Abstract
We address the estimation of temperature in a thermal XY spin-chain through quantum probe and tools of parameter estimation theory, namely the quantum Fisher information and signal to noise ratio. We focus on the situation where the probe is weakly coupled to the bath to ensure its coherent time-evolution as long as possible and, in turn, an accurate estimation of the bath temperature. Our results provide clear evidence that the estimation precision can be effectively improved by properly adjusting the probe–bath and bath-spins coupling strength. Indeed, we demonstrate that the optimum precision in the estimation of the bath temperature is achieved when the probe–bath and bath spins coupling strength are equals, leading to a long-time interaction of the probe with the bath.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 07, 125–137 (2009)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)
Braun, D., Adesso, G., Benatti, F., Floreanini, R., Marzolino, U., Mitchell, M.W., Pirandola, S.: Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 90, 035006 (2018)
Kurizki, G., Bertet, P., Kubo, Y., Mølmer, K., Petrosyan, D., Rabl, P., Schmiedmayer, J.: Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. 112, 3866–3873 (2015)
Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778 (2016)
Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzè, L., Oberthaler, M.K.: Fisher information and entanglement of non-gaussian spin states. Science 345, 424 (2014)
Javed, M., Khan, S., Ullah, S.A.: Characterization of classical static noise via qubit as probe. Quantum Inf. Process. 17, 53 (2018)
Kenfack, L.T., Tchoffo, M., Fai, L.C.: Estimation of the disorder degree of the classical static noise using. Phys. Lett. A 383, 1123–1131 (2019)
Paris, M.G.A.: Quantum probes for fractional Gaussian processes. Physica A 413, 256–265 (2014)
Rossi, M.A., Paris, M.G.A.: Entangled quantum probes for dynamical environmental noise. Phys. Rev. A 92, 010302 (2015)
Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 89, 032114 (2014)
Latune, C.L., Sinayskiy, I., Petruccione, F.: Quantum force estimation in arbitrary non-Markovian Gaussian baths. Phys. Rev. A 94, 052115 (2016)
Benedetti, C., Sehdaran, F.S., Zandi, M.H., Paris, M.G.A.: Quantum probes for the cutoff frequency of Ohmic environments. Phys. Rev. A 97, 012126 (2018)
Salari Sehdaran, F., Bina, M., Benedetti, C., Paris, M.G.A.: Quantum probes for Ohmic environments at thermal equilibrium. Entropy 21, 486 (2019)
Tamascelli, D., Benedetti, C., Breuer, H.P., Paris, M.G.: Quantum probing beyond pure dephasing. New J. Phys. 22, 083027 (2020)
Zwick, A., Álvarez, G.A., Kurizki, G.: Criticality of environmental information obtainable by dynamically controlled quantum probes. Phys. Rev. A 94, 042122 (2016)
Correa, L.A., Perarnau-Llobet, M., Hovhannisyan, K.V., Hernandez-Santana, S., Mehboudi, M., Sanpera, A.: Enhancement of low-temperature thermometry by strong coupling. Phys. Rev. A 96, 062103 (2017)
Zwick, A., Álvarez, G.A., Kurizki, G.: Maximizing information on the environment by dynamically controlled qubit probes. Phys. Rev. Appl. 5, 014007 (2016)
Hofer, P.P., Brask, J.B., Perarnau-Llobet, M., Brunner, N.: Quantum thermal machine as a thermometer. Phys. Rev. Lett. 119, 090603 (2017)
Mehboudi, M., Sanpera, A., Correa, L.A.: Thermometry in the quantum regime: recent theoretical progress. J. Phys. A Math. Theor. 52, 303001 (2019)
Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L.: Measurement of the quantum of thermal conductance. Nature 404, 974 (2000)
Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)
Klinkert, B., Narberhaus, F.: Microbial thermosensors. Cell. Mol. Life Sci. 66, 2661 (2009)
Schirhagl, R., Chang, K., Loretz, M., Degen, C.L.: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83 (2014)
Gemmer, J., Michel, M., Mahler, G.: Quantum Thermodynamics. Springer, Berlin (2004)
Campisi, M., Hänggi, P., Talkner, P.: Rev. Mod. Phys. 83, 771 (2011). Erratum: Rev. Mod. Phys. Quantum fluctuation relations: Foundations and applications 83, 1653 (2011)
Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013)
Carrega, M., Solinas, P., Braggio, A., Sassetti, M., Weiss, U.: Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications. New J. Phys. 17, 045030 (2015)
Carrega, M., Solinas, P., Braggio, A., Sassetti, M., Weiss, U.: Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116, 240403 (2016)
Boyd, R.: Nonlinear Optics. Academic Press, Cambridge (2008)
Williams, N.S., Le Hur, K., Jordan, A.N.: Effective thermodynamics of strongly coupled qubits. J. Phys. A Math. Theor. 44, 385003 (2011)
Kliesch, M., Gogolin, C., Kastoryano, M.J., Riera, A., Eisert, J.: Locality of Temperature
Millen, J., Xuereb, A.: New J. Phys. 18, 011002 (2016). Perspective on quantum thermodynamics. Phys. Rev. X 4, 031019 (2014)
Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)
Kenfack, L.T., Tchoffo, M., Gueagni, W.D.W., Fai, L.C.: Temperature estimation in a quantum spin bath through entangled and separable two-qubit probes. Eur. Phys. J. Plus 136, 220 (2021)
Mohr, P.J., Taylor, N.: CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 77, 1 (2005)
Weng, W., Anstie, J.D., Stace, T.M., Campbell, G., Baynes, F.N., Luiten, A.N.: Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. Phys. Rev. Lett. 112, 160801 (2014)
Razavian, S., Benedetti, C., Bina, M., Akbari-Kourbolagh, Y., Paris, M.G.A.: Quantum thermometry by single-qubit dephasing. Eur. Phys. J. Plus. 134, 284 (2019)
Rangani Jahromi, H.: Quantum thermometry in a squeezed thermal bath. Phys. Scr. 95, 035107 (2020)
Gebbia, F., Benedetti, C., Benatti, F., Floreanini, R., Bina, M., Paris, M.G.A.: Two-qubit quantum probes for the temperature of an Ohmic environment. Phys. Rev. A 101, 032112 (2020)
Seveso, L., Paris, M.G.A.: Trade-off between information and disturbance in qubit thermometry. Phys. Rev. A 97, 032129 - Published 28 March 2018
Yuan, X.-Z., Zhu, K.-D., Goan, H.-S.: The dynamics of a central spin in quantum Heisenberg XY Model. Eur. Phys. J. D 46, 375–380 (2008)
Yuan, X.-Z., Goan, H.-S., Zhu, K.-D.: Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment. Phys. Rev. B 75, 045331 (2007)
Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)
Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A 32, 2663–2670 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kenfack, L.T., Gueagni, W.D.W., Tchoffo, M. et al. Quantum thermometry by single qubit-probe in a thermal XY spin-chain bath. Quantum Inf Process 20, 144 (2021). https://doi.org/10.1007/s11128-021-03075-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03075-3