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Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in certain areas, such as South China, Southeast Asia, and the Middle East. Radiation
therapy is the most efficient means to treat this malignant tumor. Positron emission tomography–computed tomography (PET-CT) is
a suitable imaging technique to assess this disease. However, the large amount of data produced by numerous patients causes
traditional manual delineation of tumor contour, a basic step for radiotherapy, to become time-consuming and labor-intensive.
Thus, the demand for automatic and credible segmentation methods to alleviate the workload of radiologists is increasing. This
paper presents a method that uses fully convolutional networks with auxiliary paths to achieve automatic segmentation of NPC on
PET-CT images. This work is the first to segment NPC using dual-modality PET-CT images. This technique is identical to what is
used in clinical practice and offers considerable convenience for subsequent radiotherapy. The deep supervision introduced by
auxiliary paths can explicitly guide the training of lower layers, thus enabling these layers to learn more representative features
and improve the discriminative capability of the model. Results of threefold cross-validation with a mean dice score of 87.47%
demonstrate the efficiency and robustness of the proposed method. The method remarkably outperforms state-of-the-art methods in
NPC segmentation. We also validated by experiments that the registration process among different subjects and the auxiliary paths
strategy are considerably useful techniques for learning discriminative features and improving segmentation performance.
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Introduction

Nasopharyngeal carcinoma (NPC) is a prevalent malignant
tumor, especially in South China, Southeast Asia, the
Middle East, and North Africa [1]. Results of pathological
examination on patients with NPC commonly include poorly
differentiated squamous cell carcinoma, which is sensitive to
radiation therapy. Therefore, radiation therapy is the preferred
treatment method for NPC [2]. Delineating the tumor contour
is an essential step during radiotherapy, and delineation qual-
ity considerably affects the patient treatment and degree of
difficulty in implementing radiotherapy. Currently, target
areas are delineated manually by radiologists, but the large
number of patients makes delineation time-consuming and

labor-intensive. Delineation quality highly depends on the
physician’s expertise and experience, and delineations may
exhibit variations among different physicians [3]. Automatic
NPC segmentation is highly desired in clinical practice be-
cause it alleviates clinicians’ workload and inter-observer
variability.

Positron emission tomography (PET) and computed to-
mography (CT) images provide complementary information
on the structure or functionality of tissues. The use of PET-CT
scan in NPC diagnosis has become increasingly popular. A
CT image usually shows no evident boundary of nasopharyn-
geal tumor due to its low soft tissue contrast (Fig. 1a). A PET
image presents a good visualization of the tumor but loses
accurate boundary information due to its low spatial resolu-
tion. Moreover, distinguishing between the tumor and normal
highlighted tissues in a PET image is difficult (Fig. 1b).
Therefore, using dual-modality PET-CT images is an appro-
priate technique for determining the tumor boundary and ex-
tent of tumor invasion. Using dual-modality PET-CT images
for tumor segmentation has elicited increasing attention [4–7].
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Han et al. [4] developed an effective graph-based method to
segment head-and-neck cancer on PET-CT images. Song et al.
[5] proposed a novel co-segmentationmethod and applied it to
lung tumor and head-and-neck cancer segmentations on PET-
CT images. Ju et al. [6] utilized randomwalk and the graph cut
method to segment lung tumor on PET-CT images. The ex-
perimental results of these studies demonstrated the merits of
using PET and CT images simultaneously compared with
solely using a PET or CT image.

NPC segmentation is a difficult task because the anatomi-
cal structure of nasopharyngeal region is complicated, the in-
tensity of tumor is similar to that of nearby tissues, and the
shape of tumor in different subjects varies greatly [8]. Several
researchers have conducted trials on this field. Existing
methods can be grouped into three categories, namely, inten-
sity-, contour-, and learning-based methods. In intensity-
based methods [9, 10], a probabilistic map of the tumor region
was estimated by using intensity features. Region growing
was then initialized according to the probabilistic map and
used to segment NPC in CT images. Intensity-based methods
depend on the intensity difference, which limits the perfor-
mance of such methods in NPC segmentation because NPC
exhibits an intensity similar to that of nearby normal tissues.

Contour-based methods mainly include active contour and
level set. Huang et al. [11] segmented NPC in magnetic reso-
nance imaging (MRI) by calculating the nasopharynx region
location, using a distance-regularized level set evolution to
determine the tumor contour, and applying a hidden Markov
random field model with maximum entropy to refine the con-
tour. Fitton et al. [12] implemented a semiautomatic NPC
segmentation method. The physicians delineated a rough tu-
mor contour and subsequently used the Snake method to op-
timize the delineation in linearly weighted CT-MRI registered
images. In contour-based methods, many parameters must be
adjusted by the user based on expertise, which limits the ap-
plication of these methods in clinical practice.

