENet,
a real-time semantic segmentation network with a focus on enhancing object
boundaries. The proposed BENet integrates two key components: the Boundary
Extraction Module (BEM) and the Boundary Adaption Layer (BAL). The pro-
posed BEM efficiently extracts boundary information, while the BAL guides the
network using this information to preserve intricate details during the feature
extraction process. Furthermore, to address the challenges associated with poor
segmentation of elongated objects, we introduce the Strip Mixed Aggregation
Pyramid Pooling Module (SMAPPM). This module employs strip pooling ker-
nels to effectively expand the contextual representation and receptive field of the
network, thereby enhancing overall segmentation performance. Our experiments
conducted on a single RTX 3090 GPU show that our method achieves an mIoU
of 79.4% at a speed of 45.5 FPS on the Cityscapes test set without ImageNet
pre-training.
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1 Introduction

Semantic segmentation stands as a foundational task in the realm of computer vision,
where it ascribes a distinct category to every pixel within an image. As the associ-
ated applications continue to evolve, achieving an optimal equilibrium between the
speed of inference and the precision of semantic segmentation is progressively gaining
significance.

Some existing methods achieve real-time semantic segmentation through an
encoder–decoder structure[1][2]. To mitigate information loss during down-sampling,
various approaches have been used, for instance, enhancing the encoder or decoder,
reusing high-resolution features, and utilizing attention mechanisms. However, for
the general encoder–decoder architecture, achieving a balance between accuracy
and speed is highly challenging. To address this challenge, a series of multi-branch
architectures have been designed, including[3][4][5][6], which once achieved a state-
of-the-art trade-off between speed and accuracy. PIDNet[7], which involves a novel
three-branch network architecture and incorporates an Auxiliary Derivative Branch
(ADB) to extract high-frequency features for boundary region prediction, demon-
strated the significance of boundary information in image segmentation, providing
valuable insights.

With remarkable feats achieved in the field of deep learning, implicit learn-
ing methods (e.g., convolutional neural networks, vision transformers, and attention
mechanisms) are commonly employed for boundary information extraction, while
explicit learning methods are often overlooked. However, explicit learning methods,
such as edge detection operators[8][9][10], offer significant advantages over implicit
learning methods in terms of simplicity, efficiency, and clarity of purpose. Recent
work has introduced edge detection operators in deep learning methods as an assis-
tive tool, confirming their effectiveness in enhancing detail and network localization
capabilities[11][12][13][14][15].

For real-time semantic segmentation tasks, we posit that edge detection operators
align well with the imperative for efficient inference. They facilitate network localiza-
tion of boundary information with minimal computational and latency costs. Thus, we
propose a novel module for boundary extraction, called the Boundary Extraction Mod-
ule (BEM), which contains an edge operator. For the spatial detail features maintained
by the high-resolution branch, BEM employs the Sobel operator[8] in conjunction with
convolution layers to extract edge features. The Sobel operator serves as a strong prior,
prompting the network to filter out information irrelevant to the edges. Recognizing
that traditional edge detection operators do not account for semantic information, the
BEM simultaneously introduces high-dimensional semantic features extracted from
the low-resolution branch, which aims to filter out irrelevant texture information by
employing rich semantic information. To separately adapt the boundary information
extracted through the BEM to two branches and further extract meaningful boundary
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features, we employ the Boundary Adaption Layer (BAL) to process it and adapt two
branches separately. Furthermore, we present the Strip Mixed Aggregation Pyramid
Pooling Module (SMAPPM) to extend the contextual representations and receptive
fields. Compared with existing methods that alter receptive fields[16][17][18][19][20],
our method is more straightforward to implement, with lower computational overhead
and latency. Using these components, we introduce a real-time semantic segmenta-
tion model named BENet, successfully striking a balance between inference speed and
accuracy. In summary, our primary contributions include:

1. We propose the BEM and BAL for extracting boundary information and focus-
ing the network on boundaries, resulting in improved segmentation performance,
particularly for small objects and boundary details.

2. We present the SMAPPM, which extends the network’s contextual representa-
tions and receptive field, significantly improving the segmentation performance for
elongated objects.

3. Our method exhibited an outstanding performance on a single RTX 3090 GPU,
with an mIoU of 79.4% at 45.5 FPS on the Cityscapes test set, all achieved without
pre-training. Importantly, our approach maintains strong competitiveness under
the same training configuration that excludes pre-training.

