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Abstract

We present an efficient numerical method to approximate the solution of a system of fractional-
order linear semi-explicit differential-algebraic equations with variable coefficients. The method is
based on the use of the direct and inverse fuzzy transforms (F -transforms). By employing this
method, we obtain an analytical approximate solution to the main problem in terms of flexible basic
functions. The nonlocal property of fuzzy transforms helps us to have an efficient method for prob-
lems involving non-singular kernels. The error analysis and convergence evaluation of the method is
demonstrated in detail. We give some examples to illustrate the significant features of the method.

Keywords: Fractional differential equations, differential–algebraic equations, Fuzzy partition, Fuzzy
transforms

1 Introduction

A fractional differential equation (FDE) is a gen-
eralization of an ordinary one with an operator
of a non-integer (fractional) order. The most
important property of fractional operators is that
they consider the entire history of the phenom-
ena. Thus they are excellent tools to describe
the memory and hereditary properties of phe-
nomena and processes. The mathematical models
of real-world problems are fractional-order sys-
tems in general. Some applications of fractional
derivatives in continuum and statistical mechan-
ics are given by Mainardi [9]. In many cases, when
modeling real-world physical problems with hered-
itary effects, the states of the physical systems
have in some ways constraints, for instance, by

conservation laws such as Kirchhoff’s laws in elec-
trical networks, or by position constraints such
as the movement of mass points on a surface.
Then the corresponding mathematical models
contain algebraic equations to describe these con-
straints and the fractional differential equations
that describe the dynamics of the system. Such
systems, comprising of both fractional differen-
tial and algebraic equations, are called fractional
differential-algebraic equations (FDAEs). Thus
DAEs and FDAEs are a natural way to model
dynamical systems subject to constraints and
hereditary effects(see [2]). Recently, fractional-
order differential-algebraic equations have been
studied by researchers in [3, 6, 23, 24]. Most of the
FDAEs do not have exact solutions, then numer-
ical techniques must be used to get approximate
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solutions for these types of equations; however,
the numerical treatment of FDAEs may be more
complicated than the numerical treatment of clas-
sical DAEs. By the authors’ knowledge, there are
only a few numerical methods for solving FDAEs
( for example [6, 18, 24, 26]). So introducing an
efficient numerical method for solving a system
of FDEs is the subject of this paper. In this
study, we are interested in using the technique of
fuzzy transforms (F-transforms) to give a simple
structure and accurate approximate solution to
the following initial value problem for the linear
semi-explicit differential-algebraic equations with
fractional-order and variable coefficients











Dα
0 x(t) = E(t)x(t) + F (t)y(t) +Q1(t),

0 = G(t)x(t) +H(t)y(t) +Q2(t),

x(0) = X0, y(0) = Y0, t ∈ I = [0, b]

(1)

where m ∈ N, α ∈ (0, 1), b > 0, E,F,G,H ∈
C (I,Rm,m), Qj(t) ∈ C (I,Rm) for j = 1, 2,

x(t) = [x1, ..., xm]
T
, y(t) = [y1, ..., ym]

T
, and

X0, Y0 are given as constant vectors. The opera-
tor Dα

0 denotes the fractional operator of order α
in Caputo sense [4, 12]. We also suppose that the
consistency condition

0 = G(0)X0 +H(0)Y0 +Q2(0)

is verified. Irina Perfilieva firstly introduced the
F-transform in 2006 and it received significant
attention because of its strong connection with
real-world problems such as the construction of
approximate models, filtering, solving differen-
tial equations, application in signal processing,
decompression of images, and data compression
[5, 10, 13–16, 19–21]. The approximation prop-
erty of F-transforms and the effect of the shapes
of basic functions on the approximation quality
were described in [1, 13]. One interesting feature
of F-transform is its significant performance in
noisy problems in which the inputs of the problem
possess some disturbing noise. It has been demon-
strated that the F-transform acts as a filter and
removes effectively the noises (see [27]). Another
interesting feature of F-transform is that in con-
trary to the traditional methods, which result
in discrete solutions in the grid points, it gives
continuous and even differentiable solutions. The
approximate solution is as smooth as the basic

functions Ak(x). It means that if we need a smooth
approximation, then we have to utilize the smooth
basic functions. The most important properties of
the F-transforms technique can be summarized as
follow:

• the error bound depends only on the modulus
of continuity of the solution;

• the method is flexible in implementation;
• it gives sufficiently smooth piecewise best
approximation in small support;

• it doesn’t require any starting point or auxiliary
function for starting.

• since the support of basic functions is compact,
the computational cost deceases

• it is as accurate as the most of existing numer-
ical methods.

• it can be generalized to the Fm-transform based
method which is more accurate.

