Abstract
In this paper we introduce a novel pseudo-relevance feedback (RF) perspective to social image search results diversification. Traditional RF techniques introduce the user in the processing loop by harvesting feedback about the relevance of the query results. This information is used for recomputing a better representation of the needed data. The novelty of our work is in exploiting the automatic generation of user feedback in a completely unsupervised diversification scenario, where positive and negative examples are used to generate better representations of visual classes in the data. First, user feedback is simulated automatically by selecting positive and negative examples from the initial query results. Then, an unsupervised hierarchical clustering is used to re-group images according to their content. Diversification is finally achieved with a re-ranking approach of the previously achieved clusters. Experimental validation on real-world data from Flickr shows the benefits of this approach achieving very promising results.








Similar content being viewed by others
Notes
An implementation of the used blur indicators is available at http://www.mathworks.com/ matlabcentral/fileexchange/27314-focus-measure/content/fmeasure/fmeasure.m
References
Bosch A, Zisserman A, Munoz X (2007) Image classifcation using random forests and ferns. In: Proceedings of IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 14-21. ISSN 1550-5499, pp 1–8
Boteanu B, Mironică I, Ionescu B (2015) Hierarchical clustering pseudo-relevance feedback for social image search result diversification. In: Proceedings of 13th International Workshop on Content-Based Multimedia Indexing CBMI 2015, Prague, Czech Republic, 10-12, pp 1–6
Cao G, Nie JY, Gao J, Robertson S (2008) Selecting Good Expansion Terms for Pseudo- Relevance Feedback. In: ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, 20-24, pp 243–250
Cao L, Ji R, Liu W, Gao Y, Duan LY, Men C (2012) Weakly supervised topic grouping of youtube search results. In: Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), Coronado Springs - Disney World Orlando, FL, USA, pp 2885–2888
Carbonell J, Yang RFY, Brown RD, Geng Y, Lee D (1997) Translingual information retrieval: a comparative evaluation. In: Proceedings of 15th International Joint Conference on Artificial Intelligence (IJCAI), Aichi, Japan, 23-29, pp 708–715
Cai D, He X, Li Z, Ma W-Y, Wen JR (2004) Hierarchical clustering of WWW image search results using visual, textual and link information. In: Proceedings of the 12th Annual ACM International Conference on Multimedia, NY, USA, 10-16, pp 952–959
Castellanos A, Benavent X, Serrano AG, De Ves E, Cigarrn J UNED-UV @ retrieving diverse social images task. In: Proceedings of the MediaEval 2015 Workshop, Wurzen, Germany, 14-15, 2015, CEUR-WS.org, ISSN 1613-0073, 1436, http://ceur-ws.org/Vol-1436/
Calumby RT, do IBA, Araujo C, Santana VP, Munoz JAV, Penatti OAB, Li LT, Almeida J, Chiachia G, Gonalves MA, Da S. Torres R Recod @ MediaEval 2015: diverse social images retrieval. In: Proceedings of the MediaEval 2015 Workshop, Wurzen, Germany, 14-15, 2015, CEUR-WS.org, ISSN 1613-0073, 1436, http://ceur-ws.org/Vol-1436/
Castellanos A, GarcEDa-serrano A, Recuero JMC UNED @ retrieving diverse social images task. In: Proceedings of the MediaEval 2014 Workshop, Barcelona, Spain, 16-17, 2014, CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Calumby RT, Santana VP, Cordeiro FS, Penatti OAB, Li LT, Chiachia G, Da S. Torres R Recod @ MediaEval 2014: diverse social images retrieval. In: Proceedings of the MediaEval 2014 Workshop, Barcelona, Spain, 16-17, 2014, CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Datta R, Joshi D, Li J, Wang JZ (2008) Image Retrieval: ideas, Influences, and Trends of the New Age. ACM Comput Surv 40(2):1–60
Dang V, Croft WB (2012) Diversity by proportiona lity: an election-based approach to search result diversification. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Oregon, USA, 12-16, pp 65–74
Dang-Nguyen D-T, Piras L, Giacinto G, Boato G, De natale F (2015) A hybrid approach for Retrieving Diverse Social Images of Landmarks. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), Torino, Italy, pp 1–6
Denis F (1998) PAC learning from positive statistical queries. In: Proceedings of 9th International Conference on Algorithmic Learning Theory, Lecture Notes in Artificial Intelligence, 1501. Springer - Verlag, pp 112–126
De Weijer V, Schmid C, Verbeek J, Larlus D (2009) Learning color names for real-world applications. IEEE Trans Image Process 18(7):1512–1523
