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Load-settlement response of a footing over buried conduit in a sloping 1 

terrain: a numerical experiment-based artificial intelligent approach  2 

Muhammad Umer Arif Khan1, Sanjay Kumar Shukla2, Muhammad Nouman Amjad Raja3 3 

ABSTRACT4 

Settlement estimation of a footing located over a buried conduit in a sloping terrain is a 5 

challenging task for practicing civil/geotechnical engineers. In the recent past, the advent of 6 

machine learning technology has made many traditional approaches antiquated. This paper 7 

investigates the viability, development, implementation, and comprehensive comparison of 8 

five artificial intelligence-based machine learning models, namely, multi-layer perceptron 9 

(MLP), Gaussian processes regression (GPR), lazy K-Star (LKS), decision table (DT), and 10 

random forest (RF) to estimate the settlement of footing located over a buried conduit within a 11 

soil slope. The pertaining dataset of 3600 observations was obtained by conducting large-scale 12 

numerical simulations via the finite element modelling framework. After executing the feature 13 

selection technique that is correlation-based subset selection, the applied load, total unit weight 14 

of soil, constrained modulus of soil, slope angle ratio, hoop stiffness of conduit, bending 15 

stiffness of conduit, burial depth of conduit, and crest distance of footing were utilized as the 16 

influence parameters for estimating and forecasting the settlement. The predictive strength and 17 

accuracy of all models mentioned supra were evaluated using several well-established 18 

statistical indices such as Pearson’s correlation coefficient (r), root mean square error (RMSE), 19 

Nash-Sutcliffe efficiency (NSE), scatter index (SI), and relative percentage difference (RPD). 20 

The results showed that among all the models employed in this study, the multi-layer 21 

perceptron model has shown better results with r, RMSE, NSE, SI, and RPD values of (0.977, 22 

0.298, 0.937, 0.31, and 4.31) and (0.974, 0.323, 0.928, 0.44 and 3.75) for training and testing 23 

dataset, respectively. The sensitivity analysis revealed that all the selected parameters play an 24 

important role in determining the output value. However, the applied load, constrained 25 

modulus, unit weight, slope angle ratio, hoop stiffness have the highest strength with the 26 

relative importance of 18.4%, 16.3% and 15.3%, 13.8%, 11.4%, respectively. Finally, the 27 

model was translated into a functional relationship for easy implementation and can prove 28 

useful for practitioners and researchers in predicting the settlement of a footing located over a 29 

buried conduit in a sloping terrain.   30 

Keywords: Buried-conduit; Slope; Artifical intelligence; Finite element modelling; Load-31 

settlement behavior 32 
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1. Introduction52 

The tunneling and underground infrastructure is a salient feature of modern urbanization. The 53 

economic and safety benefits of the buried conduits have made them the most frequently used 54 

mode of utility conveyance. The scarcity of land to ever-increasing population growth has 55 

resulted in the construction activity over the buried infrastructure. The influence of the imposed 56 

loading on a buried conduit is always incorporated in its design and installation (Moser and 57 

Folkman 2001). The studies on the effect of the applied surface pressure on the soil-conduit 58 

interaction and the resulting stress distribution and structural response of the conduit can be 59 

found in the current literature (Dhar et al. 2004; Talesnick et al. 2012; Bryden et al. 2015; 60 

Robert et al. 2016; Wang et al. 2017; Al-Naddaf et al. 2019; Khan and Shukla 2021a). 61 

However, the research on the presence of the buried conduit on the settlement and bearing 62 

capacity of a surface footing is very limited. Srivastava et al. (2013) investigated the load-63 

settlement response of a circular footing placed over a PVC conduit buried under the level 64 

ground. Using laboratory model tests, the load-settlement behavior and bearing capacity of the 65 

footing was analyzed in loose-medium (relative density = 50%) and very dense sands (relative 66 

density = 88%). The experimental results were also compared with the results obtained from 67 

finite element analysis of the same model. The results showed that in the case of the loose-68 

medium dense sand, the induction of stiffer conduit material improved the load-settlement 69 

response of the footing. As a result, its bearing capacity increased by about 25%. Whereas, for 70 

the very dense sand, the presence of the flexible conduit reduced the bearing capacity of the 71 

overlying footing by approximately 8%. Therefore, it can be concluded that under the static 72 

load conditions, the relative density of the sand surrounding the buried conduit and the resulting 73 

relative stiffness with the conduit material governs the settlement and bearing capacity of the 74 

surface footing. Similarly, Bildik and Laman (2015, 2019) conducted laboratory model tests to 75 

analyze the effect of a buried PVC conduit on the load-settlement response and bearing 76 
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capacity of an overlying strip footing. The study was conducted by varying the burial depth 77 

and the horizontal distance of the conduit from the footing. The settlement of the surface 78 

footing was measured by employing two deflection transduces instrumented on both sides of 79 

the surface footing. The results showed that the load-settlement behavior and bearing capacity 80 

of the footing improved significantly as the horizontal distance between the footing and the 81 

buried conduit was increased. Also, it was noted that as the buried conduit was moved away 82 

from the stress zone under the footing, the bearing capacity of the footing increased. At a burial 83 

depth of more than 4 times the conduit diameter, the buried conduit seized to impact the load-84 

settlement behavior and bearing capacity of the surface footing. While the aforementioned 85 

studies investigated the effect of buried conduits on the load-settlement response and bearing 86 

capacity of footings located over the horizontal ground, only one study can be found in the 87 

literature that has analyzed the footing settlement in a sloping terrain.  Khan and Shukla (2020) 88 

conducted laboratory model tests to investigate the settlement and bearing capacity of a strip 89 

surface footing located over a conduit buried within the soil slope. Using two linear variable 90 

displacement transducers (LVDTs) installed on both sides of the footing, the effects of un-91 

plasticized polyvinyl chloride (PVC-U) conduits of diameters 80mm and 160mm were studied 92 

in detail. The shear failure mechanisms of the footing were analytically computed and 93 

illustrated to understand the resulting soil-conduit interaction. The study concluded that when 94 

the shear failure planes of the footing intersected with the buried conduit, its bearing capacity 95 

was reduced by about 40%. However, an increase in the burial depth of the conduit and the 96 

crest distance of the footing enhanced the distance between the buried conduit and failure 97 

planes of the footing, resulting in a decrease in the effect of buried conduit on the settlement 98 

and bearing capacity of the surface footing. Further, the sensitivity analysis categorized the 99 

burial depth of the conduit and the crest distance of the surface footing from the edge of the 100 