The structure of this contribution is the fol-
lowing: a brief review of F-transforms is given
in Sections 2. The new technique is introduced
in Section 3. The solvability of the correspond-
ing algebraic system is investigated in Section 4.
Illustrative examples are given in the final section.

2 Review of the fuzzy
transforms

The method of fuzzy transforms is a well-known
soft computing method applied to many practical
problems. In this section, we recall some defini-
tions and results from literature that will be used
throughout the paper.

Definition 1 Let [a, b] be an interval on R, n ≥ 2,
and let t1, . . . , tn be fixed nodes within [a, b], such
that a = t1 < . . . < tn = b, t0 = t1, tn+1 = tn.
We say that the fuzzy sets A1, . . . , An, identified with
their membership functions A1(t), . . . , An(t) defined
on [a, b], form a fuzzy partition of [a, b] if they verify
the following conditions for k = 1, . . . , n,

1. Ak : [a, b] → [0, 1] is continuous and Ak(tk) =
1;

2. A1(t) > 0 if t ∈ [t1, t2), Ak(t) > 0 if t ∈
(tk−1, tk+1), An(t) > 0 if t ∈ (tn−1, tn];

3. for all t ∈ [a, b],
∑n

k=1 Ak(t) = 1;
4. for all k = 2, . . . , n, Ak(t) strictly increases on

[tk−1, tk] and for all k = 1, . . . , n − 1 strictly
decreases on [tk, tk+1].
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The membership functions A1, . . . , An are called basic
functions.

Remark 1 A fuzzy partition A1, . . . , An, n ≥ 2,
is called h−uniform, if the nodes t1, . . . , tn are
h−equidistant, i.e., tk = a + h(k − 1), k = 1, . . . , n,
where h = b−a

n−1 , and the following two additional
properties are verified:

1. for all k = 2, . . . , n − 1 and for all t ∈ [0, h],
Ak(tk − t) = Ak(tk + t);

2. for all k = 2, . . . , n − 1 and t ∈ [tk, tk+1],
Ak(t) = Ak−1(t − h) and for all k = 3, . . . , n
and t ∈ [tk−1, tk], Ak(t) = Ak−1(t− h).

The uniform fuzzy partitions constructed by the trian-
gular and sinusoidal membership functions as defined
in Examples 1, 2, are the famous fuzzy partitions for
a given interval [a, b].

Example 1 An h-uniform fuzzy partition A1, . . . , An

by triangular shaped basic functions is defined by

Ak(t) =











t−tk−1

h , t ∈ [tk−1, tk],
tk+1−t

h , t ∈ [tk, tk+1],

0, t /∈ [tk−1, tk+1],

(2)

for k = 1, . . . , n, where t0 = t1, tn+1 = tn. This
partition illustrated in Fig. 1 for the interval [0, 1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1 A uniform fuzzy partition of [0, 1] by triangular
membership function.

Example 2 An h-uniform fuzzy partition A1, . . . , An

by sinusoidal shaped basic functions is defined by

Ak(t) =

{

1
2 (cos

π
h (t− tk) + 1), t ∈ [tk−1, tk+1],

0, o.w.

(3)
for k = 1, . . . , n, where t0 = t1, tn+1 = tn. See Fig.
2 for the illustration of this partition.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2 A uniform fuzzy partition of [0, 1] by sinusoidal
membership function.

Definition 2 (Direct F-transform). Let A1, . . . , An

be basic functions, which form a fuzzy partition of
[a, b], and f be any continuous function on [a, b]. The
n-tuple [F1(f), . . . ,Fn(f)] of real numbers with the
components given by

Fk(f) =

∫ b
a
f(t)Ak(t)dt
∫ b
a
Ak(t)dt

, k = 1, . . . , n,

is called the F-transform of f with respect to
A1, . . . , An, and is denoted by F(f).

Definition 3 Let f : [a, b] → R be a given function,
and let [F1(f),F2(f), . . . ,Fn(f)] be the F-transform
of f with respect to A1, . . . , An. The function F−1

f
:

[a, b] → R defined by

F−1
f (t) = f̌n(t) =

n
∑

k=1

Fk(f)Ak(t),

is called the inverse F-transform of f .

Remark 2 (see[8, 17]) Let f be a twice differentiable
function on [a, b] and A1, . . . , An be basic functions
which form a fuzzy partition of [a, b]. Then for each
k = 1, . . . , n, by applying the trapezoidal rule with
the nodes tk−1, tk, tk+1 to numeric integration of
1
h

∫ tk+1

tk−1
f(t)Ak(t)dt, we obtain

Fk(f) = f(tk)−
h2

12
f ′′(µ), µ ∈ (tk−1, tk+1).

Therefore Fk(f) = f(tk) +O(h2).

The following results hold true for the F-
transform of f (see[11]):

(A) Let f be a given continuous function on [a, b].
Then the kth component of the F-transform of
f minimizes the function

φk(y) =

∫ b

a

(f(t)− y)2Ak(t)dt
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on R.
(B) F is linear; i.e., for all f, g ∈ C[a, b], and for all

α, β ∈ R,

F(αf + βg) = αF(f) + βF(g).

We are now ready to give two theorems that play
crucial roles in our discussion.

Theorem 1 (see[25]) Let A1, . . . , An be an
h−uniform fuzzy partition of [a, b]. Let f be a contin-
uous function on [a, b] and f(x) = f̌n(x) + rn(x) =
∑n

k=1 Fk(f)Ak(x)+rn(x). Then r n(x) ≤ λω(f, h) for
x ∈ [a, b], where ω(f, h) is the modulus of continuity
of f and λ is a constant independent of n.

Theorem 2 (see[25]) Let h(t, s) = hs(t) be inte-

grable function on [a, b]2 and g(t) :=
∫ t
a
h(t, s)ds,

and A1, . . . , An be an h−uniform fuzzy partition
of [a, b] with the nodes t1 = a, . . . , tn = b. If
F(hs) = [F1(hs),F2(hs), . . . ,Fn(hs)] and F(g) =
[F1(g),F2(g), . . . ,Fn(g)] are the F-transforms of hs
and g respectively, then

F1(g) =

∫ t2

t1

F1(hsus)ds,

Fk(g) =

∫ tk−1

t1

Fk(hs)ds

+

∫ tk+1

tk−1

Fk(hsus)ds, k = 2, . . . , n− 1

Fn(g) =

∫ tn−1

t1

Fn(hs)ds+

∫ tn

tn−1

Fn(hsus)ds,

in which

us(t) =

{

0, 0 ≤ t < s

1, t ≥ s.

3 The method of fuzzy
transforms

In this section, we employ a numerical method
based on fuzzy transforms to (1). For the conve-
nience of notations and without loss of generality,
we concentrate on the case m = 1 and b = 1.
Recalling the problem with m = 1, we have







Dαx(t) = E(t)x(t) + F (t)y(t) +Q1(t),
0 = G(t)x(t) +H(t)y(t) +Q2(t),

x(0) = X0, y(0) = Y0, t ∈ I = [0, 1],
(4)

where Dα is the Caputo-type fractional derivative
of order α defined as ([4, 12])

Dαx(t) = I1−α(x′(t)),

in which

Iαx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

is the Riemann-Liouville-type fractional integral
operator of order α and Γ(α) denotes the Gamma
function. We will use the following relations

Iα(Dαx(t)) = x(t)− x(0), (5)

Dαtβ =

{

γ(β+1)
Γ(β−α+1) t

k−α, β − α > −1,

0, k = 0.
(6)

We are going to present a new method based
on the F-transform to approximate the solution
of (4). Since H(t) is invertible, without loss of
generality we assume that H(t) = 1. Hence, we
have

Dαx(t) = E(t)x(t)+F (t)(−Q2(t)−G(t)x(t))+Q1(t).
(7)

Let n ∈ N, n ≥ 2 and Ak, k = 1, . . . , n be a uni-
form fuzzy partition of interval [0,1] with the step
size h = 1

n−1 , t1 = 0, tn = 1. We first apply the
operator Iα to both sides of (7). Then using (5)
and linearity of Iα, we obtain

Γ(α)(x(t)− x(0)) =

∫ t

0

(t− s)α−1E(s)x(s)ds

+

∫ t

0

(t− s)α−1K1(s)ds+

∫ t

0

(t− s)α−1K2(s)x(s)ds

+

∫ t

0

(t− s)α−1Q1(s)ds, (8)

where K1(s) = −F (s)Q2(s), K2(s) =
−F (s)G(s). By applying F-transform on both
sides of (8) and Theorem 2, we deduce

Γ(α) (F1(x)−F1(X0)) =

∫ t2

t1

E(s)x(s)P̄1(s)ds

+

∫ t2

t1

K1(s)P̄1(s)ds+

∫ t2

t1

K2(s)x(s)P̄1(s)ds

+

∫ t2

t1

Q1(s)P̄1(s)ds, (9)
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Γ(α) (Fk(x)−Fk(X0)) =