2 Related Work

In this section, we will discuss representative methods of high-precision semantic
segmentation and real-time semantic segmentation.

2.1 High-precision Semantic Segmentation

Semantic segmentation is a crucial task in computer vision. Ever since FCN[21] pio-
neered the integration of fully convolutional network into the realm of semantic
segmentation, a wide range of FCN-based approaches have been introduced and have
demonstrated massive potential. In general, these studies primarily focus on improv-
ing the extraction and aggregation of semantic information, contextual information,
and detailed information about images. Networks such as PSPNet[22] and APCNet[23]
employ pyramid pooling modules to aggregate multi-scale contextual information.
In contrast, HyperSeg[24], ZigZagNet[25], and Large Kernel Matters[26] are explic-
itly designed for multi-level feature aggregation. Additionally, certain methods utilize
attention mechanisms to capture contextual information, exemplified by non-local[27],
DANet[28], and CCNet[29]. To cope with the challenge of detail loss during down-
sampling, DeepLabv1–3[30–32] introduce dilated convolutions into the network to
expand receptive fields without reducing spatial resolution. SegNet[33] incorporates an
innovative decoder, which employs max-pooling indices obtained from the correspond-
ing encoder for nonlinear up-sampling of input feature maps, aiding in the recovery
of spatial details. HRNet[34] utilizes three branches and repeated multi-scale fusion
to maintain high-resolution representations, achieving high accuracy in semantic seg-
mentation tasks. However, the aforementioned methods primarily prioritize model
accuracy and overlook the crucial trade-off between inference latency and accuracy.
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2.2 Real-time Semantic Segmentation

Semantic segmentation is gaining traction in diverse fields, including autonomous driv-
ing and robotics. Consequently, the need for swift response and inference in semantic
segmentation poses a challenge. To tackle this challenge, researchers have proposed
numerous efficient real-time semantic segmentation methods, striving for an optimal
balance between inference speed and model accuracy. These CNN-based works can
be broadly categorized into encoder–decoder architectures and multi-branch network
architectures.

Encoder-Decoder Architectures: Earlier encoder–decoder approaches, such as
ENet[35], adopted an early down-sampling strategy to mitigate computational costs.
ERFNet[36] innovatively introduced one-dimensional separable residual blocks, replac-
ing each 3×3 convolution with 3×1 and 1×3 convolutions, resulting in a substantial
reduction in the number of parameters. ASFNet[37] proposes an adaptive multiscale
segmentation fusion network to fuse multiscale contextual to obtain more precise
segmentation results. Recent contributions, such as RegSeg[2], have introduced the D-
Block, which utilizes two parallel 3×3 convolution layers with different dilation rates
to enhance receptive fields. By maintaining a lower number of channels in the back-
bone and omitting contextual modules, RegSeg achieved a balanced trade-off between
accuracy and inference latency. PP-LiteSeg[1] incorporates a flexible and lightweight
decoder to reduce the computational cost of decoders.

Multi-Branch Architectures: Encoder–Decoder architectures often allocate a
large number of parameters to recover detailed information, leading to increased
inference latency. To address this challenge, multi-branch architectures have been
introduced. ContextNet[3] was a pioneering model that incorporated a dual-branch
structure, utilizing both full-resolution and low-resolution inputs. The former cap-
tures detailed information, while the latter captures global contextual information
for efficient semantic analysis. Fast-SCNN[38] utilizes the “learning-to-down-sample”
module, allowing two branches to share shallow features, thereby further reducing com-
putational costs. DDRNet[5] utilizes bidirectional feature fusion between two branches,
resulting in an impressive performance. LPS-Net[39] is a lightweight network that ana-
lyzes the design of convolution blocks, including convolution type and the number of
channels as well as the interaction between multiple scales, providing a novel solution
for semantic segmentation. PIDNet[7], inspired by PID controllers, has a three-branch
architecture in addition to an ADB to the bilateral network to extract boundary
information, achieving optimal results.

Overall, the objective of these research endeavors is to meet the demand for rapid
and effective semantic segmentation in real-time applications, mindful of the balance
between inference speed and model accuracy. Nevertheless, there is room for improve-
ment in the segmentation of boundary details and small objects with these methods,
presenting an opportunity for our approach.

3 Method

An overview of our method is presented in Figure 1. First, we illustrate the Boundary-
Enhanced Network (BENet), which is composed of a dual-branch network, the BEM
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and the BAL. Next, we provide details regarding the BEM and BEL. Finally, we
discuss the SMAPPM. Due to the frequent utilization of basic convolutional blocks
composed of convolution, batch normalization, and ReLU activation functions in our
approach, we refer to it as the “CBR block” for the sake of brevity.
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Fig. 1 The architecture overview. “RB” denotes sequential residual basic blocks, and “RBB” denotes
a single residual bottleneck block. “SegHead” represents the segmentation head, while “BodHead”
represents the boundary head. We utilize coarse boundaries as the ground truth for boundaries. Below
“BAL-L”, the numerical annotations represent the quantities for stacking CBR blocks, which are 2
and 3, respectively. During inference, all methods related to dashed lines will be discarded to prevent
additional latency.

3.1 Boundary-Enhanced Network

To address the issue of detailed information loss during the semantic segmentation
process, we devised the BENet. Based on the dual-branch network, we incorporated
BEM and BEL to enhance boundary information, guiding the preservation of detailed
information.

Following DDRNet, we used residual blocks[40] to form the backbone and employed
the same bilateral interaction scheme by transforming low-resolution features and
injecting them into high-resolution ones and vice versa. Considering network paral-
lelism, our network extracts boundary features using a BEM and BAL after each
bilateral interaction module and injects the boundary feature into each branch after
the next residual block.

Utilizing a deep supervision strategy in line with prior studies [7][5][22][41][42], we
employed the following approaches. The high-resolution feature after the first bilateral
interaction module is fed into a segmentation head for computing semantic auxiliary
loss. The boundary heads are placed after each BEM to generate boundary auxiliary
loss. Both the boundary and semantic heads consist of a 3 × 3 convolutional layer
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followed by a 1× 1 convolutional layer. Each convolutional layer comprises a sequence
of BN–ReLU–Convolution.

Three auxiliary losses are used to better optimize the entire network. The total
loss can be represented as follows:

Ltotal = Ln + λ1Lsa + λ2Lba1
+ λ3Lba2

(1)

Where Ltotal is the total loss, Ln represents the loss obtained by the final output of
the network, Lsa represents the semantic auxiliary loss, Lba1

and Lba2
are the boundary

auxiliary losses obtained by the first and second boundary heads, respectively. Cross
entropy loss is applied to Ln and Lsa, while Lba1

and Lba2
utilize weighted binary

cross entropy loss. We set the parameters as λ1 = 0.4, λ2 = 10, λ3 = 10.

3.2 Boundary Extraction Module

+1 +2 +1
0 0 0
-1 -2 -1

-1 0 +1
-2 0 +2
-1 0 +1

sigmoid CBR

CBR upsample

High-dimensional
semantic features

High-resolution
detail features

Point-wise Sum

CBR 1x1 CBR Block

CBR 3x3 CBR Block

SobelConv Kernel

CBR

Boundary features
Point-wise Product

Fig. 2 Illustration of our BEM module. The “1 × 1 CBR Block” represents a block consisting of
1× 1 convolution, batch normalization layer and ReLU activation function in series. The “3× 3 CBR
Block” follows the same principle. The specific method of the upsample is bilinear interpolation.

This module employs the Sobel operator[8], a traditional edge detection operator based
on first-order differentiation. Given its efficiency, we employed it to furnish prior infor-
mation to the module at minimal cost. Additionally, we intended to utilize it to filter
out edge-irrelevant information from the features.

Our network utilizes features extracted from the two branches, Fd and Fs, as
the input for the BEM to extract pure boundary features. For the high-resolution
detail feature Fd, the Sobel operator filters out edge-irrelevant information. In the
specific implementation, two parameter-fixed 3 × 3 convolutions with a stride of 1
are employed. The specific convolution kernel parameters are detailed in Figure 2.
After passing through the upper and lower convolution kernels in the figure, we obtain
horizontal and vertical derivative approximations, respectively, and then merge them
to derive the gradient amplitude. While using the explicit learning method Sobel
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operator for initial edge extraction is efficient, its unlearnable characteristics may
lead to suboptimal performance in certain scenarios. Excessive prior information can
also elevate the difficulty of network optimization. Therefore, we employ the sigmoid
activation function to map the obtained gradient values to the range between 0 and
1. We then multiply them with the original input Fd to acquire features with edge
enhancement. A 1× 1 CBR block follows to reduce the number of channels, resulting
in the edge-enhanced detail feature Fde. The specific process is as follows:

Fde = C1×1(Fd ⊙ σ(
√

Gx(Fd)2 +Gy(Fd)2)) (2)

Where C1×1 represents the 1× 1 CBR block, Gx and Gy denote the Sobel convo-
lution in the horizontal and vertical directions, ⊙ denotes point-wise product, and σ
denotes the sigmoid activation function.