5 

soil slope as the most influential parameters affecting the load-carrying behavior of the surface 101 

footing located over a conduit buried within a soil slope.  102 

Summarizing, the limited number of related studies, as discussed above, have 103 

concluded that the load-settlement response and bearing capacity of footings is affected by the 104 

relative stiffness with the conduit material and the surrounding soil, burial depth of the conduit, 105 

and the crest distance of the conduit from the slope surface. However, the studies have only 106 

analyzed limited values of these influential parameters due to the experimental restraints. 107 

Furthermore, these experimental studies have been conducted on small-scale 1g laboratory 108 

models, which hinders the veracity of such studies due to the scale effect.  While the small-109 

scale model tests may explain the relevant mechanisms/ trends, the observed measurements 110 

may not reflect the actual field values (Sedran et al. 2001; Cerato and Lutenegger 2003). 111 

Additionally, the use of only one type of conduit material significantly limits the generalized 112 

use of related studies. To the authors' best knowledge, no study exists in the current literature 113 

that can be used for the direct estimation of the settlement of a strip footing located over a 114 

buried conduit with a soil slope. 115 

Finite element modelling (FEM) can be used to solve complex geotechnical problems 116 

and achieve more accurate results (Khan and Shukla 2021b). However, the use of expensive 117 

software for FEM analysis significantly limits their application (Kim et al. 2012). In recent 118 

times, the use of machine learning techniques has been widely used in mapping the non-linear 119 

relationships between the input and output variables (e.g., Ahmadi et al. 2019; Yekani Motlagh 120 

et al. 2019; Aamir et al. 2020; Dorosti et al. 2020; Ghorbani et al. 2021; Kaloop et al. 2021). 121 

The novel metaheustarics algorithms are also developed for optimisation purposes in big-data 122 

analysis (Abualigah and Alkhrabsheh 2021; Abualigah et al. 2021a). Similarly, for 123 

geotechnical problems, the soft computing approaches are now commonly used for prediction 124 

purposes (e.g., Nguyen et al. 2019; Xiao and Zhao 2019; Bardhan et al. 2021; Kardani et al. 125 
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2021a, b; Khan et al. 2021; Raja and Shukla 2021a, b; Raja et al. 2021). The machine learning 126 

(ML) models that are based on large quantities of FEM data have also been developed to solve 127 

complex problems like soil-conduit interaction and settlement of foundations. Kim et al. (2012) 128 

employed FEM based artificial neural network (ANN) to predict deflections of buried 129 

corrugated conduits. The data collected from three-dimensional finite element modelling were 130 

used to develop a backpropagation (BP) neural network that examined the factors affecting the 131 

structural response of different corrugated conduits buried at various depths under the level 132 

ground. Shokouhi et al. (2013) used a FEM-ANN approach to develop an ANN model that 133 

could be used to predict the bending strains developed in conduits buried within a fault zone. 134 

Kardani et al. (2020) used the FEM-based data to successfully predict the factor of safety of a 135 

soil slope using the hybrid stacking ensemble machine learning modelling technique. The 136 

aspect of footing settlement has also been studied by using the FEM-ML approach. Moayedi 137 

and Hayati (2018) used large FEM data to develop a number of soft-computing models in order 138 

to predict the settlement of a strip surface footing located near a sandy soil slope. Similarly, 139 

Moayedi et al. (2020a) developed optimized neural networks such as differential evolution 140 

algorithm (DEA), adaptive neuro-fuzzy inference system (ANFIS) to predict the ultimate 141 

bearing capacity of a shallow footing on two-layered soil condition, utilizing FEM data. In this 142 

paper, an attempt has been made to predict the settlement of a surface footing located over a 143 

conduit buried within a soil slope, using various machine learning/intelligent modelling 144 

techniques, namely multi-layer perceptron (MLP), Gaussian processes regression (GPR), Lazy 145 

K-Star (LKS), decision table (DT), and random forest (RF). Using the finite element modelling, 146 

large-scale data were generated for the settlement of the footing located over the conduits of 147 

varying stiffness. The main objectives of this paper are as follows: 148 
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1) Development and assessment of five machine learning models such as to MLP, GPR, 149 

LKS, DT and RF for direct estimation of the settlement of a strip footing, located over 150 

a buried conduit with a soil slope.  151 

2) Comprehensive analysis and comparison of these models for the same problem.  152 

3) Feature selection to choose the most important parameters affecting the footing 153 

settlement. 154 

4) Assess the robustness of the developed models and conduct the sensitivity analysis. 155 

5) Develop and present a trackable functional ANN-based formula for direct estimation 156 

of the footing settlement locate over a buried conduit. 157 

1.1. Significance of the Research158 

This study is useful in ensuring the stability of surface footings that are frequently located 159 

over tunnels and underground infrastructure in the current urban environment. Using extensive 160 

finite element modelling, it incorporates the effect of a large number of input parameters on 161 

the load-settlement response of a large-scale surface footing located over different types of 162 

buried conduits. The inclusion of numerous input parameters employed to define soil and the 163 

buried conduits and their complicated relationships with the output parameter results in highly 164 

complex geotechnical models. Further enhancing this complexity are the intricate correlations 165 

between the input parameters, where a change in one input parameter causes a change in 166 

another or more than one input parameters. Considering these convoluted relationships and the 167 

resulting rigorous finite element calculations, this study utilizes advanced machine learning/ 168 

intelligent modelling techniques to provide accurate and straightforward solutions to the 169 

complex soil-conduit interactions. The developed MLP-based formula can be used by the 170 

practicing engineers to directly estimate footing settlement when loaded over a conduit buried 171 
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within a sloping terrain. The steps involved in the model developments can be summarized as 172 

follows: 173 

(1) Data generation through Finite element modelling (FEM) 174 

(2) Data pre-processing, feature validity, and data division into training and testing data 175 

(3) Development and implementation of AI-based models 176 

(4) Statistical analysis of the results and selection of best model 177 

(5) Model robustness and sensitivity analysis 178 

2. Material and methods 179 

2.1. Finite element modelling180 

The commercial PLAXIS 2D software was used for data collection by conducting the finite 181 

element analysis of a large-scale model, as presented in Figure. 1. Using the Mohr-Coulomb 182 

model, the soil was modelled as per the field properties of the most common sandy soils, 183 

presented in Table 1 (Ghazavi and Eghbali 2008; Moayedi and Hayati 2018). The soils, 184 

numbered as one to five were differentiated in terms of their strength and stiffness parameters, 185 

namely total unit weight  , elastic modulus sE , friction angle  , Poisson’s ratio s  and 186 

dilation angle  ,  As suggested by Brinkgreve et al. (2018), the value of cohesion c  was set 187 

as 0.3 to avoid any complications during software calculations. Also, the aspect of increasing 188 

soil stiffness with an increase in depth was simulated by employing incE 500 kN/m3. The 189 

stiffness parameters of the buried conduit were selected as per the properties defined by Elshimi 190 

and Moore (2013). Table 2 details the parameters of different types of conduits, presented in 191 

terms of their normal stiffness EA , flexural rigidity EI  , and Poisson’s ratio c . The strength 192 

interaction parameter erRint  was selected as 0.8 to simulate the realistic frictional resistance 193 

between the buried conduit and the surrounding soil (Wadi et al. 2015). The pressure q  was 194 
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applied on a surface footing of width B , that was located centrally above the buried conduit 195 

of diameter cB . The footing was modelled as a plate, having the stiffness properties as; EA196 

5 × 106 kN/m and EI  8.5 × 103 kNm2/m (Brinkgreve et al. 2018). The standard model fixities 197 

and the default medium mesh size was used for conducting finite element simulations. In order 198 

to obtain the settlement of the footing located over a buried conduit with a soil slope, the crest 199 

distance of the footing Be / , the burial depth of the conduit Bz /  , and the slope angle i  were 200 

varied.  201 

2.2. Database collection, preprocessing and feature validity202 

A database of 3600 full-scale numerical simulations was generated by conducting extensive 203 

finite element modelling. As suggested by McGrath (1998), the problem related to the buried 204 

conduits can be described in terms of the constrained modulus of soil sM , defined as, 205 

)21)(1(

)1(

ss

ss

s

E
M






 (1) 206 

where sE  and s  represent the elastic modulus and the Poisson’s ratio of the soil.  207 

Similarly, the stiffness parameters of the conduit, namely, normal stiffness EA  and flexural 208 

rigidity EI  are usually normalized to incorporate the effect of conduit diameter cB  and wall 209 

thickness t . The resulting hoop stiffness 
HPS  (Mcgrath 1999) and bending stiffness 

BPS210 

(ASTM D2412, 2002) of the conduit are defined as, 211 

R

EA
PS H  (2) 212 

3149.0 R

EI
PS B  (3) 213 

where R  is the radius to centroid of the conduit wall. 214 
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The aspect of slope stability and the angle of repose of the granular soil is a function of 215 

its friction angle (Duncan and Wright 2005; Atkinson 2007). The graphical presentation of the 216 

complete dataset is illustrated in the form of box and whisker plots in Figure 2. Moreover, the 217 

statistical properties of the same are tabulated in Table 3.  The dataset has been normalized 218 

between -1 to 1 before feeding it to ML algorithms.  219 

12
minmax

min 












xx

xx
xstd

(4) 220 

where x , minx  and maxx  present the observed, minimum and maximum values of the dataset, 221 

respectively.  222 

In machine learning, dealing with high-dimensional data is a challenging task for 223 

scientists and researchers. Feature reduction is an important step that effectively omits the 224 

redundant data and chooses the most optimum combination of input parameters (Jie et al. 2017; 225 

Gao et al. 2019). For this study, correlation-based feature selection, abbreviated as the CFS 226 

method, was implemented in a Waikato environment for knowledge analysis (WEKA) using 227 

the multivariate filter. Initially proposed by Hall (1999), CFS combines the correlation measure 228 

for appropriate feature subset selection and heuristic strategies for the mode of search. 229 

Therefore, it evaluates the importance/correlation of individual variables with the output and 230 

the degree of redundancy between them. The results of the feature selection depict that among 231 

the most relatively important parameters as summarized in Table 3, the applied load (q), 232 

constrained modulus of soil (Ms), unit weight of soil ( ), slope-angle ratio ( /i ), hoop stiffness 233 

(PSH), bending stiffness (PSB), burial depth ratio of conduit (z/B), and crest distance of footing 234 

(e/B) has achieved the highest importance. Mathematically, the output, that is settlement of 235 

footing located over a buried conduit in soil (s/B %) can be expressed as follows: 236 

)/,/,,,/,,,(/ BeBzPSPSiMqfBs BHs  (5) 237 
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Therefore, these input parameters are utilized for training the machine learning models 238 

described in the next section. 239 

2.3. Theory of methods240 

The theory of the statistical concepts and the data-driven machine learning methods employed 241 

in this study to estimate the settlement of the footing located over a conduit buried within a soil 242 

slope are provided in this section. Moreover, 3060 samples were randomly earmarked in this 243 

study for training the MLP, GPR, LKS, DT, and RF models. Thereafter, the competency of 244 

each model was evaluated and validated against 540 samples. Additionally, the research 245 

scheme employed in this study is presented in Figure 3.  246 

2.3.1. Multi-layer perceptron (MLP)247 

Multi-layer perceptron (MLP) is a neural network that has the ability to map adaptive non-248 

linear relationships between the input dataset and the output targets, thus making it one of the 249 

most widely used machine learning techniques (Azadi et al. 2013; Gao et al. 2019; Moayedi et 250 

al. 2019). Figure 4 shows a feed-forward MLP network consisting of an input layer, a single 251 

hidden layer, and an output layer. Each layer consists of a varying number of neurons. The 252 

number of independent input parameters and the output target defines the number of neurons 253 

in the input and output layers, respectively. Whereas the number of neurons in the hidden layer 254 

depends upon the type and size of the problem (Ramezanian et al. 2019). The increase in the 255 

number of hidden neurons may enhance the prediction ability of the network but can also make 256 

the model computationally inconvenient and complex (Raja and Shukla 2020). As a thumb 257 

rule, the maximum number of hidden neurons should be limited to 12 m , where m  presents 258 

the number of input parameters (Shahin 2010). In an MLP algorithm, a number of neurons are 259 

connected by associated weights. At each neuron, the data from the input layer ix  is multiplied 260 
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by the associated weight ikw . Thereafter, the bias vector k  is added to the summation of the 261 

weighted inputs to obtain kV . Finally, the output of the processing neuron ky  is obtained by 262 

passing kV  through the sigmoidal activation function (.)g  (see Figure. 4). More detailed 263 

information about the MLP neural network can be found in the existing literature (Gurney 264 

1997). 265 

2.3.2. Gaussian processes regression (GPR)266 

Gaussian processes regression (GPR) uses a probabilistic approach and predicts through kernel 267 

functions that evaluate on the basis of the similarity between two data points. The GPR 268 

technique integrates a number of machine learning tasks, such as model training, parameter 269 

estimation, and uncertainty evaluation. This helps in reducing the subjectivity of the GPR 270 

results and makes them more interpretable. The GPR is based on a Gaussian process (GP), that 271 

works on the assumption of Gaussian priors for changed function values (Rasmussen 2006). A 272 

GP can be statistically presented as, 273 

))',(),((~)( xxkxGPxg  (6) 274 

where )(x  presents the mean and )',( xxk presents the covariance function of g .  275 

Any finite number of random variables in a GP have a joint multivariate Gaussian distribution 276 

(Suthar 2020). Assuming m

ii wxgg 1)],(ˆ[   presents the model outputs in correspondence to the 277 

input dataset X , 278 





n

j

ijji xwwxg
1

),(),(ˆ  mi ,....,2,1 (7) 279 

or simply, if wg  , then the prior distribution of g  is Gaussian 280 

),0(~),( KNXgp  (8) 281 
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where   is the design matrix. 282 

In this study, various kernel functions namely, radial bias function (RBF), Pearson VII 283 

Universal kernel function (PUKF), polynomial kernel function are employed, and the best 284 

results are obtained via PUKF function.  285 

2.3.3. Lazy K-star (LKS)286 

Lazy K-star (LKS) uses an instant base learning (IBL) classification system to generalize the 287 

training dataset. During the learning process, the learning algorithm spends most of its 288 

computation time for consultation, and learners do not operate until the system receives the 289 

query call (Webb 2011). Unlike other machine learning techniques, LKS algorithm does not 290 

predict from the instances in the training dataset but rather employs the nearest neighbor 291 

approach to provide a response from the data memory (Altman 1992). The LKS classifies a 292 

dataset by drawing a comparison with a pre-classified sample. By employing a distance 293 

function, the IBL adds up all the possible transitions of two instances and categorizes them into 294 

a simple class (Cleary and Trigg 1995). Thereafter, the generated classification function is used 295 

to provide new solutions. For example, new test data samples x  are distributed to the most 296 

suitable class among the k  closest information focuses iy . The corresponding LKS 297 

formulation can be given as follows (Cleary and Trigg 1995; Gao et al. 2019): 298 

),(log),( ** xyPxyK ii  (9) 299 

where, 
P  is the probability function that presents the all possible transitions from instances x300 

to y . 301 

302 

303 
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2.3.4. Decision table (DT)304 

Decision table (DT) can be used to organize logic in a manner that helps in easy analysis 305 

(Nanda et al. 2017). A DT consists of different sections, namely, condition and action stubs, 306 

and condition and action entries. While the “condition stub” presents the possible conditions 307 

or problems, the “action stud” illustrates potential actions or solutions. The condition and 308 

action entries are located across the corresponding stubs, in terms of rules and classes tabulated 309 

in columns and rows, respectively (Cragun and Steudel 1987). When provided with a new 310 

instance, a DT algorithm tries to find the match in the table (Kohavi 1995). It assists in testing 311 

a set of rules for conditions of completeness, redundancy, and ambiguity. The condition of 312 

completeness occurs when the rules in the table address all the possible combinations of logic. 313 

Redundancy is said to exist when more than one rule having the same actions is satisfied by 314 

the same logical conditions. Ambiguity exists when two or more different rules with different 315 

actions are satisfied by the same logical conditions (Cragun and Steudel, 1987). In comparison 316 

to the hierarchical structure of the decision tree technique, the simple straightforward 317 

architecture of DT is considered to be more stable for problem solutions (Gao et al. 2019).  318 

2.3.5. Random forest (RF)319 

Random forest (RF) uses an ensemble-learning approach that employs numerous classification 320 

trees for solving regression and classification problems (Ho 1995; Gehrke 2011). The RF 321 

creates a grove of trees whose predictive relationship alters randomly. The average output of 322 

each tree is then provided as the output. In order to generate the forest, the user has to define 323 

some parameters, such as the variable splitting the nodes and the number of trees. The accuracy 324 

of the model is determined in terms of the forest population i.e., the number of trees. The 325 

generalization error (GE) is estimated unbiasedly during the computation of the RF model. The 326 

RF evaluates the increase in the GE error to estimate the significance of the predictive 327 
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variables. A variable is said to have increased significance if the value of GE increases. Also, 328 

by employing the bootstrap aggregating technique, the RF model reduces the risk of overfitting 329 

and provides a more stable solution (Breiman 2001) 330 

3. Model performance and assessment 331 

After the development and implementation phase, the next most important step is the model 332 

assessment. For data-driven modelling, the accuracy is measured in terms of the following: (i) 333 

Statistical criteria, that is, “goodness of fit”; and (ii) Robustness and sensitivity. The former 334 

deals with model performance by evaluating it fit to the calibration data using several statistical 335 

criteria. In contrast, the latter is used to access its accuracy, reliability, and rationality according 336 

to the underlying physical behavior of the investigated system. A model can only be considered 337 

suitable if it makes accurate and realistic predictions over a wide range of data (Shahin et al. 338 

2009). Therefore, for this study, the best ML model was selected based on these criteria.  339 

3.1 Model performance based on statistical indices 340 

For “goodness of fit”, five statistical indices namely, Pearson’s correlation coefficient (r), root 341 

mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), scatter index (SI), and relative 342 

percentage difference (RPD) were used to access the accuracy of the developed models. 343 

Moreover, based on these criteria, a ranking system was developed by assigning the scores to 344 

the models in training and testing dataset. In may be noted that this ranking system was 345 

successfully applied in many previous (Gao et al. 2019; Moayedi et al. 2020a; Zhang et al. 346 

2020). The mathematical forms of all the indices, namely, r, RMSE, NSC, SI, and RPD are 347 

given in Eqs (10-14)  348 
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where iobsBs / , ipreBs / , obsBs / , preBs / and n represent the ith observed value of settlement, ith356 

predicted value of settlement, mean value of observed settlement, mean value of predicted 357 

settlement, and number of data samples, respectively. It is to be noted that the model is 358 

considered to be accurate if it has high r, NSE, and RPD values and low RMSE and SI values.  359 

Table 4 reports the results of all the statistical parameters (r, RMSE, NSE, SI and RPD) 360 

for training dataset in MLP, GPR, LKS, DT and RF were (0.977, 0.298, 0.937, 0.31, and 4.31), 361 

