Abstract
Optimal population transfer is of critical importance for quantum information processing. Here an efficient scheme is proposed for implementing controllable and shortcut-based population transfers with a nitrogen-vacancy (NV) electron spin and cavity photons. The electron spin is placed inside a setup of circuit quantum electrodynamics (QED). Under a suitable magnetic field bias, the ground state of electron spin constitutes an effective triplet. By means of the quantized cavity field and classical drivings, we obtain a \(\Delta \)-configuration interaction within a composite three-state system. Based on the adjustable Rabi couplings, the shortcut-based population transfers can be performed controllably. Moreover, compared with the adiabatic counterparts, the operations assisted by counter-diabatic drivings need much shorter times and then are less susceptible to decoherence effects. Our scheme provides a promising avenue toward optimized transfer operations on NV center electron spins in circuit QED.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Togan, E., et al.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)
Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R.: High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574 (2011)
Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrupe, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013)
Zhou, J.-W., et al.: Quantum information processing and metrology with color centers in diamonds. Front. Phys. 9, 587 (2014)
Zhou, Y., Li, B., Li, X.-X., Li, F.-L., Li, P.-B.: Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A 98, 052346 (2018)
Siyushev, P., et al.: Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 363, 728 (2019)
Ouyang, X.-L., et al.: Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system. Phys. Rev. A 101, 012307 (2020)
Wallraff, A., et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)
Kubo, Y., et al.: Hybrid Quantum Circuit with a Superconducting Qubit Coupled to a Spin Ensemble. Phys. Rev. Lett. 107, 220501 (2011)
Xiang, Z.-L., Lü, X.-Y., Li, T.-F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)
Chen, C.-Y., Hou, Q.-Z., Li, S.-H.: Spin Ensembles Coupled to Superconducting Resonators: A Scalable Architecture for Solid-State Quantum Computing. Commun. Theor. Phys. 62, 196 (2014)
Tao, M.-J., Hua, M., Ai, Q., Deng, F.-G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)
Feng, Z.-B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)
Hu, Y., Song, Y., Duan, L.: Quantum interface between a transmon qubit and spins of nitrogen-vacancy centers. Phys. Rev. A 96, 062301 (2017)
Ma, S.-l., Li, X.-k., Xie, J.-k., Li, F.-l.: Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators. Phys. Rev. A 99, 012325 (2019)
Li, P.-B., Gao, S.-Y., Li, F.-L.: Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011)
Chen, Q., Yang, W.L., Feng, M.: Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits. Phys. Rev. A 86, 022327 (2012)
Ali, H., Basit, A., Badshah, F., Ge, G.-Q.: Quantum state transfer between nitrogen vacancy centers coupled to photonic crystal molecule in the off resonant regime. Physica E 104, 261 (2018)
Ali, H., Basit, A., Badshah, F., Qurban, M., Ge, G.-Q.: Quantum state transfer between nitrogen vacancy center ensembles in hybrid quantum system. Europhys. Lett. 127, 30007 (2019)
Wu, S.-H., Amezcua, M., Wang, H.: Adiabatic population transfer of dressed spin states with quantum optimal control. Phys. Rev. A 99, 063812 (2019)
Tian, J., Du, T., Liu, Y., Liu, H., Jin, F., Said, R.S., Cai, J.: Optimal quantum optical control of spin in diamond. Phys. Rev. A 100, 012110 (2019)
Lu, X.-J., Feng, Z.-B.: Error-insensitive population transfer in a qutrit by invariant-based shortcuts with optimized drivings. Europhys. Lett. 127, 64001 (2019)
Torrontegui, E., et al.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117 (2013)
Chen, Y.-H., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Phys. Rev. A 95, 062319 (2017)