For high-dimensional semantic features Fs, a straightforward approach involves
using a 3× 3 CBR block, where the convolution operation with a stride and padding
both equal to 1 is applied. This is done to extract features highly correlated with
the boundary while preserving its resolution. Subsequently, bilinear interpolation is
employed for up-sampling to acquire boundary-related high-dimensional semantic
features Fse, as illustrated in the following formula:

Fse = Upsample(C3×3(Fs)) (3)

Finally, we perform a point-wise sum of Fde and Fse, followed by the application of
a 3× 3 CBR block to further refine the extraction of boundary information, resulting
in the final boundary feature Fbod. The resolution of Fbod is set to be the same as that
of Fd.

Fbod = C3×3(Fde + Fse) (4)

Given the challenge of directly instructing the network to acquire boundary fea-
tures, we implemented a deep supervision strategy by introducing a boundary auxiliary
loss. This was done to ensure the effectiveness of the BEM, as detailed in Section 3.1.

3.3 Boundary Adaption Layer

To tailor the boundary features extracted by BEM to two branches with different
functionalities, we devised BAL, which comes in two distinct forms: BAL-H and BAL-
L, corresponding to high-resolution and low-resolution branches, respectively.

For BAL-H, given that the boundary features extracted by BEMmaintain the same
resolution as the high-resolution branch features, we opted for efficiency and directly
applied a 3× 3 CBR block with a stride of 1 and padding of 1 to further adapt to the
high-resolution branch.

As for BAL-L, adapting the boundary features to the low-resolution branch involves
downsampling. Considering that the low-resolution branch extracts high-level fea-
tures while the boundary feature tends to be associated more with low-level detail
information, using pooling or interpolation algorithms for downsampling may lead to
significant feature offset or loss. Therefore, we employed stacked 3 × 3 CBR blocks
with a stride of 2 and padding of 1. At the first BAL-L location, two CBR blocks are
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utilized, and at the second location, three are employed. Not only does this achieve
fourfold and eightfold down-sampling, respectively, but it also optimizes the boundary
feature adaptation for the low-resolution branch.

3.4 Strip Mixed Aggregation Pyramid Pooling Module

In prior studies, Pyramid Pooling Module (PPM) and its variants were employed
to build global scene priors, yielding significant results. Deep Aggregation PPM
(DAPPM) drew inspiration from Res2Net[43] to fuse semantic information across dif-
ferent scales in a hierarchical-residual manner. Parallel Aggregation PPM (PAPPM)
reduced channel numbers to mitigate information redundancy and devised parallelized
PPM for enhanced efficiency.

upsample

upsample

Concatenate

(K, K)

(K*2-1, K/2+1)

(K/2+1, K*2-1)

Input Tensor Output Tensor

Pooling kernel

Fig. 3 Illustration of Strip Mixed Pooling Module. Use bilinear interpolation for upsampling and
concatenate along the channel dimension.

These recent works all employed square pooling operations to extract multi-scale
contextual representations. However, we contend that the absence of strip receptive
fields in many scenarios renders the network insensitive to some elongated objects.
Therefore, we introduced a Strip Mixed Pooling Module (SMPM), as illustrated in
Figure 3.

Specifically, we introduce a parameter K for the SMPM. Initially, we employ con-
ventional pooling with a shape of (K,K) as normal. Simultaneously, strip poolings
with kernel shapes of (K ∗ 2 − 1,K/2 + 1) and (K/2 + 1,K ∗ 2 − 1) are utilized to
extend the strip receptive field, obtaining a multi-scale pooling map of strip shape.
The specific structure of our module, SMAPPM, is depicted in Figure 4.

8



SMPM
K=5,strde=2

SMPM
K=9,strde=4

SMPM
K=17,strde=8

AvgPool
Kernel=HxW

1×1
Conv

1×1
Conv

1×1
Conv

1×1
Conv

1×1
Conv

3×3
Conv

3×3
Conv

3×3
Conv

3×3
Conv

Concatenate

Input

1×1
Conv

Output

1×1
Conv

Fig. 4 The overview of Strip Mixed Aggregation PPM.

