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Abstract

We present a framework that allows a robot manipulator to learn how to execute structured tasks from human demonstrations.
The proposed system combines physical human-robot interaction with attentional supervision in order to support kinesthetic
teaching, incremental learning, and cooperative execution of hierarchically structured tasks. In the proposed framework, the
human demonstration is automatically segmented into basic movements, which are related to a task structure by an attentional
system that supervises the overall interaction. The attentional system permits to track the human demonstration at different
levels of abstraction and supports implicit non-verbal communication both during the teaching and the execution phase.
Attention manipulation mechanisms (e.g. object and verbal cueing) can be exploited by the teacher to facilitate the learning
process. On the other hand, the attentional system permits flexible and cooperative task execution. The paper describes the
overall system architecture and details how cooperative tasks are learned and executed. The proposed approach is evaluated in
a human-robot co-working scenario, showing that the robot is effectively able to rapidly learn and flexibly execute structured
tasks.

Keywords Multimodal human-robot interaction - Attentional supervision - Learning from demonstration - Intuitive
kinesthetic teaching

1 Introduction

The integration of robotic devices in human populated envi-
ronments requires the ability of the robot to continuously
learn novel tasks and to adapt their execution to the human
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multiple primitive actions and manipulated objects. Actions
have to be performed in a coherent manner, meaning that the
actions have to be executed on certain objects with a partic-
ular order. For example, to pour water in a cup, the robot has
to take the bottle, reach the cup, and then pour the liquid.
In order to make a robot able to learn how to perform struc-
tured tasks and collaboratively execute them, our approach
integrates multimodal interaction (Rossi et al. 2013), atten-
tional supervision (Norman and Shallice 1986; Cooper and
Shallice 2006; Caccavale and Finzi 2015, 2016), and kines-
thetic teaching (Lee and Ott 2011; Saveriano et al. 2015).
In our framework, the human operator can naturally interact
with the robot using voice and physical guidance, while a
supervisory attentional system (Norman and Shallice 1986;
Cooper and Shallice 2006) continuously monitors and tracks
the human-robot interactive activities during both training
and execution sessions.

Attentional mechanisms that are suitable for human—robot
task teaching have been explored in the robotic litera-
ture, mainly in the context of visual attention (Nagai 2009;
Breazeal and Berlin 2008; Borji et al. 2010); in contrast,
in this work we focus on attentional supervision and physi-
cal interaction. Namely, in course of a kinesthetic teaching
session, the human can physically interact with the robot to
demonstrate the execution of the actions, while the supervi-
sory system is exploited to interpret the human guidance in
the context of a structured task. In this setting, the supervisory
attentional system supports implicit non-verbal communica-
tion and permits to track the human demonstration at different
levels of abstraction.

More specifically, human demonstrations are automati-
cally segmented into basic movements, exploiting contextual
information (e.g. the relative distance between the robot
and the objects to manipulate, explicit human commands,
etc.). The generated primitives are simultaneously monitored
by the attentional system, which relates them to the asso-
ciated task structure exploiting top-down (task-based) and
bottom-up (stimuli-driven) attentional mechanisms. These
mechanisms enable also a natural interaction of the robot
with the teacher, which can exploit attention manipulation
(object and verbal cueing) to facilitate the learning pro-
cess (Nicolescu and Mataric 2003). Notice also that in the
proposed framework, action segmentation, annotation, and
(task-based) contextual interpretation are one-shot and auto-
matic, hence they do not require any manual post-processing
of the collected data.

In summary, our contributions in this paper are the fol-
lowing:

— We present a framework that combines the benefits
of kinesthetic teaching and attentional supervision to
allow natural teaching by demonstration and flexi-
ble/collaborative execution of structured tasks.
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— We propose an approach to action segmentation and
annotation that simultaneously associates the generated
segments to the task structure during a one-shot kines-
thetic demonstration.

— We demonstrate the overall system providing empirical
results to show the effectiveness of proposed approach in
task teaching and execution.

The source code of the entire system—fully integrated
with the Robot Operating System (ROS)—can be down-
loaded from https://github.com/matteosaveriano/task-teachi
ng-and-supervision.

The rest of the paper is organized as follows. Section 2
presents and discusses related work. The proposed architec-
ture for multimodal teaching/execution is detailed in Sect. 3.
Section 4 describes how structured tasks are learned and exe-
cuted using the proposed architecture. Experiments in a real
word scenario are presented in Sect. 5. Finally, Sect. 6 states
the conclusions and proposes further extensions.

2 Related work

Kinesthetic teaching is a natural and intuitive way to teach
elementary robotic motions (Lee and Ott 2011; Saveriano
et al. 2015). The goal of kinesthetic teaching is to physically
guide the robot to show the desired behavior. In this setting,
collected demonstrations are used to learn and reproduce
the elementary motions. Current approaches for kinesthetic
teaching are mainly concerned with learning and reproducing
basic motion primitives, while our goal in this paperis to learn
how to execute structured cooperative tasks from kinesthetic
demonstrations. The works by Kuli¢ et al. (2012) and Takano
et al. (2016) focus on segmenting demonstrated movements
in order to create a dictionary of basic motions, which can
then be combined to generate more complex behaviors. These
algorithms are effective in segmenting motion data into basic
primitives, but they do not address the problem of extract-
ing the associated execution constraints (e.g. an object firstly
has to be grasped and then placed) from demonstrations.
In contrast, our approach allows us to generate execution
constraints (preconditions, postconditions, etc.) during the
demonstration; these constraints are needed to monitor and
flexible execute the learned structured tasks. Moreover, dif-
ferently from Kuli¢ et al. (2012) and Takano et al. (2016) we
can learn goal-oriented activities involving interaction with
the environment.

The problem of deciding the next motion to execute can
also be treated as a classification problem. The approach
in Pastor et al. (2012) uses nearest neighbor classification
to determine the next action to execute. In Manschitz et al.
(2015), a graph is used to represent transitions between ele-
mentary motions. A classifier associated with each node in
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the graph determines when a transition occurs, i.e., when a
motion is finished and the robot can execute the next one.
These approaches permit to learn and reproduce complex
robotic tasks from human demonstrations, however, differ-
ently from our approach, they do not consider the possibility
of executing the learned tasks in a flexible manner or in coop-
eration with the human.