Garcia Seco de Herrera A, Kalpathy-Cramer J, Demner Fushman D, Antani S, Müller H (2013) Overview of the ImageCLEF 2013 medical tasks. In: Working Notes of Cross Language Evaluation Forum (CLEF), Spain, pp 23–26
Giacinto G (2207) A nearest-neighbor approach to relevance feedback in content-based image retrieval. In: Proceedings of the 6th ACM Conf. on Image and Video Retrieval, Amsterdam, Netherlands, 09-11, pp 456–463
Ionescu B, Popescu A, Radu A-L, Müller H (2014) Result diversification in social image retrieval: a benchmarking framework
Ionescu B, Popescu A, Lupu M, Ginscă AL, Boteanu B, Müller H (2015) Div150Cred: a social image retrieval result diversification with user tagging credibility dataset. In: ACM Multimedia Systems (MMSys), Oregon, USA, 18-20, pp 207–212
Ionescu B, Radu A-L, Menéndez M, Müller H, Popescu A, Loni B (2014) Div400: a social image retrieval result diversification dataset. In: ACM Multimedia Systems (MMSys), Singapore, 19-20, pp 29–34
Ionescu B, Ginscă AL, Boteanu B, Popescu A, Lupu M, Müller H Retrieving diverse social images at MediaEval 2015: challenge, dataset and evaluation. In: Proceedings of the MediaEval 2015 Workshop, Wurzen, Germany, 14-15, 2015, CEUR-WS.org, ISSN 1613-0073, 1436, http://ceur-ws.org/Vol-1436/
Ionescu B, Popescu A, Lupu M, Ginscă AL, Müller H Retrieving diverse social images at MediaEval 2014: challenge, dataset and evaluation. In: Proceedings of the MediaEval 2014Workshop, Barcelona, Spain, 16-17, 2014, CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Jones S, Shao L (2013) Content-based retrieval of human actions from realistic video databases. Inf Sci 236:56–65
Jiang L, Mitamura T, Yu SI, Hauptmann AG (2014) Zero-example Event Search Using Multimodal Pseudo Relevance Feedback. In: Proceedings of International Conference on Multimedia Retrieval, Glasgow, U.K., 01-04, pp 297–304
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323
Ksibi A, Ammar AB, Amar CB (2014) Adaptive diversification for tag-based social image retrieval. Int J Multimed Inf Retr 3(1):29–39
King B (1967) Step-wise clustering procedures. J Am Stat Assoc 62(317):86–101
Liang S, Sun Z (2008) Sketch retrieval and relevance feedback with biased SVM classification. Pattern Recogn Lett 29(12):1733–1741
Liu B, Lee WS, Yu PS, Li X (2002) Partially supervised classification of text documents. In: Proceedings of 19th International Conference on Machine Learning, Sydney, Australia, 08-12, pp 387?-394
Ludwig O, Delgado D, Goncalves V, Nunes U (2009) Trainable Classifier-Fusion Schemes: An Application To Pedestrian Detection. In: Proceedings of the 12th Int. IEEE Conf. on Intelligent Transportation Systems, Missouri, USA, 04-07, pp 1–6
Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circ Syst Video Technol 11(6):703–715
Over P, Awad G, Michel M, Fiscus J, Sanders G, Kraaij W, Smeaton AF, Queenot G (2013) TRECVID 2013 — An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics. TRECVID Workshop, NIST, USA. http://www-nlpir.nist.gov/projects/tvpubs/tv13.papers/tv13overview.pdf
Ojala T, Pietikinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1, pp 582–585
Priyatharshini R, Chitrakala S (2013) Association based image retrieval: a survey. In: Mobile Communication and Power Engineering, Springer Communications, Computer and Information Science, 296, pp 17–26
Paramita ML, Sanderson M, Clough P (2009) Diversity in photo retrieval: overview of the ImageCLEF photo task 2009. In: Multilingual Information Access Evaluation II. Multimedia Experiments, pp 45?-59
Pedronette DCG, Da S. Torres R, Calumby RT (2014) Using contextual spaces for image re-ranking and rank aggregation. Multimed Tools Appl 69(3):689–716
Popescu A CEA LIST’s participation at MediaEval 2013 placing task. In: Proceedings of the MediaEval 2014 Workshop, Barcelona, Spain, 16-17, 2014, CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Rudinac S, Hanjalic A, Larson MA (2013) Generating visual summaries of geographic areas using Community-Contributed images. IEEE Trans Multimed 15 (4):921–932
Rocchio J (1971) Relevance feedback in information retrieval. In: The Smart Retrieval System Experiments in Automatic Document Processing. Prentice Hall, Englewood Cliffs, NJ, USA, pp 313– 323
Rui Y, Huang T, Chang S-F (1999) Image retrieval: current techniques, promising directions and open issues. Vis Commun Image Represent 10(1):39–62
Ravindranath SS, Gygli M, Gool LV ETH-CVL @ MediaEval 2015: learning objective functions for improved image retrieval. In: Proceedings of the MediaEval 2015 Workshop, Wurzen, Germany, 14-15, 2015, CEUR-WS.org, ISSN 1613-0073, 1436, http://ceur-ws.org/Vol-1436/
Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380
Sarac MI, Duygulu P (2014) Bilkent-RETINA at retrieving diverse social images task of mediaEval 2014. In: Proceedings of the MediaEval 2014 Workshop. CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/, Barcelona, Spain
Spyromitros-Xioufis E, Papadopoulos S, Ginscă AL, Popescu A, Kompatsiaris I, Vlahavas I (2015) Improving diversity in image search via supervised relevance scoring. In: Proceedings of ACM International Conference on Multimedia Retrieval, Shanghai, China, pp 323–330
Soleymani M, Larson M (2010) Crowd-sourcing for affective annotation of video: development of a viewer-reported boredom corpus. SIGIR Workshop on Crowd-sourcing for Search Evaluation, Geneva, Switzerland, p 23
Stricker M, Orengo M (1995) Similarity of color image. In: IS&T/SPIE’s Symposium on Electronic Imaging: Science & Technology, pp 381–392
Sun A, Bhowmick SS (2009) Image Tag Clarity: in Search of Visual-Representative Tags for Social Images. In: Proceedings of the 1st SIGMM Workshop on Social Media, ACM, Beijing, China, 19-24, pp 19–26
Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, London, UK
Spampinato C, Palazzo S PeRCeiVe Lab@UNICT at MediaEval 2014 diverse images: random forests for diversity-based clustering. In: Proceedings of the MediaEval 2014 Workshop, Barcelona, Spain, 16-17, 2014, CEUR-WS.org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Taneva B, Kacimi M, Weikum G (2010) Gathering and Ranking Photos of Named Entities with High Precision, High Recall, and Diversity. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, New York, USA, 03-06, pp 431–440
Tang X (1998) Texture information in Run-Length matrices. IEEE Trans Image Process 7(11):1602–1609
Van Leuken RH, Garcia L, Olivares X, Van Zwol R (2009) Visual Diversification of Image Search Results. In: Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20-24, pp 341–350
Vee E, Srivastava U, Shanmugasundaram J, Bhat P, Yahia SA (2008) Efficient computation conference=of Diverse Query Results, Proceedings of 24th IEEE International Conference on Data Engineering, Cancun, Mexico, 07-12, pp 228–236
Vieira MR, Razente HL, Barioni MCN, Hadjieleftheriou M, Srivastava D, Traina Jr C, Tsotras VJ (2011) On query result diversification. In: Proceedings of IEEE International Conference on Data Engineering, Hannover, Germany, 11-16, pp 1163–1174
Viola P, Jones MJ (2004) Robust Real-Time face detection. Int J Comput Vis 57(2):137–154
Van Brummelen GR (2013) Heavenly Mathematics: The forgotten art of spherical trigonometry. Princeton University
Wang XY, Zhang BB, Yang HY (2013) Active SVM-based relevance feedback using multiple classifiers ensemble and features reweighting. Eng Appl Artif Intell 26 (1):368–381
Wu HC, Luk RWP, Wong KF, Kwok KL (2008) Interpreting TFIDF term weights as making relevance decisions. ACM Trans Inf Syst 26(3):1–37
Ward Jr JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244
Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723– 742
Yu J, Lu Y, Xu Y, Sebe N, Tian Q (2007) Integrating relvance feedback in boosting for content-based image retrieval. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hawaii, USA, 15-20, pp 965–968
Yan R, Hauptmann A, Jin R (2003) Multimedia search with pseudo-relevance feedback. In: Proceedings of International Conference on Image and Video Retrieval (CIVR), Illinois, USA, 24-25, pp 238– 247
Zhu X, Goldberg A, Gael JV, Andrzejewski D (2007) Improving diversity in ranking using absorbing random walks, pp 97–104
Zaharieva M, Diem L MIS @ retrieving diverse social images task 2015. In: Proceedings of the MediaEval 2015 Workshop, Wurzen, Germany, 14-15, 2015, CEUR-WS.org, ISSN 1613-0073, 1436, http://ceur-ws.org/Vol-1436/
Zaharieva M, Schwab P A unified framework for retrieving diverse social images. In: Proceedings of the MediaEval 2014 Workshop, Barcelona, Spain, 16-17, 2014, CEURWS. org, ISSN 1613-0073, 1263, http://ceur-ws.org/Vol-1263/
Acknowledgments
This work has been funded by the Ministry of European Funds through the Financial Agreement POSDRU 187/1.5/S/155420 PROSCIENCE, and by the ESF POSDRU/159/ 1.5/S/132395 InnoRESEARCH programme. We acknowledge also the MediaEval Benchmarking Initiative for Multimedia Evaluation (http://www.multimediaeval.org) for providing the data.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boteanu, B., Mironică, I. & Ionescu, B. Pseudo-relevance feedback diversification of social image retrieval results. Multimed Tools Appl 76, 11889–11916 (2017). https://doi.org/10.1007/s11042-016-3678-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-3678-6