∫ tk−1

t1

E(s)x(s)Pk(s)ds

+

∫ tk+1

tk−1

E(s)x(s)P̄k(s)ds+

∫ tk−1

t1

K1(s)Pk(s)ds

+

∫ tk+1

tk−1

K1(s)P̄k(s)ds+

∫ tk−1

t1

K2(s)x(s)Pk(s)ds

+

∫ tk+1

tk−1

K2(s)x(s)P̄k(s)ds+

∫ tk−1

t1

Q1(s)Pk(s)ds

+

∫ tk+1

tk−1

Q1(s)P̄k(s)ds, (10)

for k = 2, . . . , n− 1, and

Γ(α) (Fn(x)−Fn(X0)) =

∫ tn−1

t1

E(s)x(s)Pn(s)ds

+

∫ tn

tn−1

E(s)x(s)P̄n(s)ds+

∫ tn−1

t1

K1(s)Pn(s)ds

+

∫ tn

tn−1

K1(s)P̄n(s)ds+

∫ tn−1

t1

K2(s)x(s)Pn(s)ds

+

∫ tn

tn−1

K2(s)x(s)P̄n(s)ds+

∫ tn−1

t1

Q1(s)Pn(s)ds

+

∫ tn

tn−1

Q1(s)P̄n(s)ds, (11)

where

Pk(s) =Fk((t− s)α−1) =

∫ tk+1

tk−1
(t− s)α−1Ak(t)dt
∫ tk+1

tk−1
Ak(t)dt

P̄k(s) = Fk

(

(t− s)α−1us(t)
)

=

∫ tk+1

tk−1
(t− s)α−1us(t)Ak(t)dt
∫ tk+1

tk−1
Ak(t)dt

=

∫ tk+1

s
(t− s)α−1Ak(t)dt
∫ tk+1

tk−1
Ak(t)dt

,

k = 1, . . . , n. Using Xk instead of Fk(x) for k =
1, . . . , n and inserting

x(s) = F−1
x (s) + rn(s) = x̌n(s) + rn(s)

=

n
∑

i=1

XiAi(s) + rn(s)

into the equations (9)-(11), we have

Γ(α)(X1 −X0) =
∫ t2

t1

E(s)

n
∑

i=1

XiAi(s)P̄1(s)ds

+

∫ t2

t1

K2(s)

n
∑

i=1

XiAi(s)P̄1(s)ds+

∫ t2

t1

(

K1(s) +Q1(s)
)

P̄1(s)ds

+

∫ t2

t1

(

E(s) +K2(s)
)

P̄1(s)rn(s)ds

= X1

(

∫ t2

t1

(

E(s) +K2(s)
)

A1(s)P̄1(s)ds
)

+X2

(

∫ t2

t1

(E(s) +K2(s))A2(s)P̄1(s)ds
)

+

∫ t2

t1

(

K1(s) +Q1(s)
)

P̄1(s)ds+

∫ t2

t1

(

E(s)

+K2(s)
)

P̄1(s)rn(s)ds,

Γ(α)(Xk −X0) =
∫ tk−1

t1

(

E(s) +K2(s)
)

n
∑

i=1

XiAi(s)Pk(s)ds

+

∫ tk−1

t1

(

K1(s) +Q1(s)
)

Pk(s)ds

+

∫ tk+1

tk−1

(

E(s) +K2(s)
)

n
∑

i=1

XiAi(s)P̄k(s)ds

+

∫ tk+1

tk−1

(

K1(s) +Q1(s)
)

P̄k(s)ds

+

∫ tk−1

t1

(

E(s) +K2(s)
)

Pk(s)rn(s)ds+

∫ tk+1

tk−1

(

E(s) +K2(s)
)

P̄k(s)rn(s)ds

=

k−1
∑

i=1

Xi

∫ tk−1

t1

(

E(s) +K2(s)
)

Ai(s)Pk(s)ds

+

∫ tk−1

t1

(

K1(s) +Q1(s)
)

Pk(s)ds

+

k+1
∑

i=k−1

Xi

∫ tk+1

tk−1

(

E(s) +K2(s)
)

Ai(s)P̄k(s)ds
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+

∫ tk+1

tk−1

(

K1(s) +Q1(s)
)

P̄k(s)ds

+

∫ tk−1

t1

(

E(s) +K2(s)
)

Pk(s)rn(s)ds+

∫ tk+1

tk−1

(

E(s) +K2(s)
)

P̄k(s)rn(s)ds,

for k = 2, . . . , n− 1, and

Γ(α)(Xn −X0) =
∫ tn−1

t1

(

E(s) +K2(s)
)

n
∑

i=1

XiAi(s)Pn(s)ds

+

∫ tn−1

t1

(

K1(s) +Q1(s)
)

Pn(s)ds

+

∫ tn

tn−1

(

E(s) +K2(s)
)

n
∑

i=1

XiAi(s)P̄n(s)ds

+

∫ tn

tn−1

(

K1(s) +Q1(s)
)