We adhere to the structure of PAPPM to maintain its parallelism and integrate
SMPM into it. We have set the parameter K to 5, 9, and 17 in this study. Similar
to DAPPM, multi-scale feature maps with resolutions of 1/128, 1/256, and 1/512 are
obtained under an input image resolution of 1/64, encompassing the expansion of
strip receptive fields. Experimental results demonstrate the outstanding performance
of SMAPPM.

4 Experiments

4.1 Datasets

We utilized the Cityscapes[44] and CamVid[45] datasets to assess the performance of
our proposed model.

Cityscapes: The Cityscapes dataset is widely employed in the field of semantic
segmentation. It comprises a total of 5000 high-quality, pixel-level finely annotated
urban street scene images. Among these, 2975 images constitute the training set, 500
images make up the validation set, and 1525 images form the test set. These images
have a resolution of 1024× 2048, and the objects within them are categorized into 19
classes.

CamVid: The CamVid dataset comprises 701 densely annotated street scene
images, each with a resolution of 960 × 720. The dataset is split into 367 images for
training, 101 images for validation, and 233 images for testing. During our training
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process, the model is trained on the trainval set, focusing on utilizing 11 predefined
classes, and its performance is evaluated on the test set.

4.2 Implementation Details

We implemented our method using PyTorch 1.13.1 and Nvidia CUDA 12.2. We
conducted training on both Cityscapes and CamVid datasets without ImageNet pre-
training. As the absence of ImageNet pre-training may lead to fluctuating training
results, we executed our method thrice and averaged the results to ensure reliable
outcomes.

Cityscapes: For the Cityscapes dataset, we utilized SGD with a momentum of
0.9, an initial learning rate of 0.05, a batch size of 8, 1000 epochs, and a weight decay of
0.0001. We applied data augmentation techniques, including random cropping, random
horizontal flipping, and random scaling in the range of [0.5, 2.0]. All images were
randomly cropped to a size of 1024× 1024 for training, and the Online Hard Example
Mining (OHEM)[46] loss was employed.

CamVid: For the CamVid dataset, we set the initial learning rate to 0.001, and
images were randomly cropped to 960 × 720 during training. Consistent with the
methodologies outlined in [2][7], we fine-tuned the Cityscapes pre-trained models for
CamVid using a batch size of 12 and epochs of 200. Noteworthily, our Cityscapes pre-
trained models did not undergo ImageNet pre-training. The other training settings
are similar to those used for Cityscapes.

4.3 Ablation Studies

4.3.1 BEM Ablation Studies

This experiment aims to demonstrate the effectiveness of BEM with boundary auxil-
iary losses. We visualized the boundary features extracted by BEMs. Additionally, we
trained our baseline network DDRNet-23 and the network with only BEMs added on
the Cityscapes training set using the same configuration and analyzed the results.

Image Ground Truth Boundary Ground Truth Feature map of the first BEM Feature map of the second BEM

Fig. 5 Feature visualization of BEM. The first column of images is the original input image, the
second column is the corresponding ground truth, the third column is the coarse boundary ground
truth used in the network, and the fourth and fifth columns are visualizations of the first and second
BEM output feature maps.
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As depicted in Figure 5, we selected two meaningful feature maps for visualization,
one from the output of the first BEM and another from the output of the second BEM
in the network. By comparing them with the coarse boundary label, it can be observed
that our BEM exhibits excellent performance in extracting boundary information.

Table 1 Comparison of the performance of the DDRNet-23 and the DDRNet-23 with only BEMs
added on the Cityscapes validation set.

Model mIoU (%) FPS Params (M) GFLOPs

DDRNet-23 77.31± 0.3 55.2 20.1 148.5
DDRNet-23 with BEMs 78.34± 0.2 51.1 21.3 157.1

The network with the added BEMs achieved an improvement in mIoU of approxi-
mately 1.0% (Table 1), with the trade-off being a marginal reduction in speed and an
increase in parameters.

4.3.2 BAL Ablation Studies

In section 3.3, we introduced BAL, which is divided into two forms: BAL-H and BAL-
L, adapted to two branches, respectively. In this section, we explore the necessity
of injecting boundary information into both branches and assess the effectiveness of
BALs.

Table 2 Ablation study results of BAL.

