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A long-standing challenge of content-based image re-
trieval (CBIR) systems is the definition of a suitable
distance function to measure the similarity between
images in an application context which complies with
the human perception of similarity. In this paper, we
present a new family of distance functions, called
attribute concurrence influence distances (AID), which
serve to retrieve images by similarity. These distances
address an important aspect of the psychophysical
notion of similarity in comparisons of images: the effect
of concurrent variations in the values of different image
attributes. The AID functions allow for comparisons of
feature vectors by choosing one of two parameterized
expressions: one targeting weak attribute concurrence
influence and the other for strong concurrence influence.
This paper presents the mathematical definition and
implementation of the AID family for a two-dimensional
feature space and its extension to any dimension. The
composition of the AID family with Lp distance family is
considered to propose a procedure to determine the best
distance for a specific application. Experimental results
involving several sets of medical images demonstrate that,
taking as reference the perception of the specialist in the
field (radiologist), the AID functions perform better than
the general distance functions commonly used in CBIR.
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INTRODUCTION

D igital images, which are present in the
majority of medical systems, serve to sup-

port diagnostic activities. However, for the effec-
tive and suitable use of images, these systems must
include tools for image management, including
fast and effective comparison and retrieval. In the
image analysis environment, the ability to compare
images automatically is important because the
number of stored images is usually very large,

precluding a radiologist from making individual
comparisons of the images in the entire database.
Some groups of radiologists prefer to search in
reference libraries, which are composed of sets of
typical images. However, the possibility of retriev-
ing images containing patient-related information
from specific databases enables the analyst to
make more in-depth analyses, for instance, to
explore and study the patients from a particular
geographic region.
The core of content-based image retrieval

(CBIR) is the use of intrinsic visual features,
which are extracted automatically from the images
to describe them while keeping their most relevant
characteristics. Such features, usually consisting of
numerical values obtained by image-processing
algorithms, are used to compare and index images
and are usually placed together in a feature vector.
Each item of a feature vector is also called an
image attribute. CBIR techniques take advantage
of index structures that use the similarity of
features to speed up the retrieval, doing this
automatically.1,2 In Figure 1, the user places a
query, which is done typically by providing the
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system with an image (query image) from which
features will be extracted. In the similarity query
process, the features of an image are compared
with the features of the images in the database
through an access method that uses a distance
function to measure the degree of similarity
between two images. The identifiers of the selected
images are used to retrieve the set of similar
images from the image database.
An image can be described according to several

descriptors. A descriptor is a sensorial stimulus—
such as shape, color, texture, and spatial position-
ing of objects in the image—, which a human
takes as reference to judge similarity. Attributes
related to specific descriptors can be extracted
from stored images to serve as the basis of the
similarity calculation.
Several works have been conducted to specify

models of image representation. The active ap-
pearance model (AAM) is a statistical generative
model of a certain visual phenomenon. Consider-
ing images, AAM is a model for the shape and
gray-level distribution of the image. Matching to
an image involves finding model parameters,
which minimize the difference between the image
and a synthesized model example, projected into
the image.3 The image is decomposed into local
regions which are represented, for instance, by a
texture descriptor.4 The match is obtained after a
few iterations, but the potentially large number of
parameters makes this a difficult problem. It is

often used for object recognition (face, for
instance) and can be potentially used to generate
feature vectors that represent the image in the
context of a perceptual study.5

The most common types of query based on
image similarity are k-nearest neighbor and range
queries. A k-nearest neighbor query involves
searching for the k most similar images to the
reference one. A range query consists of searching
for all images similar to the reference one up to a
given degree (radius or range).
The medical image domain is often considered

one of the fields that can benefit the most from the
application of CBIR.6 The use of CBIR techniques
applied to medical images eliminates a strong
constraint of picture archiving and communication
systems (PACS), as searching for stored images
with CBIR does not require these images to be
linked to a patient or exam identifier, allowing for
direct image-to-image comparisons. By enabling
the physician to use a system that searches for
similar cases based on a reference image, CBIR
systems help decision-making and generate oppor-
tunities for more accurate diagnoses. On the other
hand, concurrent with the evolution of digital
imaging, electronic clinical patient records have
become commonplace in healthcare centers. The
possibility of handling images and related data
allows for the development of tools for computer-
aided diagnosis (CAD) and increases the quality of
the radiologist’s tasks.7–11 In several applications,