Mortensen, H. L., S\(\phi \)rensen, J. J. W. H., M\( \phi \)lmer K., Sherson, J. F.: Fast state transfer in a \(\Lambda \)-system: a shortcut-to-adiabaticity approach to robust and resource optimized control. New J. Phys. 20, 025009 (2018)
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martinez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)
Zhang, J., et al.: Experimental Implementation of Assisted Quantum Adiabatic Passage in a Single Spin. Phys. Rev. Lett. 110, 240501 (2013)
Zhou, B.B., et al.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330 (2017)
Feng, Z.-B., Yan, R.-Y., Yan, L.-L., Zhou, Y.-Q.: Tunable photon transmission through a waveguide cavity coupled to an electron spin ensemble. Laser Phys. Lett. 14, 025204 (2017)
Kubo, Y., et al.: Strong Coupling of a Spin Ensemble to a Superconducting Resonator. Phys. Rev. Lett. 105, 140502 (2010)
Sandner, K., et al.: Strong magnetic coupling of an inhomogeneous nitrogen-vacancy ensemble to a cavity. Phys. Rev. A 85, 053806 (2012)
Vepsäläinen, A., Danilin, S., Paladino, E., Falci, G., Paraoanu, G.S.: Quantum Control in Qutrit Systems Using Hybrid Rabi-STIRAP Pulses. Photonics 3, 62 (2016)
Yan, R.-Y., Feng, Z.-B., Li, M., Zhang, C.-L., Zhao, Z.-Y.: Speeding up Generation of Entangled State between a Superconducting Qubit and Cavity Photons via Counterdiabatic Driving. Ann. Phys. (Berlin) 1900613, (2020)
Premaratne, S.P., Wellstood, F.C., Palmer, B.S.: Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nat. Commun. 8, 14148 (2017)
Vitanov, N.V., Stenholm, S.: Analytic properties and effective two-level problems in stimulated Raman adiabatic passage. Phys. Rev. A 55, 648 (1997)
Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)
Chen, X., Lizuain, I., Ruschhaupt, A., Gué ry-Odelin, D., Muga, J. G.: Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Phys. Rev. Lett. 105, 123003 (2010)
Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)
Masuda, S., Nakamura, K.: Fast-forward problem in quantum mechanics. Phys. Rev. A 78, 062108 (2008)
Bukova, M., D’Alessioab, L., Polkovnikova, A.: Universal high frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139 (2015)
Yang, W., Xu, Z., Feng, M., Du, J.: Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 12, 113039 (2010)
Coto, R., Jacques, V., Hetet, G., Maze, J.R.: Stimulated Raman adiabatic control of a nuclear spin in diamond. Phys. Rev. B 96, 085420 (2017)
Wu, Q.-Q., Xu, L., Tan, Q.-S., Yan, L.-L.: Multipartite entanglement transfer in a hybrid circuit-QED system. Int. J. Theor. Phys. 51, 1482 (2012)
Feng, Z.-B., Zhang, X.-D.: Holonomic quantum computation with superconducting charge-phase qubits in a cavity. Phys. Lett. A 372, 1589 (2008)
Unanyan, R., Fleischhauer, M., Shore, B.W., Bergmann, K.: Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage STIRAP with degenerate dark states. Opt. Commun. 155, 144 (1998)
Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M., Oh, C.H.: Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys. Rev. A 84, 043849 (2011)
Yan, R.-Y., Yang, F., Zhang, N., Feng, Z.-B.: Accelerated and robust population transfer in a transmon qutrit via \(\Delta \) -type driving. Quantum Inf. Process. 17, 237 (2018)
Acknowledgements
This work is supported by the Key Research Project in Univesities of Henan Province under Grant No. 19A140016, the “316” Project Plan of Xuchang University, the Research Project of Xuchang University under Grant No. 2020YB009, and the Natural Science Foundation of Henan Province under Grant No. 212300410388.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, ZY., Feng, ZB., Li, M. et al. Controllable and shortcut-based population transfers with a composite system of a nitrogen-vacancy electron spin and microwave photons. Quantum Inf Process 20, 66 (2021). https://doi.org/10.1007/s11128-021-03005-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03005-3