Model BAL-L BAL-H mIoU (%)

DDRNet-23 with BEMs

78.34

✓ 78.32

✓ 78.37

✓ ✓ 78.83

Specifically, we tested the training effects of removing BAL-H or BAL-L sepa-
rately and simultaneously adding both to the network. The experimental results are
presented in Table 2. Adding BAL-H or BAL-L alone cannot achieve good results,
although we have already verified the effectiveness of the BEM in the previous section.
We believe that this is ascribable to the feature offset between the two branches.
Simultaneously applying two adaption layers effectively alleviates the feature mis-
match between branches while injecting boundary features into the network, thereby
enhancing the overall network performance.

4.3.3 SMAPPM Ablation Studies

Recently, context aggregation modules proposed for real-time semantic segmentation
models have demonstrated excellent results. DAPPM[5] has significantly improved
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network accuracy, and PAPPM[7] has been introduced to enhance parallelism and
speed up inference. Given the utilization of pooling layers in PPM, we designed the
SMPM and proposed SMAPPM to further extend the context scale and receptive
field with different shapes. To demonstrate its superiority, we conducted experiments
on DDRNet-23 and BENet and compared the results with those obtained with other
outstanding PPM modules.

Table 3 Comparison of DDRNet-23 and BENet using
DAPPM, PAPPM, and SMAPPM.

Model
PPM

mIoU(%)
DAPPM PAPPM SMAPPM

DDRNet-23

✓ 77.31

✓ 77.44

✓ 78.39

BENet(Our)

✓ 78.83

✓ 78.99

✓ 79.48

As evident from the results presented in Table 3, our SMAPPM achieves bet-
ter performance in both DDRNet-23 and our BENet under the same training
configuration.

4.3.4 Auxiliary Losses Ablation Studies

To enhance overall network optimization and reinforce the functionality of the com-
ponents, we incorporated two boundary auxiliary losses and one semantic auxiliary
loss. To verify the effectiveness of these auxiliary losses, we conducted experiments in
this section using our entire approach.

According to Table 4, these three auxiliary losses exhibit excellent performance.
Specifically, the two boundary auxiliary losses yield a noteworthy enhancement of
1.07% in mIoU, while the semantic auxiliary loss contributes an improvement of 0.2%

Table 4 Ablation study results of
Auxiliary Losses.

Auxiliary Loss
mIoU(%)

lsa lba1
lba2

78.21

✓ 78.41

✓ ✓ 78.79

✓ ✓ 79.04

✓ ✓ ✓ 79.48
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mIoU. These results underscore the efficacy of the auxiliary losses in augmenting the
performance of the overall network.

4.4 Exploring the Effectiveness of Sobel Operator in BEM

To substantiate the efficacy of the Sobel operator in the context of the BEM, three
distinct methods were devised and denoted as BEM-A, BEM-B, and BEM-C for com-
parative experimentation. BEM-A adheres to the BEM as previously described. In
BEM-B, a 3×3 standard convolution with equivalent size and stride is utilized instead
of the Sobel operator. In BEM-C, the Sobel operator is omitted, and high-resolution
detail features are directly fed into the 1× 1 CBR block.

Table 5 The comparison of the three BEM
methods on Cityscapes validation set.

Method BEM-A BEM-B BEM-C

mIoU(%) 79.48 78.85 79.11

The results are encapsulated in Table 5. Evidently, the BEM-A method exhibits
the best performance, which verifies the effectiveness of the Sobel operator in the
BEM. For BEM-B, we believe that utilizing training models with standard convolu-
tion poses challenges in capturing edge information in this context, primarily due to
limited parameters. By integrating the Sobel operator, we contend that it provides
prior knowledge to the network for edge extraction, thereby facilitating the acquisi-
tion of edge representations and filtering out extraneous information. Consequently,
this renders the training process more manageable.

4.5 Comparison on CamVid

As depicted in Table 6, BENet achieves an mIoU of 78.86%. Under identical training
settings, it surpasses our baseline method DDRNet-23 by 1.37% in mIoU. Addition-
ally, BENet demonstrates substantial improvement when compared with previously
proposed outstanding methods such as BiseNetV2 and MSFNet.
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Table 6 Comparison with previous work on CamVid. IM means ImageNet, C means Cityscapes and
C(w/o IM) means the Cityscapes pretrained model not undergoing ImageNet pre-training.

