Abstract
A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.








Similar content being viewed by others
References
Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., and Vaughan, T., Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113:767–791, 2002. doi:10.1016/s1388-2457(02)00057-3.
Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M., and Babiloni, F., Non-invasive brain–computer interface system: Towards its application as assistive technology. Brain Res. Bull. 75:796–803, 2008. doi:10.1016/j.brainresbull.2008.01.007.
Lebedev, M., and Nicolelis, M., Brain–machine interfaces: past, present and future. Trends Neurosci. 29:536–546, 2006. doi:10.1016/j.tins.2006.07.004.
Millán, J. (2013) Brain-Computer Interfaces. Introduction to Neural Engineering for Motor Rehabilitation 237–252. doi:10.1002/9781118628522.ch12
Wolpaw, J., McFarland, D., Neat, G., and Forneris, C., An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78:252–259, 1991. doi:10.1016/0013-4694(91)90040-b.
Williamson, J., Murray-Smith, R., Blankertz, B., Krauledat, M., and Müller, K., Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int. J. Hum. Comput. Stud. 67:827–841, 2009. doi:10.1016/j.ijhcs.2009.05.009.
Pires, G., Torres, M., Casaleiro, N., Nunes, U. and Castelo-Branco, M. (2011) Playing Tetris with non-invasive BCI. 2011 I.E. 1st International Conference on Serious Games and Applications for Health (SeGAH). doi:10.1109/segah.2011.6165454
D'albis, T., Blatt, R., Tedesco, R., Sbattella, L., and Matteucci, M., A predictive speller controlled by a brain-computer interface based on motor imagery. TOCHI. 19:1–25, 2012. doi:10.1145/2362364.2362368.
LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., and He, B., Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 10:046003, 2013. doi:10.1088/1741-2560/10/4/046003.
Yu, T., Li, Y., Long, J., and Li, F., A hybrid brain-computer interface-based mail client. Comput. Math. Methods Med. 2013:1–9, 2013. doi:10.1155/2013/750934.
Niedermeyer, E., and Lopes da Silva, F., Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia, 2005.
Subha, D., Joseph, P., Acharya, U.R., and Lim, C., EEG signal analysis: A survey. J. Med. Syst. 34:195–212, 2008. doi:10.1007/s10916-008-9231-z.
Bauer, G., Gerstenbrand, F., and Rumpl, E., Varieties of the locked-in syndrome. J. Neurol. 221:77–91, 1979. doi:10.1007/bf00313105.
Neuper, C., Müller-Putz, G., Scherer, R., and Pfurtscheller, G., Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog. Brain Res. 393–409, 2006. doi:10.1016/s0079-6123(06)59025-9.
Furdea, A., Halder, S., Krusienski, D., Bross, D., Nijboer, F., Birbaumer, N., and Kübler, A., An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology. 46:617–625, 2009. doi:10.1111/j.1469-8986.2008.00783.x.
Lance, B., Kerick, S., Ries, A., Oie, K., and McDowell, K., Brain-computer interface technologies in the coming decades. Proc. IEEE. 100:1585–1599, 2012. doi:10.1109/jproc.2012.2184830.
Kaufmann, T., Holz, E., and Kübler, A., Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front. Neurosci., 2013. doi:10.3389/fnins.2013.00129.
Placidi, G., Avola, D., Petracca, A., Sgallari, F., and Spezialetti, M., Basis for the implementation of an EEG-based single-trial binary brain computer interface through the disgust produced by remembering unpleasant odors. Neurocomputing, 2015. doi:10.1016/j.neucom.2015.02.034.
Blankertz, B., Muller, K., Curio, G., Vaughan, T., Schalk, G., Wolpaw, J., Schlogl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schroder, M., and Birbaumer, N., The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51:1044–1051, 2004. doi:10.1109/tbme.2004.826692.
Farwell, L., and Donchin, E., Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70:510–523, 1988. doi:10.1016/0013-4694(88)90149-6.
Townsend, G., LaPallo, B., Boulay, C., Krusienski, D., Frye, G., Hauser, C., Schwartz, N., Vaughan, T., Wolpaw, J., and Sellers, E., A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin. Neurophysiol. 121:1109–1120, 2010. doi:10.1016/j.clinph.2010.01.030.
Apache Project. The Apache HTTP Server Project. http://httpd.apache.org/. Accessed 3 Apr 2015
Tilkov, S., and Vinoski, S., Node.js: Using JavaScript to build high-performance network programs. IEEE Internet Comput. 14:80–83, 2010. doi:10.1109/mic.2010.145.
Node.js. http://nodejs.org/. Accessed 3 Apr 2015
MySQL: The world’s most popular open source database. http://www.mysql.com/. Accessed 3 Apr 2015
Zhao, S., Xia, X., and Le, J., A real-time web application solution based on node.js and WebSocket. Adv. Mater. Res. 816–817:1111–1115, 2013. doi:10.4028/www.scientific.net/amr.816-817.1111.
W3C HTML. http://www.w3.org/html. Accessed 3 Apr 2015
HTML 5. http://www.w3.org/html/wg/drafts/html/master/. Accessed 3 Apr 2015
CSS Cascading Style Sheets. http://www.w3.org/Style/CSS/. Accessed 3 Apr 2015
The Grid System. http://www.thegridsystem.org/. Accessed 3 Apr 2015
jQuery. In: Jquery.com. http://jquery.com. Accessed 3 Apr 2015
Socket RFC 147 - Definition of a socket. https://tools.ietf.org/html/rfc147. Accessed 3 Apr 2015
UDP RFC 768 - User Datagram Protocol. http://tools.ietf.org/html/rfc768. Accessed 3 Apr 2015
WebSocket.org - A WebSocket Community. http://www.websocket.org. Accessed 3 Apr 2015
The WebSocket API. http://www.w3.org/TR/2011/WD-websockets-20110419. Accessed 3 Apr 2015
Corpus.byu.edu. British National Corpus (BYU-BNC). http://corpus.byu.edu/bnc/. Accessed 3Apr 2015
Liber Liber. http://www.liberliber.it. Accessed 3 Apr 2015
Neuroelectrics ENOBIO. http://www.neuroelectrics.com/enobio. Accessed 3 Apr 2015
Jurcak, V., Tsuzuki, D., and Dan, I., 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage. 34:1600–1611, 2007. doi:10.1016/j.neuroimage.2006.09.024.
Placidi, G., Petracca, A., Spezialetti, M., and Iacoviello, D. (2015) Classification Strategies for a Single-Trial Binary Brain Computer Interface Based on Remembering Unpleasant Odors. Proceedings of 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 7019–7022.
Iacoviello, D., Petracca, A., Spezialetti, M., and Placidi, G., A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Comput. Methods Prog. Biomed., 2015. doi:10.1016/j.cmpb.2015.08.011.
Draper, N., and Smith, H. (1998) Applied regression analysis. New York: Wiley 3rd Edition. isbn: 0-471-17082-8.
Pistoia, F., Carolei, A., Iacoviello, D., Petracca, A., Sacco, S., Sarà, M., Spezialetti, M., and Placidi, G., EEG-detected olfactory imagery to reveal covert consciousness in minimally conscious state. Brain Inj., 2015. doi:10.3109/02699052.2015.1075251.
Acknowledgments
The Authors are very grateful to the “Fondazione Fabio Sciacca Onlus” for having supported this research project.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Patient Facing Systems
Rights and permissions
About this article
Cite this article
Placidi, G., Petracca, A., Spezialetti, M. et al. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People. J Med Syst 40, 34 (2016). https://doi.org/10.1007/s10916-015-0402-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-015-0402-4