Meanwhile, support vector machine (SVM) and neural net-
work have been widely utilized in learning-based methods.
Wu et al. [13] developed an automatic algorithm for detecting

NPC lesions on PET-CT images with SVM.Mohammed et al.
[14] implemented automatic segmentation and identification
of NPC by using artificial neural network in microscopy im-
ages to identify preliminary NPC cases. Convolutional neural
network-based methods have been proposed recently [8, 15].
Wang et al. [8] trained a patch-wise classification network to
determine the class labels (tumor or normal tissue) of each
pixel. Such a method only considers local information and
suffers from an efficiency problem because the network must
make a prediction for each patch separately, and many com-
putations are redundant because of overlapping patches. Men
et al. [15] proposed a fully convolutional network (FCN)-
based method for NPC segmentation. In their work, a down-
sample path and an up-sample path were added to the network
for feature extraction and resolution restoration. U-net, which
offers skip connections between the corresponding down- and
up-sample paths, has become popular for medical image seg-
mentation [16].ManyU-net–based methods have been report-
ed, and their remarkable performance indicates the effective-
ness of the skip connections [17–20]. In this work, we inves-
tigate the potential of using FCN with skip connections in
NPC segmentation. A work that is closely related to ours is
[15]. Different from [15], which only utilized CT images, the
present study uses dual-modality PET-CT images that provide
more useful information for distinguishing a tumor from nor-
mal tissues.We also implement a network with auxiliary paths
and demonstrate the use of dual-modality PET-CT images and
our model achieves better performance than existing methods
that are based only on CT images and purely FCN.

The main contributions of this work can be summarized as
follows:

1) This study is the first to segment NPC based on dual-
modality PET-CT images. This technique is consistent
with practical clinical work and can provide considerable
convenience for subsequent radiotherapy.

2) The proposed method demonstrates state-of-the-art per-
formance in NPC segmentation by deploying FCN with
auxiliary paths. The deep supervision introduced by the

Fig. 1 CT (a) and PET images (b) of a patient with nasopharyngeal carcinoma. The red curves represent the tumor boundary
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auxiliary paths can explicitly direct the training of hidden
layers, thus enabling these layers to learn more represen-
tative features. The effectiveness of the auxiliary paths is
also proven by experiments.

3) Registration pre-processing is performed to align images
to a unified space in the proposed method. The experi-
mental results demonstrate that the registration is effective
for FCN to relieve the burden of the learning of location
invariant features, and this pre-processing is helpful in
improving segmentation performance when the size of
the training dataset is limited.

Materials and Methods

Materials

Thirty PET-CTscans were collected from 30 patients suffering
from NPC. Twenty scans were obtained from the PET center
of Southern Hospital, and ten were acquired from Guangzhou
Military Region General Hospital. Twenty cases were selected
as the training set, and the remaining ten cases were utilized as
the testing set. Threefold cross-validation was performed to
evaluate the robustness of the proposed method. The ground
truth was delineatedmanually by two experienced radiologists
on PET-CT fusion images.

Overview of the Segmentation Workflow

Our segmentation framework is presented in Fig. 2. The
workflow comprises three main stages. The first stage depicts
data preprocessing and augmentation. The second stage pre-
sents the network architecture and the strategy that alleviates
class imbalance. The third stage describes the post-processing
process.

Data Preprocessing and Augmentation

Prior to segmentation, we implemented 3D affine registration
among different cases using FMRIB’s Linear Image
Registration Tool from FMRIB Software Library. The registra-
tion was based only on bone structure information in CT im-
ages. We used a threshold (200 Hu) to segment the bone struc-
ture of each CT image. A case was randomly selected as the
template, and the remaining cases were aligned to this template.
Then, the affine transformation matrix of each case was saved
and applied to its corresponding PET image.We suggest that all
aligned images located in a unified image space help to alleviate
the learning burden of the location invariant features. After
registration, several slices lost a part of the complete head im-
age, and these slices were discarded. All remaining slices (ap-
proximately 90 per case) were used for the training and testing
stages. The raw image size of 512 × 512, which contained in-
terferential information, such as the scanning bed, was cropped
to 256 × 224 to include only the head image. In the final step of
data preprocessing, we computed the mean value and standard
deviation over all cropped training slices and normalized CT
and PET slices to zero mean and unit deviation. The mean and
standard deviation calculated in the training slices were also
applied to normalize the testing slices.

Similar to [16, 21], this study also implemented artificial data
augmentation to increase the size of the training set and reduce
overfitting. During training, each slice was randomly rotated at
an angle between − 5 and 5°, scaled randomly by a factor be-
tween 0.95 and 1.05, horizontally and vertically translated by a
random distance within 15 pixels, and randomly flipped around.

Network Architecture and Handling of Class
Imbalance

Figure 3 illustrates our network architecture. The U-net archi-
tecture was used to obtain pixel-wise prediction maps. To use
the information of two modalities, we assigned two input

Fig. 2 Overview of the
segmentation workflow
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channels, namely, CT and PET images, as the input. In
convolutional layers, 3 × 3 convolution kernels were used,
and feature maps were padded prior to convolution computa-
tion so that the convolution process would not change the size
of feature maps. Feature maps from the down-sample paths
were directly concatenated with up-sampled outputs to make
better use of multiple scale features. To expedite the training
process and avoid gradient vanishing or exploding, we uti-
lized batch normalization [22] after each convolution and ap-
plied the rectified linear unit (ReLU) activation function to the
output of batch normalization. Then, two dropout layers with
a rate of 0.5 were added before the last two convolution layers
to reduce overfitting. Afterward, label probability maps were
computed by a 1 × 1 convolution layer.

The network structure is deep to extract highly representa-
tive features. Therefore, many parameters need to be trained.
Moreover, a limited dataset is available, which makes network
training difficult. Thus, we considered introducing auxiliary
paths, which explicitly supervise the training of lower-layer
parameters, into the network to alleviate the optimization chal-
lenge [23]. As shown in Fig. 3, three auxiliary paths were
added to the up-sample section of the mainstream network.
Each path employed several deconvolution operations (3, 2,
and 1 times for auxiliary3, auxiliary2, and auxiliary1, respec-
tively) to obtain feature maps that matched the size of the input
images. Subsequently, 1 × 1 convolutions were used to obtain
label probability maps. The SoftMax activation function was
applied to each label probability map, and the cross-entropy
loss functions of the main path and all auxiliary paths were

computed. The overall loss function is defined as the weighted
sum of all loss functions, including the losses of the main path
and all auxiliary paths:

L ¼ lmain þ ∑
3

i¼1
wili: ð1Þ

A crucial problem in training a network for segmentation of
medical data is that the class distribution is severely imbal-
anced according to the pixel-wise percentage of each class. In
our case, the number of pixels of normal tissue accounted for
> 99% of the total number of pixels. Thus, the model easily
converged toward the wrong direction, i.e., predicting each
pixel as normal tissue [24]. An additional weight coefficient
was assigned to each pixel in each cross-entropy loss function
to handle the problem of data imbalance. The weight coeffi-
cient is defined as follows:

wi ¼ 1

∑
l j¼li

j
ð2Þ

where li denotes the ground truth of pixel i. In addition, com-
mitting a mistake in the boundary pixels is easy. Therefore, we
dilated the ground truth with a disk-shaped structural element
of radius (R) and subsequently implemented the above-
mentioned weighting factor according to the dilated ground
truth to increase the weight of loss of non-tumor pixels next to
the boundary.

Fig. 3 Network architecture. The
meaning of arrows with different
colors are displayed in the lower
right corner. The size of feature
map in each level is shown on the
left of this level. The number of
channels of each layer is
represented at the top of the bar.
The detail of the auxiliary paths is
shown below the main path
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Post-Processing

Two steps were implemented to reduce the number of false
positive. First, several small clusters may be incorrectly pre-
dicted as tumor. To deal with this problem, we removed clus-
ters that were smaller than a threshold (τ) in the predicted
result of each slice [25]. Second, nasopharyngeal tumors gen-
erally occur in the pharyngeal recess and the anterior wall of
the nasopharynx, which indicates that the tumor location is
relatively fixed and continuous. Therefore, in the 3D predic-
tion, only the longest-connected slices predicted to contain
tumor were retained as tumor regions, and all other slices were
marked as non-tumor regions.

Results and Discussions

Experimental Setting

The network was trained on a workstation with an NVIDIA
Titan X GPU with 12 GB VRNM, two Intel Xeon CPU E5–
2623 v3@ 3.00 GHz, and 8 16 GBDDR4RAM@2133MHz.

We implemented the work using the deep learning framework
Matconvnet. The MSRA initialization method [26] was
employed to initialize filter weights, and all biases were initial-
ized to zero. We used the Adam optimizer with a momentum of
0.9. The learning rate was initialized to 0.002 and decreased
constantly during the training stage. The weight coefficients of
auxiliary path1, auxiliary2, and auxiliary3 were set to 0.5, 0.3,
and 0.1, respectively. The other parameters and values are sum-
marized in Table 1.