Alternative works have focused on the problem of learn-
ing high-level task representations from human observations
(Argall et al. 2009). In Tenorth and Beetz (2013) and Zoliner
et al. (2005), sequential constraints (like reaching an object
and then grasping it) are used to determine a set of seman-
tic rules that determine the sequence of actions to perform.
Semantic rules are also used by Ramirez-Amaro et al. (2015)
to learn, recognize and reproduce human activities from
video sequences. Human activities are segmented following
the popular approach by Fod et al. (2002), which suggests
to segment an action stream looking at the zeros in the joint
velocities. Velocities smaller than a given threshold value
are considered as zero. The segmented activities are then
matched with a set of pre-programmed motion primitives
and executed by the robot. The problem of task learning
from human activity observations is also faced by Dillmann
(2004). Here, the human demonstration is used to generate
a robot-independent task structure associated with robot-
specific primitives. Aforementioned approaches are effective
in learning the task structure from human observations, but
motion primitives are assumed as given. Our approach is
complementary, we assume that an abstract description of the
task is available, while our goal is to learn both the motion
primitives and their relations with the task structure. Other
works in the context of human-robot collaboration are pro-
posed in Magnanimo et al. (2014) and Koppula and Saxena
(2015). In this case, collaborative activities are recognized in
order to infer the future human actions. Human action antici-
pationis used by the robot to generate the right response to the
human behavior (Koppula and Saxena 2015) in so enhancing
the collaboration. These approaches consider the robot as an
assistant, which is unable to autonomously execute the task.
In this respect, our system permits to learn and execute both
autonomous and cooperative tasks.

We propose a framework that enables incremental task
teaching and cooperative task execution at different lev-
els of abstraction. Moreover, we are interested in natural
and smooth human-robot interaction that supports coop-
erative task execution and incremental adaptation. In this
respect, related to our work, in Nicolescu and Mataric (2003)
the teacher can use simple verbal cues to facilitate the
learning process. In particular, the authors propose explicit
verbal instructions to bias the learner’s attention to relevant
aspects of the demonstration, but an attentional framework
is not deployed. Differently from this approach, we pro-
pose to deploy a supervisory attentional system that enables

more complex attention-base interaction (verbal, non-verbal,
explicit, implicit, etc.) during both the teaching and the exe-
cution phase. Social attentional mechanisms for non-verbal
task teaching are proposed and investigated by Breazeal and
Berlin (2008). In this case, the authors mainly focus on visual
attention and gaze direction. In particular, they show the
effectiveness of spatial scaffolding cues during interactive
task demonstration. Visual attention mechanisms for robot
learning are also proposed by Nagai (2009), Borji et al.
(2010) and Belardinelli et al. (2007). In contrast to these
works, we focus on executive attention and cognitive control
mechanisms supporting kinesthetic task teaching. Supervi-
sory attentional frameworks for robotic system have been
proposed (Kawamura et al. 2007) considering also cooper-
ative tasks execution (Caccavale and Finzi 2016; Caccavale
et al. 2016), but not in a learning by demonstration context.

3 System architecture

The overall system architecture is depicted in Fig. 1. The
human can interact with the robot in a multimodal manner
with gestures, speech, and physical guidance during both task
execution and kinesthetic teaching sessions. An attentional
system supervises both the human and the robot activities
(Attentional Behavior-based System) and manages high-level
tasks monitoring and execution (Attentional Executive Sys-
tem). On the other hand, the Robot Manager is responsible
for low-level task supervision, execution and learning. These
components are detailed below.

Attentional Executive System Robot Manager
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schema(alive,[...],[ ]).
schema(ni,[n2, ...],g1).
schema(n2,[...],g2).
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Fig. 1 The overall architecture for teaching and execution. The atten-
tional system supervises task execution and learning, while the Robot
Manager enables segmentation of the robot activities (Motion Seg-
mentation), kinesthetic teaching, primitive action learning (Motion
Learning) and execution (Motion Generation). The attentional system
manages the execution of high-level tasks (Attentional Executive Sys-
tem) and low-level sensorimotor processes (Attentional Behavior-based
System). The communication between the Robot Manager and the atten-
tional system is managed by the RobotStream (robot motion data) and
ObjectStream (perceived data from the RM to the attentional system)
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3.1 Robot manager

The Robot Manager (RM) handles low-level aspects of the
human-robot interaction and it is responsible for a correct
task execution. In particular, the RM is responsible for: (i)
smooth transition between teaching and execution modes; (ii)
segmentation of the human demonstration into basic actions;
(iii) scene monitoring (objects classification and tracking);
and (iv) robot state monitoring (robot-object distance, motion
primitives learned or executed). Task teaching is performed
by means of kinesthetic teaching (Lee and Ott 2011). In
this work, we use the gravity compensation control to make
the robot ideally weightless for an easy and safe physi-
cal guidance. High level tasks are segmented into a set of
point-to-point motions (reaching and manipulating objects).
Segmented data are compactly represented as stable dynami-
cal systems (DS), that we call motion primitives. The learned
motion primitives are used to generate motor commands in
the execution phase. Notice that stable DS are well-suited for
point-to-point motion generation since they are guaranteed to
converge towards a given target, and they can rapidly adapt
to external perturbations, like changes in the initial/target
location and unforeseen obstacles (Saveriano and Lee 2013,
2014). Learned DS generate the reference trajectories that the
robot tracks using a Cartesian impedance control with high
stiffness gains (2000 N/m for the position and 200 Nm/rad
for the orientation). Hence, the RM has two control modes:
a gravity compensation control for the teaching phase, and
a Cartesian impedance control for the execution. These two
control modes are enough to teach and execute structured
tasks. Another control mode, such as the controller proposed
by Lee and Ott (2011), can be eventually added to the RM in
order to allow the task refinement during the execution.

3.2 Attentional system

The attentional system provides the cognitive control mecha-
nisms needed to flexibly orchestrate the execution of complex
tasks and to monitor the human activities. Following a super-
visory attentional system (SAS) approach (Norman and
Shallice 1986; Cooper and Shallice 2006), we propose a
framework where interactive action execution and learn-
ing are supported by attentional mechanisms. In a SAS
framework, the executive control depends on two main mech-
anisms: contention scheduling and supervisory attention.
The first one allows to reactively select and regulate rou-
tinized activities depending on bottom-up perceptual stimuli
and internal drives; the second one is a higher-level pro-
cess that drives the system towards task-oriented behaviors
through attentional regulations. In our human-robot interac-
tion setting, the attentional system exploits hierarchical task
representations to supervise and regulate the robot actions,
while interacting with the human.
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More specifically, we rely on the system proposed by Cac-
cavale and Finzi (2015) and Caccavale and Finzi (2016). This
framework is endowed with a Long Term Memory (LTM)
and a Working Memory (WM) (see Attentional Executive
System in Fig. 1). These components are detailed below.