Fig 1. Example of a CBIR environment.
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combining textual (semantic) and intrinsic (syntac-
tic) information can lead to consistent and valuable
results.12,13 The development of efficient methods
to deal with intrinsic features and to perform
similarity comparisons is crucial to the achieve-
ment of such results.
Several works have focused on adding CBIR

functionalities to medical decision systems,6,14–18

but none of them has tackled the problem of
analyzing the concurrent variation of features with
a view to keeping the perceptual notion of
similarity as the specialists understand it.
Projects and researches involving CBIR meth-

ods and their evolution have come up against a
long-standing challenge: the so-called semantic
gap, i.e., the discrepancy between the results of
automated methods and the users’ expectations.
The semantic gap in the field of medical images
arises from the difficulty in covering the diversity
of circumstances related to image analysis. For
instance, a physician analyzing a given image
could be involved in several contexts for various
diagnostic purposes, which might not be covered
suitably by the available methods. To minimize
this drawback, an approach that has often been
adopted is the delimitation of very specific con-
texts when defining CBIR methods.
However, although it encompasses specific or

wide contexts, the similarity between images can
be measured in several ways. The numerical
representation and comparison of images by means
of their feature vectors and distance functions
requires the implementation of extensive sets of
image descriptors and distance functions, followed
by studies that indicate the best ones for each
specific analytical context.
Thus, once the methods for feature extraction

are defined, faithfully representing the image
descriptors, it is fundamental to define distance
functions that are able to reduce the semantic gap
by providing the closest approximation between
computerized image comparisons and similarity
evaluations by the human analyst.
The work reported in this paper consisted of an

original study to reduce the semantic gap con-
cerning medical images through the definition of
suitable distance functions, taking into account the
influence of concurrent variations in the values of
the different attributes represented in the feature
vectors. The result of this study was the mathe-
matical definition and implementation of a new

family of distance functions. Our experiments show
that, in some contexts of medical image analysis,
the results provided by these functions are closer to
the radiologist’s findings than those provided by the
traditional, most commonly used distance func-
tions. A method was proposed and tested for com-
parative evaluations to identify the nature of the
influence of attribute variations and, hence, the most
suitable distance functions for different contexts.
The remainder of this paper is structured as

follows. The “Background on Distance Functions”
section gives brief background information about
distance functions. The “Proposed Method: Attri-
bute Concurrence Influence Distance—Aid Family”
section presents the newly proposed distance
functions. The “Experiments and Results” section
discusses the experiments conducted to corroborate
the effectiveness of the proposed functions, and the
“Discussion and Conclusions” section concludes
the paper.

BACKGROUND ON DISTANCE FUNCTIONS

A computational system that controls the storage
and retrieval of images by content must have three
main, strongly integrated components, which are:

(a) a set of image feature extractors—which pro-
vide the features employed to compare images;

(b) a set of comparative methods making use
of distance functions compatible with the
features—which compute the degree of simi-
larity between images;

(c) one or more index structures—which are em-
ployed to efficiently process the similarity
queries between images.

A feature extractor is an algorithm responsible
for making a low level analysis of the image
content, calculating local properties, and generat-
ing a generic signature (or feature vector) of the
image. CBIR systems usually have a set of
different extractors, each one responsible for
generating a distinct signature related to a different
original image descriptor.
Index methods such as the metric access

methods (MAM) create and organize the image
signatures hierarchically, serving to process simi-
larity queries.19,20 In an image database, a specific
index tree is built for each type of feature vector and
each comparative method. This mechanism allows
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for the effective retrieval of information from image
databases, following user-defined parameters.
Comparative methods are procedures that define

how signatures are compared to find the distance
between images. The mathematical formulation
used by each method to compare the features is the
distance function.21–23 If the dissimilarity is equal
to zero, the data items are the same (i.e., the most
similar possible) and, as the distance value grows,
so does the dissimilarity between them. Table 1
presents the mathematical expressions of distance
functions most commonly used in CBIR.24–26

The Minkowski family of distances is based on
the Lp norm.25 According to the value of p,
specific functions are obtained, such as:

p=1 city block or Manhattan distance (L1)
p=2 Euclidean distance (L2)
p=∞ infinity or Chebychev distance (L1).

The Euclidean distance is the most well-known
and commonly used distance function. It defines
the geometric place of all points equidistant from
the point representing the query object, i.e., in two-
dimensional space, it is a circumference centered
at the query object. The L1 distance, on the other
hand, defines the geometric place of all points that
have the same value of the sum of absolute
differences of each attribute, whereas L1 can be
approximated by the maximal difference of attri-
butes. The regions where objects at the same
distance from the reference object are placed,
considering the most common Minkowski distan-

ces, are shown in Figure 2, for the positive two-
dimensional axis.
The choice of a distance function depends on

several characteristics of the related system, such
as: (a) the descriptors to be used, (b) the statistical
nature of the context, (c) the data types of each
attribute, (d) the preprocessing procedure to be
applied to data, and (e) the semantic particularities
presented by the environment.
The literature contains several works on the

definition and use of new distance functions, most
of them focusing on specific applications or contexts.
Among these distances are: Mahalanobis distance,27

Kullback–Leibler and Jeffrey divergences,22 χ2

measure,22,28 cosine distance,29 quadratic distance,30

histogram intersection,29 contrast model,31,32

perception-based distance,33 Bhattacharyya dis-
tance,34 and Hellinger distance.28 Reference reviews
and evaluates the most commonly used distance
functions.35 Descriptions are given of comparative
methods developed specifically to compute the
retrieval of similar medical images.

PROPOSED METHOD: ATTRIBUTE
CONCURRENCE INFLUENCE
DISTANCE—AID FAMILY

The choice of an appropriate distance function is
crucial for effective similarity-based comparisons

Table 1. Distance Functions

Considering two objects (images) Q and C represented by vectors q=(q1,
q2, ..., qn) and c=(c1, c2, ..., cn)

Minkowski distance (Lp) d Q ;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ci � qij jpp

s

City block (L1) d Q ;Cð Þ ¼ Pn
i¼1

ci � qij j

Euclidian (L2) d Q ;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ci � qij j22

s

Infinity (L1) d Q ;Cð Þ ¼ maxni¼1 ci � qij jp

Weighted d Q ;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

wi ci � qið Þj jpp

s

Mahalanobis distance dMH Q ;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � qð ÞT V �1 c � qð Þ

q

Jeffrey divergence dJ Q ;Cð Þ ¼ Pn
i¼1

ci log ci
mi
þ qi log

qi
mi

χ2 distance dx2 Q ;Cð Þ ¼ Pn
i¼1

ci�mið Þ2
mi

where : mi ¼ ciþqi
2

Fig 2. Geometric equidistant places defined by different
values of p, considering a two-dimensional space (only the first
quadrant is shown).
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between images. Even considering that the attri-
butes (features) are independent of each other, an
important question that should be considered in the
process of image comparison is: How do these
attributes affect the human perception of similarity
when their values vary concurrently? In other
words, if images Q and C1 present a major
difference in only one attribute and images Q and
C2 present minor differences but in more than one
attribute, which image, C1 or C2, will be consid-
ered more similar to image Q? In short, how do
simultaneous variations in attributes affect the
human judgment of similarity?
To identify the best way to combine the

attributes that represent the image and thus achieve
the most perceptual results, this work investigates
distance functions that consider the effects of the
concurrent variations of these attributes. Our goal
is to answer this question for specific contexts and
purposes through the definition of a family of
distance functions—attribute concurrence influ-
ence distances (AID)—which allow the user to
establish parameters and adjust the influence of
attribute concurrence, leading to an approximation
of human perception and thereby reducing the
semantic gap.

Concepts of Attribute Concurrence Influence

For the sake of clarity, we begin our discussion
with two-dimensional feature vectors (attributes x
and y). Later, we will extend the feature space to
any dimension.

Definition 1: Considering two images that are
being compared, attribute concur-
rence (AC) is the proportion of the
variation of the attribute values
obtained from the respective feature
vectors.

AC Q;Cð Þ ¼ min qx � cxj j; qy � cy
�� ��� �

max qx � cxj j; qy � cy
�� ��� � ð1Þ

where Q and C are the images being compared
with feature vectors q=(qx, qy) and c=(cx, cy).
This concept is illustrated in Figure 3, over a

unitary spatial grid showing attributes x and y, and
considering four images, Q, C1, C2, and C3.
Images Q and C1 present the same values of

differences of attributes x and y (AC=1=maxi-
mum), whereas images Q and C2 present a
difference of attribute x three times that of attribute
y (AC=0.33), and images Q and C3 present
differences only for attribute x (AC=0=minimum).
How does a person perceive variations in

similarity when two images present high (near 1)
or low (near 0) values of AC? We will see that it
depends on the features and on the context.
Definition 2: Attribute concurrence influence

(ACI) is the effect of AC on the
human perception of similarity. In
some contexts, high values of AC
lead to a perceptual effect of high
dissimilarity, in which case we say
that the ACI is strong. In contexts
where high values of AC lead to a
perceptual effect of low dissimilar-
ity, we say that the ACI is weak.

Let us see an example of these effects by
comparing images of uniform colors. Consider
the values of red, green, and blue (RGB) compo-
nents of the color as the attributes that will
represent the images having 8 bits of quantization
(256 levels). Image Q is composed of RGB values
(130, 30, 30), whereas image C1 is (130, 110, 110)
and image C2 is (130, 130, 30). In the G–B space,
the pair (Q, C1) presents a high value of AC (=1,
considering attributes G and B), whereas the pair
(Q, C2) presents no AC (=0, difference only in
attribute G). With some tests concerning the
human analysis of boards consisting of different
uniform colors, we could conclude that this kind of

Fig 3. Degrees of AC.
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color comparison occurs in a context of weak ACI,
once the person considers that the (Q, C2) image
pair presents greater dissimilarity than the (Q, C1)
pair. In other words, variations in only one
attribute make the images more distant than
variations in two attributes, so we can say that
the concurrence influence is weak. In this context
of comparison, a distance function that considers
the weak ACI will produce better results than a
distance function that considers the strong ACI or
one that does not consider the ACI.

Proposed Distances

To deal with weak and strong concurrence in-
fluence, we propose two families of distance func-
tions: weak attribute concurrence influence distances
(WAID) and strong attribute concurrence influence
distances (SAID). Still considering two attributes,
both families, in this proposal, are represented by
polynomials of degree 2 that define the geometric
place of the objects at the same distance from a
reference one. In Figure 4, all the points on the
WAID curve are at a distance dw from Q, whereas
all the points on the SAID curve are at a distance ds
from Q. Taking point C, if we decide to work with
WAID, its distance from Q (dw) will be smaller than
the distance where we work with SAID (ds).
The use of WAID considers that objects with

high values of AC are closer, whereas the use of

SAID considers these objects as more distant. Thus,
WAID is designed to compare objects in contexts
where ACI is weak, and SAID is designed to
compare objects in contexts where ACI is strong.
Again analyzing Figure 4, points Q and C present a
high value of AC. In a context where ACI is weak,
the distance between Q and C should be small (dw
of WAID); and in a context where ACI is weak,
the distance should be high (ds of SAID).
In this section, the curves are described only in a

qualitative way. The formal mathematical definition
is build up in the “General Expression of SAID and
WAID” section.

Degree of Attribute Concurrence Influence

To quantify and control the effect of ACI, we
define a parameter n that represents the degree of
concurrence influence and determines the elonga-
tion of the curves. This leads to a family of curves
for WAID and another family for SAID. Figure 5
gives examples of curves for SAID and WAID
families.
As a rule of thumb, the stronger the ACI the

higher the value of n of the most suitable curve for
SAID. In contrast, the weaker the ACI the higher
the value of n of the most suitable curve for
WAID.

General Expression of SAID and WAID

To simplify the notation, in this section, we call
|qx−cx| x and |qy−cy| y; in other words, x and y are
now attribute differences. Considering the first
octant, x is always greater than y.
Considering the definitions proposed in the

“Proposed Distances” section, the AID families
can be described by mathematical functions of
degree 2. The equations related to these functions
depends on the values of n. Thus, each curve
shown in Figure 5 will have a specific equation.

SAID Family

To determine the quadratic expression of the
SAID family, considering y= f (x) a polynomial, we
use the following constraints (shown in Fig. 6):

� x=ds→y=f (ds)=0 (the point where the curve
intercepts the x-axis is the value of the
distance)

Fig 4. WAID and SAID curves. Only the first octant (||qx−
cx||>>||qy−cy||) is represented. In the other octants, the identity
lines mirror the curves.
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� x=ds/n→y= f (ds/n)=ds/n (the elongation of
the curve can be defined as the proportion
between the point where the curve intercepts
the x-axis and the point where the curve
intercepts the identity line. Thus, if the
elongation is n, then the x coordinate of the

point where the curve intercepts the identity
line is ds/n)

� f ′(ds/n)=0 ( f is maximum at ds/n)

where ds is the value of the SAID distance defined
for all the points on the curve (Fig. 4) and n is the

Fig 5. Degree of ACI—geometric place of points located at distance d for different values of n: a SAID family, b WAID family.
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degree of concurrence influence (elongation of the
curve) (Fig. 5).
With these constraints, we can determine the

value of ds as follows:

ds ¼
y n� 1ð Þ2 � 2xþ n� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 � 4xyþ y2 n� 1ð Þ2

q
2 n� 2ð Þ

for n > 2

ð2Þ
WAID Family

To determine the quadratic expression of theWAID
family, considering y=f (x) a polynomial of degree 2,
we use the following constraints (shown in Fig. 7):

� x=dw→y=f (dw)=0 (the point where the curve
intercepts the x-axis is the value of the distance)

� x=n dw→y= f (n dw)=n dw (n is the elongation
of the curve)

� f ′(n dw)=1 (f tangent to identity at n dw)

where dw is the value of the WAID distance
defined for all the points on the curve (Fig. 4) and
n is the degree of concurrence influence (Fig. 5).
With these constraints, we can determine the

value of dw as follows:

dw ¼
n� 1ð Þ2 x� yð Þ þ 2nxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ2 x� yð Þ þ 2nx

� �2
� 4n2x2

r

2n2

ð3Þ

Extending AID to any Dimension of the Feature
Space

The expressions of the distances ds and dw were
determined in the “General Expression of SAID
and WAID” section for the families SAID and
WAID, considering feature vectors with only two
attributes. Now, we extend those expressions to

any dimension, simplifying them by using L1 and
L1 distances.
In expressions 2 and 3, to compute the distance

between two images, the variable x represents the
difference |qx−cx| in the values of one attribute and
y represents the difference |qy−cy| in the values of
the other attribute. In addition, x represents the
maximum difference. If there are more than two
attributes, we should analyze the interaction
between x (the maximum attribute difference) and
each of the other attributes in a separate plane, and
then join them in a final expression. To do this, L1
and L1 can be very helpful:

L1 ¼ x ¼ max attrib ð4Þ

L1 ¼
X

all attribs ð5Þ

where attrib represents the difference of values of a
given attribute for two images that are being compared.

Extending SAID family

SAID presents a behavior that is similar to L1, i.e.,
the attributes are summed to compose the final
distance. Thus, to determine the SAID distance, y
will be replaced by the sum of the other attributes
(all the attributes, excluding x) values:

y ¼ sum other attribs

¼
X

all attribs�max attrib ð6Þ

Fig 6. Conditions to determine the general expression of SAID
family.

Fig 7. Conditions to determine the general expression of
WAID family.
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Thus,

y ¼ L1 � L1 ð7Þ
Now, replacing the values of x (Eq. 4) and y

(Eq. 7) in expression 2, we determine the SAID

distance between two objects in a multidimension-
al space, as a function of L1, L∞ and n:

ds ¼
L1 � L1ð Þ n� 1ð Þ2 � 2L1 þ n� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L21 � 4L1 L1 � L1ð Þ þ L1 � L1ð Þ2 n� 1ð Þ2

q
2 n� 2ð Þ ð8Þ

Extending WAID family

Analyzing the relationship between x and each
of the other attributes, we will take the value of the
average to determine the final distance. To do this,
y will be replaced by the average of the values of
all the attributes, excluding x:

y ¼ ave other attribs

¼
X

all attribs �max attrib
� �.

dim�1ð Þ ð9Þ

where dim is the total number of attributes
Thus,

y ¼ L1 � L1ð Þ= dim�1ð Þ ð10Þ
Now, replacing the values of x (Eq. 4) and y

(Eq. 10) in expression 3, we determine the WAID
distance between two objects in a multidimension-
al space, as a function of L1, L∞, n and dim:

dw ¼
n� 1ð Þ2 L1 � L1 � L1ð Þ= dim�1ð Þð Þ þ 2nL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ2 L1 � L1 � L1ð Þ= dim�1ð Þð Þ þ 2nL1

� �2
� 4n2L21

r

2n2

ð11Þ

Composing AID with Lp

Analyzing the behavior of L1, L2, and L1
distances, we can see that they present differences
in AC. In Figure 8, both points C1 and C3 present
AC=1, whereas point C2 presents AC=0. Using
L2, the distances from C1 and C3 to Q are r1 and r3.
As for point C1 (AC=1), if we choose L1, the
distance from C1 to Q is r, which is larger than r1.
Thus, L1 considers point C1 farther from Q than L2
does. Concerning point C3 (AC=1), if we choose
L1, the distance from C3 to Q is r, which is smaller
than r3. Thus, L1 considers point C3 closer to Q
than L2 does. As for point C2 (AC=0), regardless
of the distance we choose (L1, L2, or L1), the
distance from C2 to Q is the same (r). The largest
difference in L1, L2, and L1 occurs in the identity
line (AC=1), which decreases in the direction of
the axes until it becomes zero over the axes (AC=
0). Taking L2 as reference and considering that L1 Fig 8. Comparison of L1, L2, and L1.
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places the points with high AC at a greater
distance, we can say that L1 is appropriate for
contexts where ACI is strong. On the other hand,
considering that L1 places the points with high
AC at a lesser distance, we can say that L1 is
appropriate for contexts where ACI is weak.
However, the use of the Lp norm has the fol-

lowing drawbacks: (1) It is restricted to a specific
space region; (2) L1 and L1 are linear in terms of
the proportion of attribute variation; (3) L1 is not
suitable for comparing images, as it considers as
equal objects those that present high values of
dissimilarity in different attributes.
The SAID and WAID families can compose

with the Lp family to cover the whole feature
space, as shown in Figure 9. The upper bound of
SAID is L1 (SAID with n=2) and the lower bound
of WAID is L1 (WAID with n=1). In fact, the Lp
family is not limited by L1, for it can continue in
the lower region with values of p smaller than 1,
but these functions do not reflect attribute interac-
tion, as the variations that they present along their
curves are not consistent with this approach.
The composition of Lp and AID families

engenders a scope of distances (which can be

extended by varying the parameter n) that allow
the AC to be evaluated and quantified precisely for
any context. Based on this reasoning, we can
determine the distance function (Fig. 10) that best
provides the value of perceptual dissimilarity
between two objects in that context.

Determining the Best Perceptually Fitted
Distance Function

Given the AID and Lp families of distance
functions, we define a two-step procedure to
determine the best distance for a specific application,
as follows:

Step 1: Determine the ACI. With a set of training
images, similarity tests with the distances
SAID (n=3), L1, L2, L1, and WAID (n=3)
are run. Analyze the results of each
distance and compare them to the results
of evaluations by human specialists. With
the best distance function obtained for this
context, determine the ACI. If SAID (n=3)
is the most suitable, then we have a strong
AC context. If WAID (n=3) is the best

Fig 9. Composition of Lp and AID.
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choice, considering the human specialists,
then we have a weak AC context. If one of
the Lp distances is the best, we have an in-
termediate concurrence influence context.

Step 2: Determine the degree of ACI and the best
distance function. If the concurrence influ-
ence is intermediate, then the best distance
function is the one that achieved the best
results in step 1. If the concurrence influ-
ence is strong, we conduct new tests with
SAID considering different values of n to
determine the best one. We carry out the
same procedure with WAID if the con-
currence influence is weak.

This procedure identifies the best perceptual
distance function for a specific context, as we will
show in the experiments below.

EXPERIMENTS AND RESULTS

In this section, we describe three experiments
dealing with different medical images represented
by different descriptors. For each context, we took
similarity results obtained with the distance func-
tions of families Lp and AID and compared them
with results obtained from humans (radiologists) to
determine the ACI and then the distance function
that best fits the human judgment.

The process of feature extraction was carried out
using a CBIR tool, developed by us, which can
extract several features related to texture (homoge-
neity, variance, energy, entropy, Wavelets, and
histogram gradient), color (conventional and metric
histograms), and shape (Zernike moments, Fourier
transform, and geometric features). In addition, this
tool can apply similarity retrieval in image databases.
The user can choose a distance function, a set of
descriptors, an image database, and a reference
image, and see results of k-nearest neighbors.
The images used in the experiments were

produced in the Radiology Department of the
School Hospital (HC-FMRP) of University of
São Paulo at Ribeirão Preto, Brazil. They are
stored in the Center of Image Sciences and
Medical Physics of the Medicine School of
University of São Paulo.

Perceptual Similarity of Texture for Medical
Images

In this experiment, we used a set of 30 images that
consist of regions of interest (ROIs) extracted from
medical images of magnetic resonance, computer-
ized tomography, and mammography (Fig. 11). The
tomography images were obtained from a Siemens
equipment (Magneton Vision, 1.5 Tesla).
Each ROI in this set of images is a uniform

sample of some body tissue: brain, breast, lung,
bone, liver. The idea behind this experiment is to
evaluate the perception of similarity of the human
specialist about texture, disregarding a specific task
or a specific class of images, considering only his/
her notion of spatial distribution of gray points in
each image. Texture is an abstract concept related to
the effect of that spatial distribution on the human
perception. This effect produces the notion of
dissimilarity between images, regarding texture.
Five radiologists (R1, R2, R3, R4, and R5) from

HC-FMRP were asked to rank the images in order
of similarity with a given reference image, com-
paring the texture in the images. They were asked
to pay attention just to the gray distribution on the
images without considering the images’ modality
or the body region they were acquired from.
We then used the CBIR tool to obtain the tex-

ture features employed to ask for the k-nearest
neighbors of the same reference image. The texture
descriptors used were uniformity and homogeneity,36

extracted from the corresponding cooccurrence

Fig 10. Variations of distance between C and Q using the
distance functions of Lp and AID families represented in the first
octant of 2-D space.
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matrix. The techniques that were used to pre-
process the images is described by Felipe.35 The
k-nearest neighbor queries were executed for each
distance function of the families AID and Lp
as described in step 1 of the method presented in
the “Determining the Best Perceptually Fitted
Distance Function” section. The algorithm also
employed k=30 to identify the rank of the images
considering each image of the database. The choice
of a small image set was made to enable the
physicians to manually rank the images by
similarity.
Each sequence ranked by the radiologists was

then compared with the results of each distance
function. To analyze the results and evaluate the
conformity of the automatic sequences to each
radiologist’s sequence, we calculated the sequence
conformity degree (CD) as follows:

� divide the sequences under comparison into
subsequences of k images;

� count the number “num” of images present
simultaneously in both subsequences (provid-
ed by the radiologist and by the distance
function);

� vary k from 2 to 29 and calculate CD(k)=
num/k;

� calculate the final sequence CD as the average
of CD(k).

Under a probabilistic analysis, we can consider
that a CD value of 0.50 is the result of a random
process. Thus, a distance function must produce a
sequence CD value higher than 0.50 to be
considered effective. This kind of consideration is
valid and often used in the analysis of receiver
operating characteristic (ROC) curves.

To calculate the accuracy of each distance
function as parameter of conformity with a specific
radiologist, we define precision as follows:

precision ¼ CD� 0:50

0:50
ð12Þ

Figure 12 presents the plots of the precision
achieved with each distance function, considering
each radiologist. Table 2 presents these values of
precision and the gain of average precision for
each distance function, taking as reference the L2
function, which is the most often used one.
An analysis of the curves reveals that despite the

large variation in the results of the human special-
ists, the SAID function consistently reached the
best precision for all of them. It indicates that this
kind of context is characterized by strong ACI.
From Table 2, we can see that SAID (n=3) reached
an average precision of 0.49, against WAID (n=3)
with an average precision of 0.37. Taking L2 as
reference, we can see that WAID (n=3) presents a
loss of 18.6% in precision, whereas SAID (n=3)
presents a gain of 8.7%.
In step 2 of the approach, we applied SAID with

different values of n to determine its best value.
Figure 13 presents the resulting curves for some
values of n varying from 3 to 15.
Analyzing the curves, we can see that n=3 and

n=4 present similar performances, whereas the
performance is reduced at values higher than 4.
Thus, our experiments lead us to conclude that,
when these descriptors are used to represent the
image texture, the best distance function is SAID
with n=3.
There is an important remark regarding these

results: a huge variability between the results for

Fig 11. Samples of images from the set of tests with texture attributes.
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each radiologist. These differences occur because
of the way the analysis was conducted where the
radiologist compared the images only attempting
to their intrinsic texture effect without following
any analysis pattern. In spite of this variability, it is
important to observe that the performances of all
functions are the same for all radiologists. In the
“Similarity of Medical Images Based on Wavelets
and Histogram Gradient Descriptors” section, we
describe an experiment based on the radiologist
diagnosis.
After this, to work with four features, we added

two new texture attributes to the experiment:
variance and entropy, which are also obtained
from the cooccurrence image matrix. The results
reached in step 1 are shown in Figure 14.
The values of average precision for this ex-

periment were: WAID=0.37, L1=0.45, L2=0.45,
L1=0.47, and SAID=0.47. Analyzing these values,
we see that in this context and with these
attributes, the differences in precision of all
functions are similar and not expressive. The best
precision is reached by L1 and SAID with n=3
functions, which leads to the same average
performance. To study the performance of other
values of n, we executed step 2 varying n from 3 to
15, and found that for n values higher than 3,
SAID does not generate better results.

Similarity of Medical Images Based
on Region Segmentation

This experiment was aimed at evaluating the
ability of the distance functions to discriminate
images from different regions of the human body.
We used a medical image database with 704
magnetic resonance images, separated into 8 clas-
ses: axial head, coronal head, sagittal head, axial
pelvis, axial abdomen, coronal abdomen, angio-
gram, and sagittal spine. These classes were
predefined by the exam categories.
To analyze the results and to evaluate the

efficacy of the distance functions, the well-known
concepts of precision and recall were applied.37 A

Table 2. Values of Precision in Evaluating the Accuracy
of Distances

Radiologist WAID (n=3) L1 L2 L1 SAID (n=3)

R1 0.45 0.50 0.51 0.52 0.55
R2 0.38 0.48 0.49 0.51 0.53
R3 0.35 0.41 0.48 0.49 0.53
R4 0.32 0.40 0.40 0.40 0.45
R5 0.32 0.32 0.37 0.37 0.39
Average 0.37 0.42 0.45 0.46 0.49
Gain % (ref=L2) −18.6 −6.4 0.0 2.0 8.7

Fig 12. Curves of precision in evaluating the accuracy of distances. Each curve corresponds to the results of one radiologist (R1 to R5).
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rule of thumb in analyzing such curves is that the
closer to the top the better the method. The curves
were plotted using the average of the precision and
recall values in 20 queries.
Each image was segmented into five regions

employing a stochastic approach based on EM/

MPM.38 This number of regions is determined by
the calibration of the algorithm based on the search
for distinct and significant regions. Six features
were extracted from each region: the fractal
dimension, the x and y coordinates of the center
of mass, the mass, the average gray level, and the

Fig 14. Precision of four texture attributes.

Fig 13. Precision in determining the best function regarding parameter n (the five radiologists were considered).
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linear coefficient of the fitting line used to obtain
the fractal dimension. Therefore, for each image, a
feature vector consisting of 30 attributes was
defined.
k-nearest neighbor queries were executed taking

sampled images randomly from all classes as
reference and using the distance functions of
families AID and Lp. Individual precision and
recall values were calculated and the averages of
all classes were used to generate precision vs recall
curves for each distance function. Figure 15 shows
these curves.
In Figure 15 we can see that the best graph was

provided by SAID. For a value of recall of 0.50,
the values of precision of WAID (n=3), L1, L2,
L1, SAID (n=3), and SAID (n=6) are 0.41, 0.50,
0.73, 0.86, 0.93, and 0.90, respectively. Taking L2
as reference, we see that SAID (n=3) presents a
gain in accuracy of 27.4% for a recall of 0.50.
Once the best distance function is SAID, we

conclude that this context is also characterized by
strong ACI. We also see that SAID with n=3 is
better than SAID with n=6 (we have processed the
data with other values of n, but the best results
were obtained with n=3).

Similarity of Medical Images Based
on Wavelets and Histogram Gradient

Descriptors

This experiment served to evaluate the ability of
the distance functions to discriminate pathological
pulmonary images from normal ones. We used a
medical image database consisting of 150 ROIs
extracted from lung radiographs, 50 of which were
analyzed as normal regions and 100 presented one
of the following pathologies: fibrosis, sclerosis,
lymphangitis, mycosis, sarcoidosis, and silicosis
(Fig. 16). The analysis and diagnosis of these
images were carried out by a senior radiologist
from HC-FMRP.
Each image was subjected to the following

procedure:

� The Haar wavelets with two levels were
extracted, generating seven subbands;

� for each subband, the gradient histogram
equalized to 16 ranges of gray level was
calculated,39 i.e., 16 attributes;

� the feature vector concatenating the 7 gradient
histograms was composed, resulting in 112
attributes;

Fig 15. Precision vs recall for image segmentation.
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� the relief attribute evaluation algorithm was
applied to determine the most relevant attri-
butes for discriminating the images as either
normal or pathological. The free software
Weka (University of Waikato, New Zealand)
was used, and 16 attributes were selected;

� these 16 attributes were used to represent the
image.

k-nearest neighbor queries were then executed
taking all images from both classes as reference
and using the distance functions of families AID
and Lp. Individual precision and recall values were

calculated and the averages for both classes were
used to generate precision vs recall curves for each
distance function. Figure 17 shows these curves.
Figure 17 indicates that the best graph was again

provided by SAID. For a value of recall of 0.50,
the values of precision of WAID (n=3), L1, L2,
L1, SAID (n=3), and SAID (n=6) are 0.53, 0.54,
0.57, 0.60, 0.65, and 0.64, respectively. Taking L2
as reference, we see that SAID (n=3) presents a
gain in accuracy of 14.0% for a recall of 0.50.
So this context is also characterized by strong

ACI. It also shows that SAID with n=3 is slightly

Fig 16. Samples of lung ROIs presenting specific pathologies.

Fig 17. Precision vs recall for wavelets and histogram gradient descriptors.
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better than SAID with n=6 (we processed the data
with other values of n, but the best results were
attained with n=3).

DISCUSSION AND CONCLUSIONS

Two new families of distance functions for
image comparison were presented in this paper.
These families—SAID and WAID—take into
account the effects of concurrence among attribute
differences when two images are compared,
reflecting the human perception of similarity.
Thus, SAID and WAID represent a new way to
summarize one aspect of human perception: the
influence of AC in similarity judgments.
The AC and ACI concepts were formally

defined. The proposed families of functions were
developed mathematically to define the formal
expressions needed to calculate the distance
between objects.
The composition of AID and Lp families was

evaluated, and an experimental approach was
described to determine the most suitable function
to perform similarity retrieval in a specific context.
Results of experiments of the proposed distance

functions were presented. The SAID and WAID
families were compared to the well-known dis-
tances L1, L2, and L1 because these distances are
most often used in general contexts of feature
vector comparison for similarity evaluation in
CBIR environments. Other distance functions—
such as the Mahalanobis distance and the Jeffrey
divergence—have presented good results in spe-
cific contexts, as shown by other researches, but
the majority of them require special information—
such as a matrix of covariance of attributes for the
Mahalanobis distance—in addition to the feature
vectors, or need special conditions of the feature
vectors content to be applied. Even so, the
comparison between AID family and other dis-
tances than the Lp family is subject for a future
work.
Using the results of tests involving five radiol-

ogists, we determined that the best function for
representing a general concept of texture of
medical images is SAID with an interaction
coefficient of 3. The results show that with the
use of texture descriptors uniformity and homoge-
neity, the SAID distance outperforms the L2
distance with a gain of 8.7% in precision. The

purpose of comparing images from different
modalities using a general perception of texture
conducted to a variability among the results of
radiologists, but it also conducted to an interesting
result, where we can see that the comparative
degree of accuracy presented by the distances was
the same for all radiologists.
Two other experiments were conducted, one

employing six features from a database of seg-
mented images from different human body parts
and the other using gradient histograms over Haar
wavelets from a database of normal and patholog-
ical lung images. Precision vs recall curves were
plotted to evaluate the distance functions perfor-
mance in each context. In the first experiment,
taking L2 as reference, SAID (n=3) presented a
gain in accuracy of 27.4% for a recall of 0.50, and
we can conclude that the evaluation of Lp and AID
distances again showed that the best function in
terms of discriminative power is SAID with a
coefficient of 3. In the experiment with lung
images, taking L2 as reference, SAID (n=3)
presented a gain in accuracy of 14.0% for a recall
of 0.50, and we can again conclude that the best
function for this context is SAID with a coefficient
of 3.
There is not a specific distance function that is

the best one for any context of CBIR involving
medical images. We proposed new distance func-
tions and we propose that, for any different context
of image modality and feature descriptor, a
comparative study has to be carried out to
determine the best distance function for that
context. Inside a specific context, the scale of the
attributes’ values remains constant; thus, the study
comparing distance functions does not need to
consider variations in scale. Although the AID
family can be employed as a general approach to
compare images by similarity, the focus of this
work was the context of medical image analysis,
which showed a tendency to present strong ACI
where the SAID family of functions achieved the
best results when compared to the Lp family.
Otherwise, the study using four texture descrip-

tors (uniformity, homogeneity, variance, and en-
tropy) was not conclusive regarding the best
distance function, as the results did not present
statistical relevance. The results suggest that the
SAID distance is the best, but future experiments
need to be done with different amount of attributes
to evaluate the effectiveness of the proposed
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formulation of the AID family extended to any
dimension of feature space.
Another promising study that can be carried out

in a future work is the application of the AID
family to feature vectors generated under appear-
ance model techniques. This study could lead to an
interesting analysis of the convergence of two
distinct methodologies, both of them based on the
modeling of human perception.
The proposed family of distance functions helps

answer the question: “How does the human
perception of similarity change when image
attributes vary together?” Moreover, our experi-
ments showed that the use of a well-suited distance
function involving AC in a specific context allows
for a reduction of the semantic gap in automated
methods of similarity-based image retrieval.
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