Evaluation Metrics

We evaluated the segmentation result based on three metrics,
namely, dice similarity coefficient (DSC), positive predictive
value (PPV), and sensitivity. DSC [27] calculates the overlap
between the ground truth and automatic segmentation. This
metric is defined as follows:

DSC ¼ 2TP
FP þ 2TP þ FN

ð3Þ

where TP, FP, and FN represent the amount of true positive,
false positive, and false negative, respectively. PPV is used to
measure the number of TP and FP and defined as follows:

PPV ¼ TP
TP þ FP

: ð4Þ

Sensitivity is employed to compute the amount of TP and
FN, and it is defined as follows:

Sensitivity ¼ TP
TP þ FN

: ð5Þ

High values indicate good segmentation results in these
three metrics.

Table 1 Parameter setting

Stage Parameter Value

Training Batch size 16

Weight decay 0.0005

Dropout ratio 0.5

Epochs 450

Radius R 10

Post-processing Threshold τ 150

Table 2 Quantitative results of the proposed method under different settings. The subtraction sign stands for the removal of the component inside
parentheses from the original architecture

Metrics Method Proposed −(auxiliary paths) −(registration) −(post-process) −(CT image)

DSC (%) First fold 88.27 86.41 78.95 87.57 86.87

Second fold 84.32 82.31 79.77 81.85 84.06

Third fold 89.82 89.71 89.11 89.15 89.65

Mean 87.47 86.14 82.61 86.19 86.86

PPV (%) First fold 91.59 91.33 87.11 88.67 87.93

Second fold 94.20 86.71 88.23 86.75 93.17

Third fold 94.88 94.12 88.70 92.31 94.03

Mean 93.56 90.72 88.01 89.24 91.71

Sen (%) First fold 85.47 82.63 75.73 86.88 86.34

Second fold 77.60 80.14 77.13 79.48 77.30

Third fold 85.72 86.29 90.35 86.63 86.05

Mean 82.93 83.02 81.07 84.33 83.23
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Contributions of Different Components

We evaluated the contributions of several main components of
the proposed approach by analyzing their influence on the
final segmentation performance. Except for the component
under study, all other components and parameters of each
comparative experiment were consistent with the proposed
method. The experimental results of threefold cross-
validation of the testing set are summarized in Table 2. The
first column corresponds to the result that uses the approach
introduced in the BMaterial and Methods^ section. The re-
maining columns present the results of removing components
inside the parentheses from the original architecture.
According to the first two columns, the dice score of each fold
was improved by adding auxiliary paths to the network. The
scores of PPV and sensitivity metrics also improved or were
equivalent. This finding illustrates that the deep supervision
introduced by auxiliary paths can improve the discriminative
capability of the network by enabling the middle and lower
layers to learn more representative features [23]. As men-
tioned in the BPost-processing^ section, the NPC location is
relatively fixed, but the data were from different imaging de-
vices, and the positioning difference of the patient and other
reasons undermined this relative fixedness. We conclude that
data registration among different subjects before their input to
the network can help align the NPC location and relieve the
learning burden of the location invariant features. Thus, high
accuracy can be obtained with a small training dataset. The
first and third columns of Table 2 reveal that the registration
process increased the mean value of each metric. The dice
scores of first and second folds improved greatly, indicating
that data registration can be used as an effective preprocessing
technique for segmentation when the size of the training
dataset is limited. The post-process further improved the seg-
mentation performance, as shown in the first and fourth col-
umns of Table 2. This procedure that aims to reduce the num-
ber of false positive is simple, fast, and effective. As men-
tioned in the BIntroduction^ section, a CT image usually
shows no evident boundary of nasopharyngeal tumor. Thus,
we also investigated the effect of CT image by inputting only
PET image to a single channel network.We observed from the

first and fifth columns of Table 2 that the contribution of the
CT image was not very remarkable, but it contributed never-
theless. Moreover, CT image is a necessary modality for sub-
sequent development of a radiotherapy plan.

Quantitative Results

The quantitative segmentation results of threefold cross-
validation of the proposed method are shown in the first column
of Table 2. We achieved a mean dice score of 87.47%, which
outperforms state-of-the-art methods in NPC segmentation.
Table 2 also shows that the experimental result of the second
fold was lower than that of the two other folds. A case of the
second fold only achieved 65.27% test dice score, which de-
creased the mean score of the second fold. As shown in Fig. 5,
an outlier marked by a red plus sign was observed. The segmen-
tation result of a slice of this case is also displayed in Fig. 4. The
difference between the automatic segmentation result (red curve)
and ground truth (white area) was visible. We observed that the
tumor in this case was highly conjoint with normal bright tissues,
and the intensity of tumor pixelswas lower than that of surround-
ing normal tissues in the PET image, as shown in Fig. 4b. Non-

Fig. 5 Boxplot of the test results for all cases. The symbols * represent
the means

Fig. 4 Display segmentation
result of a slice of the failed case.
a, b, and c show the CT image,
PET image (red curve represents
the boundary of ground truth),
and the ground truth (white area)
and automatic segmentation
boundary (red curve),
respectively
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experts could not distinguish the tumor boundary at all. Thus, the
network may not learn sufficient discriminative features to deal
with this sample because it is more difficult to differentiate than
the samples of the training set.

We drew boxplots of the test result for all cases in Fig. 5,
where the blue asterisks represent the mean of each metric.
This description reveals that all samples, except for the outlier,
obtained dice scores of > 0.8, and nearly half of the samples
achieved dice scores of > 0.9, indicating that our method is
efficient in accuracy performance. In addition, our method has
an advantage in time performance, a test set sample requires
only approximately 7 s (registration time is not included) to
obtain the final automatic segmentation result based on the
trained model.

We also compared our work with a previous work [15]
(Table 3) that also used the method of FCN. In NPC segmen-
tation, most previous studies only calculated 2D dice scores of
tumor slices and reported the average of 2D dice as a test
result. This metric only considers tumor slices and is seriously
affected by poor-performance slices. If only the scores of
good-performance tumor slices are averaged, 2D dice will
obtain a very high score. 3D dice calculates the overlap be-
tween automatic segmentation and ground truth of the entire
volume data. Thus, 3D dice is a more reasonable comprehen-
sive metric than 2D dice. To directly compare with [15], we
calculated a 2D dice average of tumor slices, as shown in
Table 3. The tumor volume in several slices was extremely
small, and the network may be unable to locate the lesions
accurately. Thus, zero dice scores were obtained in these
slices, which seriously influenced the average score. Similar
to most previous proposals, our 2D dice does not consider the
first two and the last two slices. Table 3 shows that our imple-
mentation is much better than that in previous work.

Qualitative Results

Several examples of visualized testing results are displayed in
Fig. 6, where the first, second, and third columns illustrate the

Table 3 Comparison of our work with the work of Men et al. [15]. The
DSC score is obtained from the original paper

Method Modality Network architecture DSC (%)

Men [15] CT Down-sample + up-sample 80.9

Ours PET-CT Down-sample + up-sample 83.53
Skip connection

Auxiliary paths

Fig. 6 Examples of qualitative
result. The first, second, and third
columns illustrate the CT images,
PET images, and the white areas
and red curves represent the
ground truths and automatic
segmentation boundaries,
respectively
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CT images, PET images, and ground truths (white) and auto-
matic segmentation boundaries (red), respectively. The auto-
matic segmentation and ground truth overlapped almost
completely, although the tumor exhibited varying sizes and
shapes, considerably low-intensity contrast between the tumor
and the adjacent anatomical structures (second row), and an
extremely irregular boundary (third row).

Conclusions

We developed an FCN with auxiliary paths for automatic seg-
mentation of NPC on PET-CT images. This work is the first to
segment NPC based on dual-modality PET-CT images. We
began from a preprocessing stage that included data registra-
tion among different subjects and other processes. During
training, we implemented a deep supervision technique by
adding auxiliary paths to the network. This technique can
improve the discriminative capability of the network by ex-
plicitly directing the training of hidden layers. Then, a simple
and efficient post-processing procedure was used to reduce the
number of false positive. Threefold cross-validation results
indicate that our approach is robust, and it remarkably outper-
forms state-of-the-art methods in NPC segmentation. We also
confirmed by experiments that several components, such as
simple data registration process and auxiliary path strategy,
are considerably useful techniques for learning discriminative
features and improving segmentation performance.

A disadvantage of our method is that the dataset is limited,
such that an outlier appears. Therefore, in next work, we in-
tend to collect more data to train a highly robust model.
Another deficiency is that sequential information between
consecutive slices was not utilized when we separated a 3D
image into many 2D slices, implemented segmentation on
each 2D slice, and concatenated the 2D results to acquire the
3D segmentation result. In future work, we plan to exploit 3D
convolution to model the correlations between slices and fur-
ther enhance performance.
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