Long term memory The LTM contains the procedural knowl-
edge available to the system, that is, the actual robotic
behavioral repertory that includes the abstract descriptions
of the tasks the robotic system can perform [an instance can
be found in Eq. (4)]. More specifically, each task is hier-
archically defined in the LTM by a set of predicates of the
form schema(m, [, p), where m is the name of the task, /
is a list of m; subtasks associated with enabling conditions
r; (releasers), i.e. I=((my,r1), ..., (my,, ry)), while p rep-
resents a post-condition used to check the accomplishment
of the task. Notice that these task definitions are exploited
to be retrieved, allocated, and instantiated in the WM for
execution. For this purpose, we introduce a special process,
called alive that continuously updates the WM by allocating
and deallocating a hierarchy of behaviors that implements
the corresponding task schemata in the LTM. For instance,
in Fig. 2, the add(Obj) schema is retrieved by alive (1| step
in Fig. 2) and then instantiated and allocated in the WM as
the behavior add (water), which is ready for the execution
(2 step in Fig. 2).

Working memory The Working Memory (WM) permits to
temporarily maintain and manipulate the information needed
to execute task-oriented activities; it represents the execu-
tive state of the system and collects the processes recruited
and instantiated for task execution. In our framework,
these processes are represented by an annotated rooted tree

LTM ' WM
F——— —— - - - — = = -
| Alive @
Retrieve I %
[TRUE
| Loeten )

schema(add(Obj),
( (pick(Obj), true),
(pour(Obj), Obj.picked),
(place(Obj), Obj.poured) ),
Obj.poured A Obj.placed ).

P = = - — = = -
@ ®
| *
.
| [TRUE |
‘add(water) )
water.poured A water.placed

i

Expand

pick(water) place(water)

Fig.2 Representation of the WM expansion process managed by alive.
When the new node add(water) is allocated in WM the associated
schema is selected from LTM (retrieve phase) and exploited to decom-
pose the node in WM by adding and instantiating the new abstract or
concrete sub-nodes mentioned in the schema (expand phase)
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Fig. 3 Action segmentation and hierarchical task decomposition dur-
ing kinesthetic teaching of a pouring task. The robot has to pick-up the
bottle (pick(water)), reach the glass, pour the water (pour(water)) and
place the bottle (place(water)). The Robot Manager (down) performs
action segmentation (Si, Sz, ..., S5) and learns the associated motion

T = (r, B, E), whose nodes in B represent allocated pro-
cesses/behaviors, the root r € B is the alive process, which
bootstraps and manages the WM, while the edges E repre-
sent parental relations among sub-processes/sub-behaviors.
These nodes can be either concrete, representing real sen-
sorimotor processes, or abstract, which are for complex
behaviors to be hierarchically decomposed according with
the associated schemata in LTM. An example of the hierarchi-
cal behaviors generated for the execution of the add (water)
is illustrated Fig. 2 (bottom, right), while the ones for the
pouring task can be found in Fig. 3. In these illustrations,
for each node, green labels represent releasers (enabling-
conditions), while blue labels are for a post-condition (goal
conditions) exploited to monitor the accomplishment of goal-
oriented activities. More specifically, each node b in WM is
represented by a S-tuple (mp, gp, Pp, Xp, 1p), Where my is the
name of the allocated task, g, and pj represent the releaser
and post-condition respectively, x;, is the set of sub-behaviors
generated by mj, while uj is a value that represents the cur-
rent attentional state of the behavior (see magnitude below).
Here, my, qp, pp, xp are instances of the associated schema
in the LTM. Indeed, each node b in WM, is generated by the
alive process that allocates a schema(m, [, p) with a variable
binding that instantiates m in myp, p in pp and the list [ in
the list of sub-behaviors x; and the associated releasers. For
instance, in Fig. 3, the pour(Obj) task is instantiated by the
argument water for the variable Obj, hence task, releaser,
post-condition and sub-behaviors are also instantiated by

primitives, while the attentional system (up) connects the generated seg-
ments and primitives to the task structure (s1(water), s2(water), and
gripper(close) connected to pick(water); s3(glass) and s4(glass)
connected to pour(water), etc.). The green and blue labels represent,
respectively, releasers and post-conditions

water. This process is analogous to the one introduced for
HTN planning (Nau et al. 2003). Each concrete behavior
accesses sensory data oy, affects control variables ¢, and
updates a set of state variables V' representing the current
state of the overall system. For instance, in Fig. 3, when the
water.picked boolean variable is set to true, the pick task
is accomplished while the next pour task is enabled to be
executed. In this case, the state variable water.picked is
updated by the concrete behavior gripper(close) when the
grasped object is the water.

Attentional regulation In line with (Norman and Shallice
1986), we assume that each node in the WM is also endowed
with an activation value regulated by attentional mechanisms.
This value is affected by top-down and bottom-up atten-
tional processes. In our framework, the activation value of
concrete behaviors is a frequency that represents the res-
olution at which a sensorimotor process is monitored and
controlled. More specifically, in concrete behaviors, the acti-
vation value is bottom-up regulated by a monitoring function
g(op, &p) = Ap, which depends on behavior-specific stim-
uli o, and the behavioral state variables g, (subset of the
state variables V). In this work, analogously to (Caccav-
ale and Finzi 2016), we consider the distance of targets as
an estimation of behavioral accessibility, hence o}, is here
directly associated to the minimal distance of the target for the
behavior. In particular, we assume that the activation period
Ap € [A7 AMAX] is bottom-up regulated by the following

@ Springer



Autonomous Robots

saturating (and increasing) linear function:

)‘.mln lf o E rmtn
if o > me €))]

o -0 + B otherwise

)Lmax

A = g(0p, €p) =

specified by two parameters r”" and r"%*, with @ =

()\max_)\min)/(rmax_rmin) and ,3 — )Lmin_a . rmin used
to describe the linear increase of g for ¢ in the interval
[r™Min pmax] Notice that in this formulation, we assume a
direct bottom-up influence of the oj, stimuli, hence ¢; here
is not exploited, however, more complex regulations can
be introduced (see for example Broqure et al. 2014). This
bottom-up regulation is then top-down modulated by a mag-
nitude value u;, that summarizes the overall influence of the
WM on the behavioral attentional state. In concrete behav-
iors, top-down and bottom-up influences are then combined
in an emphasis value e, = up/Ap representing the actual
activation frequency for the behavior b. The absence of a
top-down influence is represented by pp = 1. Whenever
a magnitude change happens for a node in the WM, this
update is inherited by all its descendants. In addition, we
assume that when a behavior is accomplished, the magni-
tude of the parent node is increased by a constant value
k, which is then propagated towards its active successors.
In this setting, the magnitude of a generic behavior is then
given by up = g + kn, where u r is the parent magnitude
and n is the number of accomplished sub-behaviors. This
mechanism facilitates active behaviors representing the con-
tinuation of accomplished subtasks, in so inducing a smooth
drive towards task accomplishment with an associated reduc-
tion of task switching.

Conflict regulation The behavioral activation level is then
exploited to regulate behavioral competitions and conflicts.
Indeed, multiple tasks can be allocated in the WM at the
same time, therefore several behaviors can compete for the
execution generating conflicts and impasses (Botvinick et al.
2001). Contentions among alternative concrete behaviors
are solved exploiting the attentional activation: following
a winner-takes-all approach, the behaviors associated with
the higher emphasis are selected with the exclusive access
to mutually exclusive resources. More specifically, in our
framework this mechanism occurs when multiple concrete
behaviors simultaneously try to access and update a mutu-
ally exclusive control variable c. In this case, given the set
C(c) of competitors for the ¢ variable, the system selects the
most emphasized concrete behavior:

byin = argmax ep. (2)
beC(c)

The selected behavior b,,;, can then modify the variable
¢ with the exclusive access. As already stated above, once
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a behavior is accomplished, the upward propagation of
magnitude described above permits to facilitate task-related
behaviors in conflicts, in so orienting the system towards task
continuation and accomplishment. This task-oriented facili-
tation mechanism can be enhanced or reduced by tuning the
k parameter.

4 Kinesthetic teaching of structured tasks

The proposed framework supports human-robot interaction
during both task demonstration and task execution. In order to
enable natural interaction and incremental task learning, the
system can anytime switch between teaching and execution.
The teaching phase can start from the human or the robot
initiative. In the first case, the human can explicitly switch
to a demonstration session through a command (either vocal
and/or gestural) and directly show the execution of a task.
Otherwise, in the second case, the robot can wait for the
human assistance when not able to execute an activity. This
happens when a task under execution is not linked to concrete
sensorimotor behaviors. In this case, the system waits for the
user guidance in order to learn how to perform the missing
subtasks.

During the teaching phase, the human can physically guide
the robot in order to demonstrate the correct execution of
the task. This kinesthetic teaching session is supervised by
the attentional system, which has to connect the segmented
training motions to the related tasks and subtasks. The atten-
tional system tracks and monitors both the human and the
robot task execution. This way, the low-level robotic actions
taught by the user through kinesthetic teaching are labeled
by the higher level tasks/subtasks managed by the attentional
system. For instance, Fig. 3 illustrates the action segmen-
tation of a water-pouring task along with the associated
hierarchical task decomposition. During the teaching mode,
the RM provides action segmentation and motion primitive
learning, while the attentional system monitors the subtasks
to be fulfilled (pick(water), pour(water) and place(water)).
When a new segment is recognized by the system (S, S2,
..., S5), a new node in the tree is generated (Sj(water),
S>(water), ..., Ss(word), gripper(open)) and linked to
the most emphasized subtask.

During the demonstration, the human can also facilitate
the learning process by providing additional verbal cues to the
robot (such as object handling, vocal commands, etc.). These
cues can affect the attentional state of the robot, hence they
can influence task/subtask contentions and segments associ-
ations. Moreover, the human can always inspect the result
of a training session by invoking the repetition of learned
tasks and subtasks. Indeed, if the learned activities are not
satisfactory, task demonstrations can be repeated.
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Notice that, in a collaborative task execution setting, spe-
cific subtasks can be directly assigned to the human or
executed either by the human or the robot. For instance, a
pouring task may also include an explicit open(bottle) sub-
task that requires human manipulation. If the open(bottle)
subtask is executed by the human during the teaching, then it
will be assigned to the human. Hence, during the execution
phase, the robotic system will wait for the human assistance
in order to successfully execute the task. The overall learning
process is further detailed in the rest of the section.

4.1 Action segmentation

The demonstrated task has to be segmented into elemen-
tary movements. An effective segmentation strategy has to
be fast enough to work in real-time, consistent across differ-
ent demonstrations of the same task, and complete, meaning
that the generated segments represent the entire task.

In this work, we propose a simple and effective seg-
mentation mechanism, which is based on object proximity
and explicit human commands. Following the approach by
Wichter et al. (2013), each object in the environment is
associated with a proximity area, i.e., a sphere of radius r
around each object (we set r = 120 mm). When the end-
effector of the robot enters or leaves the proximity area of
an object, a new segment is generated. Analogously, when
a human command (e.g. open/close gripper) is executed a
new low-level action is created. The attentional system can
then automatically connect the generated action segments
to the task structure (see Fig. 3), while the Robot Manager
uses the robot’s trajectories to learn a motion primitive for
each action segment. Human commands are also included in
the task structure, in order to control the gripper when the
robot executes the task. We distinguish between two classes
of actions:

— Near-Object Action (NOA): the action is segmented
inside the proximity area of an object. In this case, we
exploit Dynamic Movement Primitives (DMP) (Ijspeert
et al. 2013) to compute a robust approximation of the
observed trajectory in order to accurately reproduce the
motion.

— Far-Object Action (FOA): the action is segmented out of
the proximity area of any object. In this case, only the
end-point of the observed trajectory is considered. The
action is then reproduced with a point-to-point motion,
generated with a linear dynamical system. This way, the
robot reaches the proximity area always with the same
pose, and executes NOA actions starting from a state
which is consistent with the demonstration (see Sect. 4.2).

The proposed segmentation mechanism allows the system
to reproduce complex actions involving two or more objects.

a a

Fig. 4 Teaching and execution of the pouring action (NOA). In the
teaching phase (left) the user drives the robot near the cup and pours
water, while in the execution phase (right) the robot reproduces the
movement

For example, the pouring action (NOA) illustrated in Fig. 4
has been trained with high accuracy and associated with the
pour(water) primitive behavior within the abstract task of
pouring.

The segmentation strategy requires the robot-object dis-
tances. Possible failures may occur if the objects are not
properly tracked, for instance if the teacher hides the object
to manipulate during the teaching. Failures may also occur if
the robot enters in the proximity area of multiple objects
simultaneously and each of these can be associated with
the generated segment. This occurrence can be prevented
by properly choosing the radius of the proximity area r.
Finally, the segmentation strategy may generate unnecessary
segments if the teacher guides the robot inside/outside the
proximity area of different objects without grasping them.
Even in this case, the learned task can be correctly executed
although the robot performs unnecessary motions like the
human demonstrator. This undesirable behavior can be pre-
vented by instructing the teacher to directly guide the robot
towards the object to use.

4.2 Learning motion primitives

The described segmentation approach transforms the human
demonstration into a set of basic actions with associated tar-
get poses. In order to reproduce the actions on a real robot,
we encode the segmented data into stable dynamical sys-
tems and refer to these systems as motion primitives. In
this work, motion primitives are learned from demonstra-
tions using Dynamic Movement Primitives (Ijspeert et al.
2013). DMP encode a motion primitive into a second order,
non-linear dynamical system (Park et al. 2008)

p=v (3a)
K(g—p)— Dv—K(g — p)s + K f(s) (3b)

.
Il

@ Springer



Autonomous Robots
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where p is the robot position/orientation, v its linear/angular
velocity, g the desired (goal) position, py is the initial posi-
tion of the robot, K and D are positive definite gain matrices.
The nonlinear forcing term f(-) reshapes the linear dynam-
ics to follow the demonstrated trajectory. The forcing term
is deactivated by the clock signal s — 0 to guarantee con-
vergence to g. The scalar gain ¥ > 0 determines how fast
s — 0. Recalling that, in practice, s = 0 after 5/y seconds,
we set each y equal to 5 over the duration of the NOA action.

DMP have several properties which make them well-
suited for our approach. First, the forcing term is learned
using a single demonstration. Hence, the user does not have to
repeat the same action multiple times. Second, DMP guaran-
tee convergence towards the target from any initial position.
Third, stable dynamical systems are robust to changes in the
target position and can be eventually combined with reac-
tive collision avoidance strategies to generate converging and
collision-free paths (Saveriano et al. 2017).

The full DMP structure in Eq. (3a)—(3c) is exploited to
learn and retrieve Near-Object-Actions, e.g., the nonlinear
part of motion of a pouring action. For Far-Object-Actions,
instead, we only consider the linear part of the DMP and
neglect the terms —K (g — po)s + K f(s) in Eq. (3c). This
way, the robot executes complex actions always from the
same initial state, preventing the problem of the excessive
magnification of trajectories generated from different ini-
tial states (Ijspeert et al. 2013). In order to reproduce the
demonstrated motion when the objects are placed at differ-
ent locations, goal poses are referred to a frame attached
to the specific object. At run time, the current goal is first
referred to the robot frame (located at the base of the robot)
and then passed together with the robot pose to the dynam-
ical system that generates the motion. It is worth noticing
that the combination of DMP and the proposed segmenta-
tion strategy permits to learn motion primitives without any
off-line data processing. In particular, the target position for
each action, as well as the demonstrated trajectory, are auto-
matically provided by the segmentation approach and then
used to learn the action, without further human intervention
or data post-processing.

4.3 Task learning

In this section, we illustrate how the generated segments
are connected to high-level task structures. This process is
managed by the attentional system while monitoring the
human demonstration. We assume that a description of the
task structure is already provided in the LTM (see Eq. (4)
for an example), while the learning problem is to produce
an updated LTM where all the associations between sub-
tasks and segments are represented. We call open subtasks
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the schemata of LTM that represent concrete behaviors [as
subtask(take, Obj) in Eq. (4)] but are not associated to
segments (i.e. that cannot be executed by the robot). In this
setting, starting from an initial LTM that contains a set of
n open subtasks, our learning process produces an updated
LTM' where the open subtasks in LTM? are further decom-
posed by the m generated segments, each associated with
a motion primitive in the Robot Manager. When a teaching
phase starts, the abstract behavior representing the task to be
demonstrated is allocated in the WM and then hierarchically
decomposed by the alive process (see Sect. 3.2). This way, a
behavioral tree Ty, is generated in the WM that contains a
set of open subtasks O = {sub, ..., sub,} to be linked to
the segments produced by the RM. In order to describe this
process, we consider the demonstration of a water-pouring
task (see Fig. 5). This task is hierarchically decomposed in
the rake-water and pour-water subtasks (frame #1), which
are denoted in the LTM by the following schemata:

schema(add(Obj),
((subtask(take, Obj), hand. free),
(subtask(pour, Obj), Obj.taken)),
Obj.used
j.used) @)

schema(subtask(take, Obj), (), Obj.taken)
schema(subtask(pour, Obj), (), Obj.used)

Here, the pick-and-pour task can be instantiated with dif-
ferent objects (Obj). The subtask rake is enabled when
the hand is free (releaser hand. free) and associated with
the Obj.taken post-condition, while the pour subtask is
enabled when the object is taken (releaser Obj.taken) and
related to the Obj.used post-condition.

In order to be executed, the add (Obj) has to be instanti-
ated and allocated in the WM. However, the two subtasks
(pour and take) are not linked to concrete sensorimotor
processes, which are automatically generated during the
kinesthetic teaching process. Since each subtask is imple-
mented by a concrete WM node, it is associated with an
activation level, which is (bottom-up) affected by the prox-
imity of the objects in the scene [see Eq. (1)] and (top-down)
modulated by the overall tasks allocated and enabled in the
WM. Therefore, during the human demonstration, the atten-
tional system enhances the activations of the subtasks which
are accessible (i.e. closer to the associated target objects)
and task relevant (i.e. top-down stimulated through the task
structure). These activation values are then used to link the
concrete subtasks to the generated segments (and to the asso-
ciated motion primitives in the Robot Manager), as described
in Algorithm 1.

In particular, when a new segment is created by the
Robot Manager (line 2), all the enabled open sub-tasks of
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Fig.5 Representation of the WM update during the pouring task. The
system starts from a simple structure for the add (water) task (¢1). Dur-
ing the user demonstration new segments are added to the take-water
subtask (#2) along with their releaser (labels on the arrows). When the
new pour-water subtask is selected (r3) a new FOA is linked with
a true releaser. Here, green and red ovals represent enabled and dis-

Algorithm 1 Allocation of a new segment in the task hierar-
chy.