(0.931, 0.5, 0.851, 0.43, and 3.67), (0.901, 0.536, 0.76, 0.73, and 2.31), (0.92, 0.491, 0.831, 362 

0.74, and 2.53), and (0.981, 0.273, 0.933, 0.35, and 3.93), respectively. Similarly, for testing 363 

dataset, for the same parameters, the values were (0.974, 0.323, 0.928, 0.44, and 3.75), (0.905, 364 

0.518, 0.817, 0.76, and 2.34), (0.876, 0.673, 0.691, 1.01, and 1.8), (0.87, 0.613, 0.743, 1.04, 365 

and 1.97), and (0.964, 0.349, 0.916, 0.52, and 3.46) respectively for MLP, GPR, LKS, DT and 366 

RF (Table 5). After reviewing both the training and the testing performance, MLP technique 367 

can be introduced as the most accurate model in determining the settlement of footing located 368 

over a conduit buried within a soil slope. Moreover, the performance of MLP is followed by 369 
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RF and GPR models and thus, can be considered as the second and third best models in the 370 

hierarchy. Also, the LKS and DT have shown rather poor predictive performance in 371 

comparison to their counterparts.  372 

The combined performance of all the models in training and testing datasets is 373 

computed in Table 6. In this regard, a total rank is obtained by summing the partial scores given 374 

to the model based on the statistical performance indicators, that are r, RMSE, NSE, SI and 375 

RPD values (Tables 4 and 5). From the results, the supremacy of the MLP model can be 376 

established with the highest total ranking score of 48. The second-best performance is obtained 377 

by RF with a total score of 42. The total ranking scores for GPR, LKS, and DT were 28, 12, 378 

and 20, respectively. Furthermore, Figures 5a-5e depict the regression correlation coefficient 379 

between the observed and predicted values for all the prescient models in the testing dataset. It 380 

can be observed from the regression chart that the MLP model has achieved the highest R2, that 381 

is, 0.948, in comparison to 0.931, 0.820, 0.770, and 0.756, respectively for RF, GPR, LKS, and 382 

DT. This also proves that the developed MLP model has outperformed all other ML models 383 

applied in the context of predicting the settlement of footing located over a conduit buried 384 

within a soil slope.  385 

The predictive performance of all the models was also accessed via Taylor’s diagram 386 

in Figure 6. Taylor’s diagram is a useful graphical tool to illustrate the accuracy of the 387 

developed data-driven models on a single platform (Taylor 2001). The strength between the 388 

predicted and simulated field is evaluated on the basis of the combine effect of three statistical 389 

parameters, that are, centered RMSE, correlation coefficient and standard deviation (SD). In 390 

the given figure, the solid black lines depict the correlation coefficient, solid radial lines 391 

represent the standard deviation, and dotted radial lines show the centered RMSE -values in 392 

the simulated field. The reference model is shown by a black dot with the correlation coefficient 393 

of unity, measured SD of 1.21, and zero centered RMSE. It can be seen from the figure that 394 
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the best performance is obtained by MLP model with the correlation coefficient of 0.974, SD 395 

of 1.33, and RMSE of 0.3168. The RF model has also shown a good correlation strength with 396 

coefficient of 0.965, RMSE of 0.347, but the spatial variability is low with an SD of 1.02 in 397 

reference to observed value. The other models such as GPR, LKS and DT have correlation 398 

coefficient (0.905, 0.876, and 0.870), centered RMSE (0.517, 0.673, and 0.613), and SD (1.04, 399 

0.73, and 0.92), respectively. This depicts that these models are associated with high bias and 400 

have poor prediction strength compared to the MLP model. Therefore, to this point, it is 401 

admissible that the developed MLP model predicts the settlement of footing located over a 402 

conduit buried within a soil slope in a reliable and intelligent way. Additionally, the time 403 

consumed by each approach is shown in Figure 7 . It can be observed that apparently, the MLP 404 

and GPR approaches had consumed less time in comparison to other models. 405 

3.2 Model robustness and sensitivity   406 

In this section, a sensitivity analysis was carried out to investigate the reliability and robustness 407 

of the developed MLP model. For this, incremental stepwise sensitivity analysis, also known 408 

as one-at-time analysis was conducted to examine the robustness of the model. In this method, 409 

each variable is increased in a stepwise manner while other variables remain constant at their 410 

mean value. However, this is practically not possible if the variables have both independent 411 

and correlated effect, that is, the change in one variable cause an inherent change in another 412 

variable such as unit weight and constrained modulus of soil, and hoop and bending stiffness 413 

of conduit, for this study. Therefore, the combined effect is calculated in the sensitivity analysis 414 

for these variables, as illustrated in Figure 8. The results show that an increase in the footing 415 

settlement increases significantly with an increase in the applied loading. This is a very 416 

common effect that relates to the movement of the underlying soil particles that slide along the 417 

shear failure planes due to the downward motion of the loaded footing, hence providing more 418 

settlement space for the surface footing (Terzaghi 1943). The constrained modulus and unit 419 
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weight of the soil are interrelated variables that correspond to the density and the resulting 420 

stiffness of the soil. The increased soil stiffness reflects an increase in the shear strength of soil 421 

that provides resistance to the footing settlement (Berardi and Lancellotta 1991; Mayne and 422 

Poulos 1999). The slope angle ratio symbolizes the aspect of slope stability of an unconfined 423 

granular material in terms of the state of failure of a soil at which the angle of repose equals its 424 

friction angle (Al-Hashemi and Al-Amoudi 2018; Miura et al. 1997). An increase in the slope 425 

angle ratio increases the slope instability and hence reduces the support available to the footing 426 

on the slope side, explained in terms of the asymmetric footing failure mechanism(Hovan 1985; 427 

Graham et al. 1988). Due to the increase in asymmetric footing failure with an increase in slope 428 

angle ratio, the soil along the unstable slope yields under load application, resulting in increased 429 

footing settlement (Keskin and Laman 2013; Dey et al. 2019). The hoop and bending stiffness 430 

of the conduit are the design parameters that are employed to classify a conduit as either rigid 431 

or flexible (Mcgrath 1999). When buried under a loaded footing, the relative stiffness of the 432 

conduit to the adjacent soil determines the footing settlement. An increase in relative stiffness 433 

increases the stiffness of the soil located between the buried conduit and the overlying footing, 434 

thereby reducing the footing settlement (Srivastava et al. 2013). The effect of the burial depth 435 

of the conduit on the footing settlement is related to the aspect of the intersection of the shearing 436 

failure plane of the loaded footing with the buried conduit. As the burial depth increases and 437 

the conduit is located below the shear failure places of the footing, it serves as a support and 438 

reduces the settlement of the overlying footing (Khan and Shukla 2020). The increase in the 439 

crest distance relates to the support available to the surface footing on the slope side, as 440 

discussed above. An increase in the crest distance reduces the asymmetric nature of the failure 441 

mechanism, allowing more support to the slope side of the footing and causing a decrease in 442 

the footing settlement (Dey et al. 2019). The trends illustrated in Figure 8 comprehensively 443 

prove that the developed MLP model network correctly predicts the underlying physical 444 
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behavior of the investigated system according to the known knowledge pertaining to 445 

geotechnical engineering, and thus can be considered reliable and robust.  446 

In order to find the importance of each variable affecting the settlement of footing 447 

located over a conduit buried within a soil slope, a sensitivity analysis was also conducted 448 

using the Garson’s algorithm (Garson 1991). In the case of a single hidden layered network, 449 

this technique involves the deconstruction of the model weight connections. The algorithm is 450 

explained in the Appendix section for the MLP network with eight inputs, six hidden layer 451 

nodes, and one output node. From the results illustrated in Figure 9, it can be observed that the 452 

most important parameter for estimating the settlement is applied load with the relative 453 

importance of 18.4%, followed by the unit weight of soil and constrained modulus of soil with 454 

relative importance of 16.3% and 15.3%, respectively. The relative importance of other 455 

parameters such as slope-angle ratio, hoop stiffness, bending stiffness, burial depth, footing 456 

crest distance is 13.8%, 11.4%, 9.9%, 7.7%, and 6.9%, respectively.  457 

4. MLP model formulation 458 

In this section, the developed optimal MLP model was translated into a trackable equation for 459 

hand or spreadsheet calculations. The mathematical form of MLP is given as follows (Ghorbani 460 

et al. 2020): 461 

))((
11
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m

i
iikhk

h

j
ihkooho xwgwgy             (15) 462 

where hog  is the applied transfer between hidden-output layer, o is the bias at output layer 463 

node, kow is the synaptic weight between node k of hidden layer and single output node, ihg  is 464 

the applied transfer function between input-hidden layer, hk  is the bias value for node k of 465 

hidden layer (k = 1 ,h), ikw is the synaptic weight between input i and node k of hidden layer, 466 
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and ix is the ith input node (variable). The weights and biases of the network are summarized 467 

in Table 7.  468 

In order to predict the settlement of footing located over a buried conduit with eight 469 

inputs ( BeBzPSPSiMq BHs /,/,,,/,,,  ), the optimal MLP model can be formulated as 470 

follows: 471 

minminmax )/(2/))/()/(()1)/(()/( BsBsBsBsBs npp             (16) 472 

where npBs )/( , max)/( Bs , and min)/( Bs  are the normalized settlement value, maximum values 473 

of the settlement, and minimum value of the settlement, respectively. The normalized 474 

settlement value can be estimated as follows: 475 
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khnknknBknHknknknknkk BewBzwPSwPSwiwwMswqw   )/()/()/( 87654321         (18) 477 

where the subscript n denotes the normalized values of the corresponding input parameters. 478 

The mathematical form of sigmoid activation function is given in Eq. (19). 479 
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For easy comprehension, the design numerical example is also presented below.  481 

Numerical example 482 

The 1-m wide footing is located over a conduit buried within a soil slope at 1.5 m depth below 483 

the base of footing. The crest distance of the footing is 1.75 m. Other parameters, including the 484 

constrained modulus of soil, unit weight of soil, slope-angle ratio, hoop stiffness of pipe, and 485 

bending stiffness of pipe are 35000 kPa, 19.9 kN/m3, 4071.2 kPa, 8.55 kPa, respectively. 486 

Estimate the settlement of the footing under the application of load (q) of 50 kPa, 100 kPa, and 487 

150 kPa.  488 
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Solution: 489 

Input parameters (xi) = }///{ BeBzPSPSiMq BHs 490 

}75.15.155.82.407145.09.193500050{491 

Step 1: 492 

Normalize the values using Eq. (4). The maximum and minimum values of all the parameters 493 

are mentioned in Table 3.  494 

}1667.05.01110.0143.06598.0333.0{ inx495 

Step 2: 496 

Estimate normalized s/B value using Eq. (17). For that, calculate k using Eq. (18) as follows: 497 

It may be noted that all weights and biases of MLP network are given in Table 7. 498 

796.2)617.3()0221.01667.0()0873.05.0()0281.01(

)0712.01()0095.01.0()0944.0143.0()7507.06598.0()9407.0333.0(1


k

499 

Similarly, 500 

}374.3,331.6,681.9,655.6,053.5{},,,,{ 65432 kkkkk 501 

Now using Eq. (16) estimate the normalized settlement value. 502 
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Step 3: 504 

De-normalise using Eq. (17) 505 
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%688.00633.02/)063.05.25()1)95084.0(()/( pBs506 

Step 4: 507 

The settlement (s) is given as: 508 

00688.0100/)1688.0( s m = 6.88 mm  509 

Similarly, for the applied loads of 100 kPa and 150 kPa, the settlement values will be 10.41 510 

mm and 16.36 mm, respectively.  511 

For future purposes, the developed MLP model can be combined with newly developed 512 

metaheuristics (e.g., Mirjalili et al. 2014; Abualigah and Diabat 2021; Abualigah et al. 2021b, 513 

c) 514 

515 
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5. Conclusions 516 

Settlement estimation of the footing located over a buried conduit in a sloping terrain is a 517 

challenging task for civil engineers. A novel approach is presented in this study to predict this 518 

settlement. It involves generating the pertaining database using extensive large-scale numerical 519 

simulations. Thereafter, five machine learning models (MLP, GPR, LKS, DT, and RF) were 520 

developed and implemented to evaluate the feasibility of the investigated system. The 521 

following general conclusions can be drawn from the above discussion. 522 

1. For settlement estimation, results of all the statistical parameters (r, RMSE, NSE, SI 523 

and RPD) for training dataset in MLP, GPR, LKS, DT and RF were (0.977, 0.298, 524 

0.937, 0.31, and 4.31), (0.931, 0.5, 0.851, 0.43, and 3.67), (0.901, 0.536, 0.76, 0.73, and 525 