P̄n(s)ds

+

∫ tn−1

t1

(

E(s) +K2(s)
)

Pn(s)rn(s)ds+

∫ tn

tn−1

(

E(s) +K2(s)
)

P̄n(s)rn(s)ds

=

n−1
∑

i=1

Xi

∫ tn−1

t1

(

E(s) +K2(s)
)

Ai(s)Pn(s)ds

+

∫ tn−1

t1

(

K1(s) +Q1(s)
)

Pn(s)ds

+

n
∑

i=n−1

Xi

∫ tn

tn−1

(

E(s) +K2(s)
)

Ai(s)P̄n(s)ds

+

∫ tn

tn−1

(

K1(s) +Q1(s)
)

P̄n(s)ds

+

∫ tn−1

t1

(

E(s) +K2(s)
)

Pn(s)rn(s)ds

+

∫ tn

tn−1

(

E(s) +K2(s)
)

P̄n(s)rn(s)ds.

In the matrix form, we have

(I −
1

Γ(α)
M)X =

−1

Γ(α)
(B +R), (12)

where I is the identity matrix, and

X =







X1

...
Xn






, B =







B1

...
Bn






, R =







R1

...
Rn






,

M =



















m11 m12 0 0 . . . 0
m21 m22 m23 0 . . . 0
m31 m32 m33 m34 . . . 0
...

...
...

...
. . .

...
mn−11 mn−12 mn−13 mn−14 . . . mn−1n

mn1 mn2 mn3 mn4 . . . mnn



















in which

mkj =

∫ tk−1

t1

(

E(s) +K2(s)
)

Aj(s)Pk(s)ds,

k = 2, . . . , n, j = 1, . . . , k − 2,

mkk−1 =

∫ tk−1

t1

(

E(s) +K2(s)
)

Ak−1(s)Pk(s)ds

+

∫ tk+1

tk−1

(

E(s) +K2(s)
)

Ak−1(s)P̄k(s)ds,

k = 1, . . . , n− 1,

mkj =

∫ tk+1

tk−1

(

E(s) +K2(s)
)

Aj(s)P̄k(s)ds,

k = 1, . . . , n− 1, j = k, k + 1,

mnn−1 =

∫ tn−1

t1

(

E(s) +K2(s)
)

An−1(s)Pn(s)ds

+

∫ tn

tn−1

(

E(s) +K2(s)
)

An−1(s)P̄n(s)ds,

mnn =

∫ tn

tn−1

(

E(s) +K2(s)
)

An(s)P̄n(s)ds,

and

R1 =−

∫ t2

t1

(

E(s) +K2(s)
)

P̄1(s)rn(s)ds,

Rk =−

∫ tk−1

t1

(

E(s) +K2(s)
)

Pk(s)rn(s)ds

−

∫ tk+1

tk−1

(

E(s) +K2(s)
)

P̄k(s)rn(s)ds,
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k = 2, . . . , n

Rn =−

∫ tn−1

t1

(

E(s) +K2(s)
)

Pn(s)rn(s)ds

−

∫ tn

tn−1

(

E(s) +K2(s)
)

P̄n(s)rn(s)ds,

and

B1 =−

∫ t2

t1

(

K1(s) +Q1(s)
)

P̄1(s)ds−X0Γ(α),

Bk =−

∫ tk−1

t1

(

K1(s) +Q1(s)
)

Pk(s)ds

−

∫ tk+1

tk−1

(

K1(s) +Q1(s)
)

P̄k(s)ds−X0Γ(α),

k = 2, . . . , n

Bn =−

∫ tn−1

t1

(

K1(s) +Q1(s)
)

Pn(s)ds

−

∫ tn

tn−1

(

K1(s) +Q1(s)
)

P̄n(s)ds−X0Γ(α).

We now consider the system

(I −
1

Γ(α)
M)X̂ =

−1

Γ(α)
B. (13)

By solving (13), the unknown values X̂1, . . . , X̂n

are obtained. The solutions of this system,
X̂1, . . . , X̂n, are the approximate values of
X1, . . . , Xn which are the components of
F−transform of x(t). Then the approximate solu-
tion of the problem (1) is given by the inverse
F-transform, i.e.

x̂n(t) =

n
∑

k=1

X̂kAk(t). (14)

4 Solvability and convergence

In this section, we first show that under some suf-
ficient conditions the system (13) is solvable. Then
we investigate the convergence of the approxi-
mate solution to the exact solution of problem
(1). For solvability of the system (13), by apply-
ing the geometric series theorem, it suffices to
show ∥ 1

Γ(α)M∥ < 1. This is done in the following

theorem.