1: while true do
2 if a new segment seg from RM exists then
3 get winner suby;, <— argmax ey,
sub;jeO
4: if sub,;, is a new subtask and seg is FOA then
5: set releaser ¢ <— true
6: else
7: set releaser ¢ <— pprev
8: end if
9: set post-condition p <— seg.done
10: add behavior (seg, g, p, 9, i) to suby, in WM
11: add new schema(seg, ( ), p) in LTM
12: add (seg, g) to sub-task list of sub,,;, in LTM
13:  endif

14: end while

the WM compete to add the segment as a new child node
(line 3). In our framework, this competition is managed by a
winner-takes-all approach where the most emphasized sub-
task acquires the new segment [see Eq. (2)]. When a new
segment is generated, we have to define its releaser and post-
condition (lines 4-9). The releaser is always enabled (true)
if a FOA segment is added to a subtask with no other child
nodes (lines 4, 5). Otherwise, the execution of the segments
has to be chained, hence the post-conditions of the previ-
ous segment is exploited as the releaser of the current one
(lines 6, 7). The post-condition of each segment is then set
to seg.done (line 9). This symbolic post-condition is asso-
ciated with a sub-symbolic constraint used to check whether
the associated motion has been actually executed by the

abled behaviors (satisfied and unsatisfied releasers), blue ovals are for
accomplished behaviors (satisfied postconditions), dotted ovals are for
abstract behaviors. For each behavioral node, the values outside/inside
brackets are for the inverse of emphasis 1/¢;, (i.e. activation period) and
magnitude 1, (top-down influence) respectively

robot. If a segment is associated with a motion primitive,
sub-symbolic constraints are directly provided by the RM
(e.g. target zones for the end-effector). Instead, predefined
commands (e.g. open/close gripper) are directly associated
with predefined sub-symbolic conditions (e.g. constraints
on the gripper state). When a new segment is generated, a
corresponding new behavior is allocated in WM as a child
node of the winning open subtask (line 10) (see also Fig. 5,
frame 2, where the linked segments are indicated by the
dotted line) and the LTM is updated accordingly (lines 11,
12). Notice that the chaining constraint is introduced for
segments belonging to the same subtask or if the subtask
starts with a NOA segment, which requires the fixed start-
ing point provided by the previous segment. On the other
hand, if the new subtask starts with a FOA segment, we can
keep it decoupled from the previous subtask, in so enabling
reusability and flexible execution of the associated subtask.
Indeed, at the execution time, all the enabled segments of
the WM compete to acquire the control of the robotic plat-
form. Hence, multiple independent tasks and subtasks can be
executed in a flexible manner, diverging from the sequence
illustrated during the demonstration. The overall method is
exemplified in Fig. 5. Once the user drives the robot towards
the bottle and grasps it, the system generates 3 new seg-
ments: foa8(water) when the robot enters the objects area,
noa9(water) and gripper(close) when the bottle is reached
and grasped. These segments are attached to the take-water
subtask, which is the only one available in this context, while
the associated enabling conditions are needed to ensure the
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sequence of the segments (i.e. noa9 executed after foa8, and
gripper(close) after noa9). Afterwards, when the robot is
driven towards the cup, the novel segment foalO(world)
is generated and linked to the pour-water subtask which
becomes active after the bottle grasping. In this case, the
motion between the bottle and the cup represents a FOA and
the new generated segment is associated with a frue releaser
(i.e. always enabled).

5 Experimental results

In this section, we propose some experiments to show that
the proposed approach can be effectively applied for (i)
incremental learning and execution of structured tasks, (ii)
execution of learned tasks in cooperation with the human,
and (iii) reuse of acquired knowledge in different contexts.
To this end, we consider two typical tasks of a kitchen sce-
nario; namely prepare coffee and prepare tea. The robot is
a KUKA LWR IV+ (Bischoff et al. 2010), equipped with a
WSGS50 2-fingers gripper. As illustrated in Fig. 6, objects are
recognized and tracked using markers and a RGB-D camera
as in Garrido-Jurado et al. (2014). The marker close to the
robot base is used to compute the coordinate transformation
between the camera frame and the robot base. Due to possi-
ble marker occlusions during the teaching, we estimate the
robot-camera transformation and the pose of the cup at the
beginning of each experiment and keep them constant during
the execution. All the other objects, instead, are continuously
tracked at 30 Hz. The user initiates a kinesthetic teaching
session via the speech command feach. The teaching ses-
sion is terminated by the speech command done. The user
can interrupt/restart the execution of a learned task using the
speech commands stop/repeat. Graduate students in robotics
and automation participated to the experiments as teachers.
The parameters used in our system are listed in Table 1.

camera-robot
calibration

RGB-D &
camera

Fig.6 Experimental setup
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Table 1 Parameters used in the experimental evaluation

Parameter Meaning Value
Robot Manager

r Radius of the proximity area  0.12m

K = diag(ky, ...,ke) DMP stiffness gains ki =70.0

D = diag(dy, ...,ds) DMP damping gains d; = 2k;
Attentional System

Amax Max behavior period 1s

Amin Min behavior period 0.1s

pmax Max object distance 2m

pmin Min object distance Om

k Magnitude increment 1

5.1 Pouring a drink

In the first experiment we teach the robot how to pour water in
a cup. The pouring task consists of two subtasks: take-water
and pour-water (see Fig. 5, t1). During the teaching process,
the teacher has to simply guide the robot towards the task
execution, providing sparse speech commands (open/close)
to control the gripper. In Fig. 7, we illustrate the WM state
after a one-shot teaching session. At the end of the demon-
stration, we can find nine generated segments, which are
linked to the associated subtasks. These new elements are
also associated with preconditions, effects, and activation
values. As detailed in Algorithm 1, these generated elements
are also stored in the LTM to be re-used in future scenar-
10s. Once learned, the task can be executed. In this situation,
the attentional system first selects the subtask rake-water,
which is enabled when the robot has no object in its grip-
per (hand.free). The segments linked to the same subtask are

o

-~ ~

! /add(water)\
hand.free/4 AN 1_ (_1_) . /&'ﬂtemaken
subtask(take,water) subtask(pour,water)
1(1) 21

3
gripper(close) ;:0
2(1) 2(
hoa2(water) foad(world) foa6(world) )
2(1) 2(1) 201 gripper(open)
M 2(1)

Fig. 7 The WM state after the pouring task demonstration. Nine gen-
erated segments are linked to the associated subtasks
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Table 2 Results for ten repetitions of the pouring a drink task

take-water pour-water add(water)
Teaching time (s) (mean = std)

20.1+1.2 30.3 +£0.8 50.4 +2.0
Execution time (s) (mean =+ std)

31.0£ 1.5 46.5 + 0.8 775 +2.3

Success rate
1 1 1

executed in the order shown during the demonstration. For
example, in order to perform the take-water subtask, the robot
executes foal(water), noa2(water) and then gripper(close).