2.31), (0.92, 0.491, 0.831, 0.74, and 2.53), and (0.981, 0.273, 0.933, 0.35, and 3.93), 526 

respectively. Similarly, for testing dataset, for the same parameters, the values were 527 

(0.974, 0.323, 0.928, 0.44, and 3.75), (0.905, 0.518, 0.817, 0.76, and 2.34), (0.876, 528 

0.673, 0.691, 1.01, and 1.8), (0.87, 0.613, 0.743, 1.04, and 1.97), and (0.964, 0.349, 529 

0.916, 0.52, and 3.46) respectively for MLP, GPR, LKS, DT and RF. This indicates the 530 

superior predictive performance of the MLP model in contrast to other models. 531 

2. The MLP model has obtained the highest ranking score (total score = 48). The next best 532 

performance is achieved by RF model (total score = 42) followed by GPR (total score 533 

= 28). Therefore, RF and GPR can be introduced as second and third best models in 534 

estimating the settlement of footings located over buried pipes in sloping terrain. 535 

3. DT and LKS showed subpar performance in predicting the settlement with the total 536 

score of 20 and 12, respectively. 537 
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4. Sensitivity analysis was conducted using Garson’s algorithm to assess the strength of 538 

input variables in estimating the output (i.e., settlement). The results showed that the 539 

applied load ranked 1st with the relative importance of 18.4%, followed by unit weight 540 

of soil and constrained modulus of soil with relative importance of 16.3% and 15.3%, 541 

respectively. The relative importance of other parameters such as slope-angle ratio, 542 

hoop stiffness, bending stiffness, burial depth, footing crest distance is 13.8%, 11.4%, 543 

9.9%, 7.7%, and 6.9%, respectively. 544 

5. The combined predictive performance of all the model were assessed via Taylor’s 545 

diagram. Based on the results, the standard deviation (SD) (1.33, 1.02, 1.04, 0.73 and 546 

0.92), RMSE (0.3168, 0.374, 0.517, 0.673, and 0.613), and correlation coefficient (r) 547 

(0.974, 0.965, 0.905, 0.876, and 0.870), respectively estimated MLP, RF, GPR, LKS 548 

and DT, confirm the predictive strength of the developed MLP model. 549 

6. Robustness analysis and generalisation ability check showed that the settlement of 550 

footing over buried conduit in a sloping terrain increases with the increase in applied 551 

load and slope-angle ratio. Whereas the increase in the hoop stiffness, bending stiffness, 552 

burial depth, and footing crest distance causes the decrease in the footing's settlement.  553 

Most importantly, the developed MLP model network has been translated into a functional 554 

relationship for easy hand or spreadsheet calculations. It can prove useful in saving the 555 

computational cost associated with intensive numerical simulations. 556 

Limitations and future works557 

Although a wide range of data is utilized to train and validate the developed models, the models 558 

can be further improved by incorporating more data in the future. Moreover, the future research 559 

will also be dedicated in exploiting the deep learning techniques and hybrid ensemble learning 560 
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approach to further increase the reliability of artificial intelligence-based modelling techniques 561 

in predicting the load-settlement behavior of the footing resting on buried conduit within a 562 

sloping ground.  563 

564 



27 

Acknowledgments  565 

This research is jointly funded by Higher Education Commision, Pakistan and Edith Cowan 566 

University, Australia.  567 

568 

569 



28 

Authorship contribution 570 

Muhammad Umer Arif Khan: Writing - review & editing, Finite element modelling, 571 

Problem conceptulization. Sanjay Kumar Shukla: Supervision, Technical 572 

input. Muhammad Nouman Amjad Raja: Writing - review & editing, Statistical analysis, 573 

Validation, Data interpretation.  574 

575 



29 

Compliance with ethical standards: 576 

Conflict of interest: The authors declare that they have no conflict of interest. 577 

Ethical approval: This work does not contain any studies with human participants or animals 578 

performed by any of the authors. 579 

Informed consent: Informed consent was obtained from all individual participants included in 580 

the study. 581 

582 



30 

Data availability statement 583 

Some or all data, models, or code that support the findings of this study are available from the 584 

corresponding author upon reasonable request. 585 

586 

587 



31 

Appendix 588 

Garson’ Algorithm for sensitivity analysis 589 

Garson (1991) proposed a sensitivity analysis for calculating the variable importance as follows: 590 

1. Calculate Gik by multiplying the absolute values of hidden-output weight with the absolute value of 591 

input-hidden weight of each input variable j, that is, ikko ww  . e.g. From table 7 (G11 = -0.9407  -592 

0.5494 = 0.5168) 593 

2.  For each hidden neuron, divide Gik by the sum of all the input variables to obtain Qik: 594 

                (20) 595 

e.g., (Q11 = 0.5168/ (0.5168 + 0.4124 + 0.0518 + 0.0052 + 0.0391 + 0.0154 + 0.0479 + 0.0121) = 596 

0.4694) 597 

3. For each input neuron, obtain Fk as the sum of Qik: 598 


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ikk QF

1

       (21)599 

600 

 e.g., (F11 = 0.4694 + 0.1822 + 0.1684 + 0.0612 + 0.1667 + 0.0588 = 1.1069) 601 

4. Calculate the percentage relative importance (RI) of each variable as follows: 602 

100/
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e.g.,   )4161.04664.05980.06852.08315.00604.09783.09173.01069.1/(1069.1100 IR604 

= 18.449 % 605 

Complete calculations for variable importance are given below: 606 

Gik

0.517 0.412 0.052 0.005 0.039 0.015 0.048 0.012 

0.026 0.027 0.009 0.023 0.011 0.032 0.006 0.007 

0.826 0.528 0.104 1.658 0.451 0.270 0.160 0.906 

3.125 0.735 1.869 6.808 18.606 14.331 2.847 2.680 

0.873 0.582 0.638 0.864 0.421 0.049 1.261 0.550 

0.086 0.167 1.005 0.043 0.050 0.014 0.076 0.016 

Qik

0.4694 0.3746 0.0471 0.0047 0.0355 0.0140 0.0436 0.0110 

0.1823 0.1946 0.0620 0.1608 0.0783 0.2290 0.0414 0.0517 

0.1685 0.1077 0.0213 0.3381 0.0919 0.0550 0.0327 0.1848 

0.0613 0.0144 0.0366 0.1335 0.3648 0.2810 0.0558 0.0525 

0.1667 0.1112 0.1217 0.1649 0.0804 0.0094 0.2407 0.1051 

0.0588 0.1149 0.6896 0.0295 0.0343 0.0096 0.0524 0.0109 

Fk 1.1070 0.9173 0.9783 0.8315 0.6852 0.5980 0.4665 0.4161 

RI 18.45 15.29 16.31 13.86 11.42 9.97 7.77 6.94 
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Table 1. Properties of soils used in the finite element model  816 