Theorem 3 Let sets Ak, k = 1, . . . , n form a fuzzy
partition to [0, 1] for n ∈ N and M be the matrix given

in the system (13). Let sup
[0,1]

E(s)+K –2˝(s) ≤ C. If C

is sufficiently small, then I − 1
Γ(α)

M is invertible.

Proof We have to compute the norm of the coefficient
matrix M . To do this, we first notice that for k =
2, . . . , n with mn,n+1 = 0, we have

k+1
∑

j=1

| mkj |=

k−1
∑

j=1

|

∫ tk−1

t1

(

E(s) +K2(s)
)

Aj(s)Pk(s)ds |

+

k+1
∑

j=k−1

|

∫ tk+1

tk−1

(

E(s) +K2(s)
)

Aj(s)P̄k(s)ds |

≤

∫ t2

t1

A0(
s− t1

h
) |

(

E(s) +K2(s)
)

Pk(s) | ds

+

k−2
∑

j=2

∫ tj+1

tj−1

A0(
s− tj
h

) |
(

E(s) +K2(s)
)

Pk(s) | ds

+

∫ tk−1

tk−2

A0(
s− tk−1

h
) |

(

E(s) +K2(s)
)

Pk(s) | ds

+

∫ tk

tk−1

A0(
s− tk−1

h
) |

(

E(s) +K2(s)
)

P̄k(s) | ds

+

∫ tk+1

tk−1

A0(
s− tk

h
) |

(

E(s) +K2(s)
)

P̄k(s) | ds

+

∫ tk+1

tk

A0(
s− tk+1

h
) |

(

E(s) +K2(s)
)

P̄k(s) | ds

≤ hC

∫ 1

0
A0(u)Pk(t1 + uh)du

+ hC

k−2
∑

j=2

∫ 1

−1
A0(u)pk(tj + uh)du

+ hC

∫ 0

−1
A0(u)Pk(tk−1 + uh)du

+ hC

∫ 1

0
A0(u)P̄k(tk−1 + uh)du

+ hC

∫ 1

−1
A0(u)P̄k(tk + uh)du+

hC

∫ 0

−1
A0(u)P̄k(tk+1 + uh)du

≤ hC
[

∫ 1

0
Pk(t1 + uh)du+

k−2
∑

j=2

∫ 1

−1
Pk(tj + uh)du

+

∫ 0

−1
Pk(tk−1 + uh)du+

∫ 1

0
P̄k(tk−1 + uh)du+
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∫ 1

−1
P̄k(tk + uh)du+

∫ 0

−1
P̄k(tk+1 + uh)du

]

,

where C is the upper bound of | E(s) +K2(s) |
(

i.e., |
(E(s) +K2(s)) |≤ C, ∀s ∈ [0, 1]

)

. Now, we prove that
∑k−2

j=2

∫ 1
−1 | Pk(tj + uh) | du is bounded:

h

k−2
∑

j=2

Pk(tj + uh) =

h

k−2
∑

j=2

|

∫ tk+1

tk−1
Ak(t)(t− tj − uh)α−1dt

∫ tk+1

tk−1
Ak(t)dt

|

≤ h

k−2
∑

j=2

∫ tk+1

tk−1
A0(

t−tk
h )(t− tj − uh)α−1dt

∫ tk+1

tk−1
A0(

t−tk
h )dt

= h

k−2
∑

j=2

∫ 1
−1 A0(v)(tk + vh− tj − uh)α−1dv

∫ 1
−1 A0(v)dv

≤ hα
k−2
∑

j=2

∫ 1
−1(k − j + v − u)α−1dv

∫ 1
−1 A0(v)dv

= hα
k−2
∑

j=2

∫ 1

−1
(j + v − u)α−1dv

=
hα

α

k−2
∑

j=2

(j − u+ 1)α − (j − u− 1)α. (15)

For j ≥ 2 and −1 ≤ u ≤ 1, using the mean value
theorem there exists −1 < δ < 1 such that

(j − u+ 1)α − (j − u− 1)α

1− (−1)
= α(j − u+ δ)α−1 (16)

From (15), (16) and substituting h = 1
n , we have

h

k−2
∑

j=2

Pk(tj + uh) ≤ 2

k−2
∑

j=2

1

n
(
j − u+ δ

n
)α−1

≤ 2

k−2
∑

j=2

1

n
(
j − u− 1

n
)α−1 ≤ 2

k−2
∑

j=2

1

n
(
j − 2

n
)α−1

= 2

k−4
∑

J=0

1

n
(
J

n
)α−1 ≤ 2

n
∑

J=0

1

n
(
J

n
)α−1

≤ 2

∫ 1

0
xα−1dx =

2

α
. (17)

By a similar calculation, we can prove that

hC

[
∫ 1

0
Pk(t1 + uh)du+

k−2
∑

j=2

∫ 1

−1
pk(tj + uh)du

+

∫ 0

−1
pk(tk−1 + uh)du+

∫ 1

0
P̄k(tk−1 + uh)du

+

∫ 1

−1
P̄k(tk + uh)du+

∫ 0

−1
P̄k(tk+1 + uh)du

]

≤ CC1, (18)

where C1 is a constant independent from n. By (15)
and (18), we conclude

k+1
∑

j=1

m –kj˝ ≤ CC1, (19)

for k = 2, . . . , n. In a similar way, we can show that
there exists a constant C2 such that

m11 +m12 ≤ CC2.