In order to quantitatively evaluate the effectiveness of
the proposed approach, we measured teaching and execu-
tion times over ten repetitions of the task. Moreover, in order
to show the robustness of our approach with respect to the
initial conditions, we performed ten repetitions of the task
with the bottle placed at random positions, measuring the
success rate as the number of correct executions over the
total executions. A trial is considered successful if the robot
grasps the bottle and pours the water within the cup.

As shown in Table 2, teaching this relatively complex task
requires approximately 50 s. Moreover, the task was success-
fully executed in all the ten trials (success rate equal to 1).
These results show that the proposed framework allows to
transfer novel skills to a robotic device in a quite fast, natu-
ral, and effective manner. Indeed, for each session, the task
is illustrated through a one-shot kinesthetic teaching demon-
stration, associated with sporadic verbal commands only
used to open or close the gripper. Notice also that the execu-
tion time for the pouring task (77.5s, on average) appears
here slightly longer than the time needed to demonstrate
the task (50.4 s, on average). This slower execution does not
depend on the attentional system, which can effectively mon-
itor and select the robotic tasks and actions. Instead, it mainly
depends on the convergence time of the dynamical systems
used to generate motor commands (see Sect. 4.2). A possible
way to reduce the execution time is to perform each action at
a predefined speed ¢, i.e., by generating a velocity command
with p = eﬁ instead of Eq. (3a).

5.2 Prepare coffee: task learning and autonomous
execution

This experiment shows how a complex, structured task is
learned and executed using the proposed framework. We con-
sider the task of preparing a coffee, in which the robot has
to: (i) pour the water in the cup, (ii) add the coffee pow-
der, and (iii) mix water and coffee powder with a spoon.
Before learning, the WM only contains the three behav-

hand.free__("subtask(take,water)
LTS 1(1)

! /add(water) ,

1(1)
“““ \ subtask(pour water)
~water.taken 1(1)
- hand.free__ /Subtask(take,coffee)
” SSUTRUE -7 s 1(1)
- ,’ preparecoffee ,_.’ add(coffee),
L s A«
\ ~—=-7 T~ subtask(pour coffee)
~coffee.taken
- hmd free subtask(ta.ke spoon)

use(spoon) ,

\
N
- subtask(mlx spoon)
~sp0()n taken

Fig. 8 The WM before learning how to prepare a coffee. The task
preparecoffee has three child nodes, namely add(water), add(coffe)
and use(spoon). add(water) and add(coffe) can be executed in any
order (true releaser), while use(spoon) requires that both the water and
the coffee powder are added. Initially, both subtask(take,water) and
subtask(take,coffee) are enabled, hence they compete for the initial seg-
ments

TRUE

~water.used
~coffee.used

iors add(water), add(coffee) and use(spoon) without any link
to motion primitives, as illustrated in Fig. 8. The action
primitives and segments are automatically added during the
kinesthetic teaching and then used to reproduce the task. Note
that the order of execution of add(water) and add(coffee) is
not relevant for task learning and execution, therefore, they
are both enabled when the task starts. In this case, task selec-
tion only depends on the attentional regulations. In Fig. 9,
we show teaching and execution snapshots of add(water),
add(coffee) and use(spoon), each associated with the WM
state obtained at the end of a learning session. Here, the user
can directly teach the overall prepare coffee task and then
execute it, otherwise the task can be step by step demon-
strated and executed (see the prepare tea task in Sect. 5.4).
Similarly to the previous experiment, we measured teach-
ing and training time, as well as, the success rate over ten
task repetitions (with objects randomly placed). Results in
Table 3 show that, on average, teaching the prepare coffee
task takes less than 3min, while executing the task takes
about 3.7 min. Analogously to the previous experiment, the
longer execution time mainly depends on the convergence
time of the dynamical systems. Table 3 also shows train-
ing and execution times for each subtask. Looking at these
results, we notice that the time to grasp an object is almost
independent on the particular item. This is because, in our
setup, objects are relatively close and they are grasped in a
similar manner. We also notice that take-spoon takes always
longer than other take actions. The reason is that the sub-
task use(spoon) is always executed at the end, and the robot
has to cover a bigger distance to reach the spoon. Moreover,
Table 3 shows that the task execution has less variability
than the teaching. This means that, despite the user intro-
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Teach: add(coffee)

! add(water)\

4 &Natcmakcn
subtask(pour,water)
2()

S

N
’/add(spoon)\
handAfrV‘\\1 (Uf,’&poon.taken
subtask(pour spoon)

2(1)
foal8(world) foa20(world) -
gﬂpp;;({;pen)

Fig.9 The robot learns how to prepare a coffee. (Left panels) Snapshots of the kinesthetic teaching and autonomous task execution. (Right panels)
Actions are automatically attached to the behaviors in the WM and used to reproduce the task

duces some variability across different demonstrations, the
task execution time is relatively constrained. Several actions
of the learned task are, in fact, linear point-to-point motions
which are executed in similar times across different repeti-
tions.

Also in this case, the task success rate is quite high
(0.9) and only one failure occurs over ten trials. In the
failed trial, the robot did not grasp the coffee jar sufficiently
close to its center of mass, probably due to an error in
the tracking system. Being the jar turned, the robot failed
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to add the coffee in the cup. Notice that, in the current
implementation, we exploit a simple grasping strategy. A
possible way to increase the robustness of the system is
to use a multi-fingered robotic hand and perform a power
grasp (Roa et al. 2012), or to exploit tactile sensing in
order to detect and avoid the slipping (De Maria et al.
2015).
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Table 3 Results for ten repetitions of the prepare coffee task

take-water pour-water  add(water)  take-coffee  pour-coffee  add(coffee) take-spoon  mix-spoon  use(spoon)  prepareColffee
Teaching time (s) (mean = std)

200+23 30.1+14 501+£37 198+26 372+19 570+45 213+£27 373+£19 586+46 1657+12.8
Execution time (s) (mean =+ std)

284+05 427+03 71.1+£08 279407 477+£03 756+1.0 298+0.7 480+04 778+1.1 2245+29
Success rate

1 1 1 1 0.9 0.9 1 1 1 0.9

_--~_ hand.free
d(coffee) subtask(take coffee) f0a8(water) ' fgas(water) 7
o ra_ . |

ﬂdd(Wﬂler);_> subtask(take water) foal(coffee)
\ I . 1(1) 035 (1)
- TRU

"7 hand free

hand.free

1
|
|

LT TRUE \
dd(coffee) subtask(take,coffee) foa8(water))!