Soil 

type 

Total unit 

weight, 
Elastic modulus, 

sE

Friction angle, 


Poisson’s ratio, 

s
Dilation angle, 



(kN/m3) (MPa) (degree) - (degree) 

1S 19.0 17.5 30 0.333 3.4 

2S 19.9 25.0 33 0.313 5.8 

3S 20.5 35.0 36 0.291 8.0 

4S 20.9 50.0 39 0.270 10.0 

5S 21.1 65.0 42 0.249 11.5 
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Table 2. Properties of the different conduit materials used in the finite element model 861 

Conduit material 

Parameter 

innerD t cB EA EI c

m mm m kN/m kNm2/m -

Reinforced concrete 
RC1 2.0 190.5 2.38 5.7 × 106 1.7 × 104 0.3 

RC2 2.0 100.0 2.2 3.0 × 106 2.5 × 103 0.3 

Corrugated steel 
CS1 2.0 60.02 2.12 7.0 × 105 211.5 0.28 

CS2 2.0 32.14 2.06 3.1 × 105 26.7 0.28 

High density polyethylene HDPE 2.0 63.26 2.13 4.2 × 103 1.4 0.46 
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Table 3. Statistical details of various input and output parameters 898 

899 

Parameter Symbol Min Max Mean SD 

Applied pressure (kPa) q 25 100 62.5 27.95 

Constrained modulus of soil (kPa) sM 26217 77855 49502.1 18645.9 

Total unit weight of soil (kN/m3)  19 21.1 20.28 0.76 

Dilation angle of soil (degrees)  0 11.5 

Hoop stiffness of conduit (kPa) HPS 4071 5204291 1808684 1970423

Bending stiffness of conduit (kPa) BPS 8.56  86841 20541.9 33591.1 

Poisson’s ratio of the conduit c 0.28 0.46 

Slope angle ratio /i 0 1 

Burial depth of the conduit Bz / 1 3 2 0.82 

Crest distance of the footing Be / 0 3 1.5 1.11 

Footing settlement (%) Bs /  25.5 0.06 0.706 1.42 

SD: Standard deviation 900 
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902 
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Table 4: Performance and ranking of all the machine learning models in training dataset 904 

Statistical indices 
Network performances in training dataset 

MLP GPR LKS DT RF 

Pearson r 0.977 0.931 0.901 0.92 0.981 

RMSE 0.298 0.5 0.536 0.491 0.273 

NSE 0.937 0.851 0.76 0.831 0.933 

SI 0.31 0.43 0.73 0.74 0.35 

RPD 4.31 3.67 2.31 2.53 3.93 

Partial scores of the models 

MLP GPR LKS DT RF 

Pearson r 4 3 1 2 5 

RMSE 5 2 1 3 4 

NSE 5 3 1 2 4 

SI 5 3 2 1 4 

RPD 5 3 1 2 4 

Total ranking score 24 14 6 10 21 

905 
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907 

908 

Table 5: Performance and ranking of all the machine learning models in testing dataset 909 

910 

911 

912 

913 

914 

915 

916 

917 

918 

919 

920 

921 

922 

923 

Statistical indices 
Network performances in testing dataset

MLP GPR LKS DT RF 

Pearson r 0.974 0.905 0.876 0.87 0.964 

RMSE 0.323 0.518 0.673 0.613 0.349 

NSE 0.928 0.817 0.691 0.743 0.916 

SI 0.44 0.76 1.01 1.04 0.52 

RPD 3.75 2.34 1.8 1.97 3.46 

Partial scores of the models 

MLP GPR LKS DT RF 

Pearson r 5 3 2 1 4 

RMSE 5 3 1 2 4 

NSE 5 3 1 2 4 

SI 5 3 2 1 4 

RPD 5 3 1 2 4 

Total ranking score 25 15 7 8 20 



45 

Table 6: Final ranking of all the proposed machine learning models 924 

Dataset Statistical indices 
Partial ranking scores 

MLP GPR K-star DT RF 

Training 

Pearson r 4 3 1 2 5 

RMSE 4 2 1 3 5 

NSE 5 3 1 2 4 

SI 5 3 2 1 4 

RPD 5 3 1 2 4 

Testing 

Pearson r 5 3 1 2 4 

RMSE 5 2 1 3 4 

NSE 5 3 1 2 4 

SI 5 3 2 1 4 

RPD 5 3 1 2 4 

Total ranking score 48 28 12 20 42 

Final rank 1 3 5 4 2 
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929 

Table 7: Weights and biases of the developed MLP network 930 

931 

932 

933 

934 

935 

936 

937 

938 

939 

940 

941 

942 

943 

944 

945 

946 

947 

948 

949 

950 

951 

Weights of input layer - hidden layer, wik

Hidden layer bias 

k
1 2 3 4 5 6 7 8 

-0.9407 -0.7507 -0.0944 -0.0095 0.0712 -0.0281 -0.0873 -0.0221 -3.617 

0.553 0.5903 0.1881 0.4877 0.2375 0.6948 -0.1255 0.157 -3.561 

1.524 -0.9739 -0.1923 3.059 -0.8318 0.4979 -0.2954 -1.672 -6.715 

-1.978 0.465 1.183 -4.309 11.776 -9.07 1.8021 1.696 12.391 

0.93 -0.62 0.679 0.9196 0.4482 -0.0522 -1.3427 -0.586 -6.419 

-0.0839 -0.164 0.9839 -0.0421 0.0489 0.0137 0.0747 0.0156 -3.277 

Weights of hiden-ouput layer,  wko

Output layer bias 


-0.549 0.0463 0.542 -1.58 -0.939 -1.021 -0.549 0.6951 
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Fig. 1. Large-scale slope model used for the FEM analysis 952 
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Fig. 2. Box and whisker plots of the dataset 970 
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Fig. 3. Research framework employed in the present study 1005 
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Fig. 6. Taylor’s diagram for all the data-driven modelling techniques 1098 
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Fig.7: Time consumption of various approaches 1101 
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Fig. 8. Reliability and robustness analysis of the developed MLP model 1108 
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Fig. 9. Sensitivity analysis according to the Garson’s algorithm of the MLP model 1110 
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