Thus
∥

∥

∥

∥

1

Γ(α)
M

∥

∥

∥

∥

=
1

Γ(α)
∥M∥ =

1

Γ(α)
max
k

n
∑

j=1

| mkj |

≤
1

Γ(α)
Cmax{C1, C2.}

Finally, for sufficiently small C we conclude that
C max{C1,C2}

Γ(α)
< 1 which implies that (I − 1

Γ(α)
M) is

invertible. �

The theorem above guarantees that the system
(13) has a unique solution. At this stage, we intend
to prove the convergence of the proposed method
for Problem (1).

Theorem 4 Assume the hypothesis of Theorem 3. Let
x̂n(t) =

∑n
k=1 X̂kAk(t), where X̂k are the solutions of

the System (13) and x(t) be the exact solution of the
initial value problem (1). Then

lim
n→∞

∥x− x̂n∥ = lim
n→∞

sup
t∈[0,1]

| x(t)− x̂n(t) |= 0.

Proof Let x̌n(t) = F−1
x (t) =

∑n
k=1 XkAk(t) be the

inverse fuzzy transform of x(t), t ∈ [0, 1] and x̂n(t) be
as in (14). Then

| x(t)−x̂n(t) |≤| x(t)−x̌n(t) | + | x̌n(t)−x̂n(t) |, t ∈ [0, 1].

From Theorem 1 we have

lim
n→∞

∥x− x̌n∥ = 0.

On the other hand,

| x̌n(t)− x̂n(t) |≤

n
∑

k=1

| Xk − X̂k | Ak(t), t ∈ [0, 1],

where [X1, . . . , Xn] and [X̂1, . . . , X̂n] are the solutions
of the systems

(I −
1

Γ(α)
M)X =

−1

Γ(α)
(B +R),

and

(I −
1

Γ(α)
M)X̂ =

−1

Γ(α)
B,
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respectively. Hence

(I −
1

Γ(α)
M)(X − X̂) =

−1

Γ(α)
R.

We notice that (I − 1
Γ(α)

M)−1 exists. Thus,

(X − X̂) = −
1

Γ(α)
(I −

1

Γ(α)
M)−1R,

and consequently,
∥

∥

∥
X − X̂

∥

∥

∥
= max

k
| Xk − X̂k |

=

∥

∥

∥

∥

1

Γ(α)
(I −

1

Γ(α)
M)−1

∥

∥

∥

∥

∥R∥ , (20)

where
∥R∥ = max

k
| Rk | .

For k = 2, . . . , n− 1

| Rk |=

| −

∫ tk−1

t1

(

E(s) +K2(s)
)

Pk(s)rn(s)ds

−

∫ tk+1

tk−1

(

E(s) +K2(s)
)

P̄k(s)rn(s)ds |

≤|

∫ tk−1

t1

(

E(s) +K2(s)
)

Pk(s)rn(s)ds |

+ |

∫ tk+1

tk−1

(

E(s) +K2(s)
)

P̄k(s)rn(s)ds |

≤

∫ tk−1

t1

| E(s) +K2(s) || rn(s) | Pk(s)ds

+

∫ tk−1

t1

| E(s) +K2(s) || rn(s) | P̄k(s)ds

≤ C(

∫ tk−1

t1

| rn(s) | Pk(s)ds

+

∫ tk−1

t1

| rn(s) | P̄k(s)ds)

≤ Cλω(x, h)
(

∫ tk−1

t1

Pk(s)ds

+

∫ tk−1

t1

P̄k(s)ds
)

≤ λCĆω(x, h)(kh) ≤ λCĆω(x, h), (21)

where

Ć = max{ max
k∈{2,...,n}

∥

∥

∥

∥

Pk

∥

∥

∥

∥

, max
k∈{1,...,n}

∥

∥

∥

∥

P̄k

∥

∥

∥

∥

},

with ∥Pk∥ = maxt∈[0,1] Pk(t) and ∥P̄k∥ =

maxt∈[0,1] P̄k(t). It is easy to show that Ć is a con-
stant independent of n. In a similar argument, we can
obtain the same upper bound for R1 and Rn. Thus,
(20) and (21) result
∥

∥

∥
X − X̂

∥

∥

∥
≤

1

Γ(α)
λCĆω(x, h)

∥

∥

∥

∥

(I −
1

Γ(α)
M)−1

∥

∥

∥

∥

.