\ 1(1) . 1(1) 1 _J,

'
Most emphas:zed

\:iddl(\;vla)ler) ,_, subtask(take water) anl(COffee) | foal(coffee) m,
- |

hand.free

v

New rebot action

Fig. 10 Cooperative execution of the prepare coffee task. The user
takes the bottle and pours the water while the robot is approaching the
bottle. Notice that, before the human intervention the most emphasized
action segment is foa8(water). On the other hand, when the human
performs the action, the robotic task execution is online adapted: the
most emphasized action segment becomes foal(coffee) and the robot
takes the coffee jar

5.3 Prepare coffee: cooperative task execution

The proposed framework permits a cooperative execution
of the learned tasks. As a proof of concepts, we consider
the coffee task described in the previous experiment and
two cooperative scenarios. In the first case, the human
helps the robot to fulfill the task by adding the water him-
self. To show the on-line capabilities of the attentional
system, the user intentionally takes the bottle, while the
robot is approaching it, (i.e., while it is executing the
foa8(water) action in Fig. 10) and pours the water. In this
situation, the system has to rapidly adapt task execution
with respect to the human behavior. Since the water is not
anymore available in the scene, the add(water) behavior
becomes less attractive for the robot that starts to execute
the add(coffee) (which is available and enabled in the WM).
At the same time, the system can monitor the human behav-
ior and assign the add(water) execution to the human. In

rq >

Fig. 11 a The bottle is closed and the robot will fail to pour the water.
b Once the user has suspended the task and removed the cap, the robot
can correctly execute it

this setting, for the sake of simplicity, the above assign-
ment is explicitly communicated by the human through a
vocal utterance. Notice, however, that more complex activ-
ity recognition methods can be deployed for the same
purpose (Caccavale et al. 2014). We executed this cooper-
ative task ten times, obtaining an average execution time of
149.8 +3.5s. A comparison with the autonomous execution
time in Table 3 allows us to conclude that the cooperative
execution is beneficial in terms of execution time. In partic-
ular, we observe that the time needed for task adjustment
does not have a significant impact on the total execution
time.

Human-robot cooperation can be also exploited to over-
come robot limitations. As a proof of concepts, we consider
the case in Fig. 11a where the robot is pouring the water with
the bottle closed. Even with a more sophisticated perception
system able to recognize the cap, a single manipulator could
not open the bottle and the pouring task would fail. In this
case, the human intervention is essential to fulfill the task.
In the proposed framework, during the execution phase, the
user can suspend the task execution via the speech command
stop, open the bottle (see Fig. 11b), and restart the execu-
tion (speech command repeat). Otherwise, we can explicitly
introduce in the task structure a subtask open(Obj) which is
directly assigned to the human manipulation and left unlinked
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Execute: add(water)

Fig.12 Therobot learns how to prepare a tea. (Top-left) The add(water)
behavior has been already demonstrated for the prepare coffee task
and can be reused in the prepare tea task. (Top-right) The WM state
after the add(water) execution. (Bottom-left) The human can demon-

for the robot execution. This way, the robot is to wait for
the human help or guidance in order to execute the task.
During the teaching phase, this subtask can be executed by
the human (under the attentional supervision), while the rest
of the task can be again demonstrated through kinesthetic
teaching. Analogously to the close subtask, for the sake of
simplicity, the human may just verbally declare the end of
his/her intervention. It is also worth noting that, in this coop-
erative setting, the operator can teach motion primitives in
preparation of the human interventions. For instance, when
the next subtask is a human manipulation (e.g. open(water)),
the robot should provide the object (bottle of water) in a com-
fortable position for the operator, hence in the learning phase
this subtask should be also demonstrated taking the human
into account.

5.4 Prepare tea: task re-usage

In the last experiment, we show that the acquired knowl-
edge can be re-used to speed-up the acquisition of novel
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strate the novel subtask through kinesthetic teaching, then the robot can
autonomously execute the rest of the task (add(tea)). (Bottom-right)
The WM state after the add(tea) demonstration

tasks. We consider the task of preparing a tea, where the
robot has to pour the water in the cup and add a tea bag.
The add(water) behavior is the same behavior used to pre-
pare the coffee and can be re-used in this novel scenario.
In other words, the already learned behavior can be loaded
from the long term memory and instantiated in the work-
ing memory, while the user has only to teach how to add
the tea bag (see Fig. 12). Once allocated in the WM, all the
enabled and linked subtasks (e.g. add(water)) can be exe-
cuted until the open subtask (add(tea)) is selected. In this
case the robot needs the human demonstration to learn how
to complete the overall task. In order to assess the effective-
ness of task re-usage, we run ten teaching sessions: in five
runs the teacher has to demonstrate the entire task, while in
the remaining five runs the operator only teaches the miss-
ing add(tea) behavior. In this second setting, the robot waits
for the human assistance, whenever not able to execute a
subtask. As reported in Table 4, in the tea scenario, task re-
usage is effective and can reduce the teaching time of about
53%.
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Table 4 Results for ten training trials of the prepare tea task

Teaching time (s) (mean = std) Task re-usage

add(water) add(tea) prepareTea (yes / no)
50.1+1.9 341+1.0 84.24+29 No

— 356+ 14 35614 Yes

The symbol “—" indicates an already learned subtask

6 Conclusions and future work

We presented a framework that allows a robot manipula-
tor to learn how to execute structured tasks from one-shot
kinesthetic demonstrations. In this framework, a supervisory
attentional system continuously monitors the human and the
robot activities during both task execution and task learn-
ing. During kinesthetic teaching, the human demonstration is
automatically segmented producing motion primitives, while
the attentional system relates the generated segments to the
task structure exploiting attentional regulations. The frame-
work has been evaluated considering a robotic manipulator
operating in a kitchen scenario. Obtained results show that the
system allows the robot to quickly learn and robustly execute
typical structured activities that involve object manipulation.
Moreover, we have shown how the attentional supervision
of both the user and the robot activities enables cooperative
execution of the learned tasks with an associated reduction
of the execution time. Finally, we illustrated how learned
tasks/subtasks can be reused in the context of novel task, in
so enabling the acquisition of incrementally complex capa-
bilities.

The focus of this work was on learning and executing
kinematic tasks; extending the framework to learn and exe-
cute force patterns will be the topic of our future research.
Moreover, we plan to investigate more complex human inter-
action scenarios along with more sophisticated attentional
cueing mechanisms during both task teaching and execu-
tion. Finally, we aim at assessing the effectiveness of the
proposed framework with an extended user study involving
inexpert users.
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