Model Extra Data GPU FPS mIoU(%)

STDC2-Seg[47] IM Tesla T4 152.2 73.9
GAS[48] - Tesla T4 153.1 72.8
CAS[49] - Tesla T4 169 71.2
HyperSeg-S[24] IM GTX 1080Ti 38.0 78.4
BiSeNetV2[42] C GTX 1080Ti 124.0 76.7
MSFNet[50] C GTX 2080Ti 91.0 75.4
PP-LiteSeg-T[1] C GTX 2080Ti 154.8 75.0

DDRNet-23[5] C(w/o IM) RTX 3090 120.4 77.28
BENet C(w/o IM) RTX 3090 93.7 78.65

4.6 Comparison on Cityscapes

As illustrated in Figure 6, we also compared the prediction results of our model BENet
with other real-time semantic segmentation methods on the Cityscapes validation set.
Despite our comparative methods DDRNet and PIDNet being the latest state-of-the-
art models, BENet consistently achieves superior results in small objects, elongated
objects, and some detailed regions.

Table 7 Comparison with previous work on Cityscapes. IM means ImageNet, * means train on our device with the same
configuration.

Model Extra Data
mIoU(%)

FPS GPU Resolution Params GFLOPs
Val Test

BiSeNet(Res18)[4] None 74.8 74.7 65.5 GTX 1080Ti 1536× 768 49M 55.3
BiSeNetV2-L[42] None 75.8 - 47.3 GTX 1080Ti 1536× 768 - -
PP-LiteSeg-B2[1] IM 78.2 77.5 102.6 GTX 1080Ti 1536× 768 - -
STDC2-Seg75[47] IM 77.0 76.8 73.5 RTX 2080Ti 1536× 768 22.2M 54.9
RTFormer-Base[51] IM 79.3 - 39.1 RTX 2080Ti 2048× 1024 16.8M -
SFNet(Res18)[52] IM - 78.9 30.4 RTX 3090 2048× 1024 12.87M 247.0
RegSeg[2] None 78.50 78.3 51.2 RTX 3090 2048× 1024 39.1M 3.34
DDRNet-23[5] IM 79.1 79.4 55.2 RTX 3090 2048× 1024 20.1M 142.1

DDRNet-23 * None 77.3± 0.3 77.7 55.2 RTX 3090 2048× 1024 20.1M 142.1
PIDNet-M *[7] None 79.4± 0.2 79.4 42.2 RTX 3090 2048× 1024 34.4M 197.4
BENet * None 79.5± 0.25 79.4 45.5 RTX 3090 2048× 1024 29.5M 183.74

In Table 7, we present a comparison of real-time semantic segmentation networks
in terms of speed and accuracy on the Cityscapes dataset. Compared with RegSeg,
the previous state-of-the-art method without extra data, BENet demonstrates higher
accuracy, achieving a 1.1% mIoU improvement on the Cityscapes test set. Using the
same training configuration, we trained DDRNet-23 and PIDNet-M, which achieved
the best performance ever and had a network scale similar to BENet. Compared
with DDRNet-23, BENet sacrifices some speed but achieves a 1.7% mIoU accuracy
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improvement. With fewer parameters, a lower calculation amount, and faster speed,
BENet achieves comparable accuracy to PIDNet-M.

Image Ground Truth BEENet DDRNet-23PIDNet-M

Fig. 6 Comparison of prediction results between BENet, DDRNet-23 and PIDNet-M on the
cityscapes validation set. Due to the credit of BEMs, BALs and SMAPPM, BENet demonstrates
better segmentation performance on challenging region such as elongated objects and small objects,
exhibiting superior segmentation performance.

5 Conclusion

In this paper, we propose a boundary-enhanced network for real-time semantic seg-
mentation, aiming to explicitly extract the boundary features of images to guide the
network in maintaining detailed information. We introduce BEM and BAL to effi-
ciently extract boundary information. The high-dimensional semantic features and
high-resolution detail features maintained by the dual-branch network are used to fur-
ther purify the boundary features. The effectiveness of BEM in boundary extraction
has been demonstrated through experiments, and the resulting accuracy improvement
also validates the promoting role of boundary information in semantic segmentation.
Additionally, considering the lack of strip receptive fields in conventional CNN-based
networks and the difficulty in segmenting elongated objects, we further propose
SMAPPM to expand the network’s receptive field and enhance contextual mapping,
achieving significant results. In summary, BENet is an efficient real-time seman-
tic segmentation approach that demonstrates strong competitiveness with existing
state-of-the-art methods on the Cityscapes dataset.
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