Since limn→∞ ω(x, 1
n ) = 0, by recalling Theorem 3,

we deduce the assertion. �

Table 1 The maximum absolute errors for the Example 3.

α n=11 n=21 n=51
1 7.7000e-04 1.9536e-04 2.6984e-05
0.9 7.2760e-04 1.6495e-04 1.9150e-04
√

2

2
6.7138e-04 1.6754e-04 1.5943e-05

0.5 6.0821e-04 1.3352e-04 5.8022e-05
√

2

5
5.6629e-04 1.3326e-04 2.2273e-05

5 Examples

Example 3 Consider the fractional-order differential-
algebraic equations











Dαx(t) = −x(t) + t4−α

Γ(5−α)
y(t) +Q1(t),

0 = x(t) + (1 + t2)y(t) +Q2(t),

x(0) = 0, t ∈ I = [0, 1]

(22)

where Q1(t) = 0, Q2(t) = −t4Eα,5(−tα) − t2 − 1

and {x(t), y(t)} =
{

t4Eα,5(−tα), 1
}

denotes the set

of exact solutions, in which Eα,β(t) =
∑∞

k=0
tk

Γ(αk+β)

denotes the Mittag-Leffler function of two-parameters.
Now we solve (22) by the method of Section 3,
where we construct the basic functions A1, . . . , An,
as an h-uniform partition of the interval [0,1], by the
triangular-shaped basic functions (2) and form the
system

(I −
1

Γ(α)
M)X̂ =

−B

Γ(α)
(23)

to find the approximations X̂1, . . . , X̂n to X1, . . . , Xn.
Then, by using the inverse F-transform, we get the
approximation

x̂ = F−1
x (t) =

n
∑

k=1

X̂kAk(t),

to the exact solution x(t).
For n = 11(h = 0.1), n = 21(h = 0.02), n =

51(h = 0.01) and different values of α, we report the
maximum values of absolute errors in Table 1. The
plots of these errors are shown in Figs. 3 and 4 for

α =
√
2
5 , n = 11 and n = 51.

Fig. 3 The plots of absolute error for the Example 3(n =
11).
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Fig. 4 The plots of absolute error the Example 3(n = 51).

Table 2 The maximum absolute errors for the Example
4.

α n=11 n=21 n=51
1 1.5987e-02 4.0045e-03 5.0199e-04
0.5 9.8993e-03 6.7818e-03 1.3934e-03
√

3

2
1.4255e-02 3.4441e-03 3.9900e-04

√

3

5
8.5122e-03 2.3331e-03 3.0215e-04

0.09 6.6778e-03 1.5668e-03 2.2932e-04

Example 4 Consider the fractional-order differential-
algebraic equations











Dαx(t) = t
1
2 x(t) + ty(t) +Q1(t),

0 = x(t) + t
1
2 y(t) +Q2(t),

x(0) = 0, t ∈ I = [0, 1]

(24)

where Q1(t) =
Γ(α+3)

2 t2, Q2(t) = 0 and the exact

solution is {x(t), y(t)} =
{

t2+α,−t
3
2
+α

}

. By the same

manner as we described in Example 3, we solve the
system

(I −
1

Γ(α)
M)X̂ =

−B

Γ(α)
, (25)

to find the approximations X̂1, . . . , X̂n to X1, . . . , Xn.
Then, we use the inverse F-transform to find the
approximation

x̂ = F−1
x (t) =

n
∑

k=1

X̂kAk(t),

to the exact solution x(t).
For n = 11(h = 0.1), n = 21(h = 0.02), n =

51(h = 0.01) and different values of α, we report the
maximum values of absolute errors in Table 2. The
plots of these errors are shown in Figs. 5 and 6 for

α =
√
3
2 , n = 51 and n = 101.

Fig. 5 The plots of absolute error for the Example 4(n =
51).

Fig. 6 The plots of absolute error for x(t) in Example
4(n = 101.

6 Conclusion

In this paper, we proposed a numerical method
based on fuzzy transforms for solving the
fractional-order linear semi-explicit differential-
algebraic equations. We discussed the convergence
analysis of the method and investigated the effi-
ciency of the method by some illustrative exam-
ples. The implication of the method is fast and can
be applied to (1) with arbitrary α ∈ (0, 1)(rational
or irrational one). However, some methods are
restricted to only rational cases(see [6]). The
method can be generalized to the problems with
higher order.
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