Skip to main content
Log in

A multi-valued quantum fully homomorphic encryption scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Fully homomorphic encryption enables computation on encrypted data while maintaining secrecy. This leads to an important open question whether quantum computation can be delegated and verified in a non-interactive manner or not. In this paper, we affirmatively answer this question by constructing quantum fully homomorphic encryption (QFHE) schemes with quantum obfuscation. For different scenarios, we propose two QFHE schemes with multi-valued quantum point obfuscation. One is with single-qubit point obfuscation and the other is with multi-qubit point obfuscation. The correctness of two QFHE schemes is proved theoretically. The evaluator does not know the decryption key and does not require a regular interaction with a user. The output state has the property of complete mixture, which guarantees the security. Moreover, the security level of the QFHE schemes depends on quantum obfuscation and encryption operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gentry, C.: A fully homomorphic encryption scheme. In: Stanford University (2009)

  2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)

    Article  MathSciNet  Google Scholar 

  4. Dijk, M.V., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Advances in Cryptology CEUROCRYPT 2010 (2010)

  5. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97–105 (2010)

    Article  Google Scholar 

  6. Rivest, R.L., Adleman, L.M., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169 (1978)

    MathSciNet  Google Scholar 

  7. Castelluccia, C., Chan, A.C.F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sensor Netw. 5(3), 1–36 (2009)

    Article  Google Scholar 

  8. Hessler, A., Kakumaru, T., Perrey, H., Westhoff, D.: Data obfuscation with network coding. Comput. Commun. 35(1), 48–61 (2012)

    Article  Google Scholar 

  9. Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)

    Article  ADS  Google Scholar 

  10. Liang, M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12(12), 3675–3687 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14(8), 2749–2759 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yu, L., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90(5), 050303 (2014)

    Article  ADS  Google Scholar 

  13. Tan, S. H., Kettlewell, J.A., Ouyang, Y. K., Chen, L., Fitzsimons, J. F.: A quantum approach to fully homomorphic encryption. Eprint Arxiv (2014)

  14. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low \(t\)-gate complexity. Proc. CRYPT 2015(9216), 609–629 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Wang, Y.Q., She, K., Luo, Q.B., Fan, Y., Chao, Z.: Symmetric weak ternary quantum homomorphic encryption schemes. Mod. Phys. Lett. B 30(7), 1650076 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Alagic, G., Fefferman, B.: On quantum obfuscation. arXiv preprint arXiv:1602.01771 (2016)

  17. Shang, T., Chen, R.Y.L., Liu, J.W.: On the obfuscatability of quantum point functions. Quantum Inf. Process. 18(2), 55 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chen, R.Y.L., Shang, T., Liu, J.W.: IND-secure quantum symmetric encryption based on point obfuscation. Quantum Inf. Process. 18(6), 16 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Advances in Cryptology-EUROCRYPT 2004, International Conference on the Theory and Application of Cryptology and Information Security, pp. 41–69 (2011)

  20. Shang, T., Lei, Q., Liu, J.W.: Quantum random oracle model for quantum digital signature. Phys. Rev. A 94, 042314 (2016)

    Article  ADS  Google Scholar 

  21. Shang, T., Chen, R. Y. L., Lei, Q.: Quantum random oracle model for quantum public-key encryption. In: IEEE Access, PP(99), pp. 1–1 (2019)

  22. Sun, X.Q., Wang, T., Sun, Z.W., Wang, P., Yu, J.P., Xie, W.X.: An efficient quantum somewhat homomorphic symmetric searchable encryption. Int. J. Theor. Phys. 56(4), 1335–1345 (2017)

    Article  MathSciNet  Google Scholar 

  23. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  24. Ouyang, Y., Tan, S.H., Fitzsimons, J.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98(4), 042334 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 61971021, 61571024), Aeronautical Science Foundation of China (No.2018ZC51016) and the National Key Research and Development Program of China (No. 2016YFC1000307) for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shang, T. & Liu, J. A multi-valued quantum fully homomorphic encryption scheme. Quantum Inf Process 20, 101 (2021). https://doi.org/10.1007/s11128-021-03051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03051-x

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy