Abstract
In this paper, a brand new structure based on graphene quantum dots (GQDs) is introduced which is doped with two selenium atoms and functionalized with amino groups simultaneously. The purpose of the structure is to achieve a photoluminescence (PL) spectrum which peaks at free-space communication wavelengths range. Hence, using density functional theory (DFT), time-dependent DFT (TD-DFT) calculations and analyzing charge density distribution, the density and the energy of molecular orbitals and dominant electronic transitions, the energy and the wavelength for dominant excited states and also the density of states (DOS) diagram for pure GQD, selenium-doped GQD and simultaneously doped and functionalized GQD is discussed. PL spectrum of the device is obtained for each three structures. Studying precisely all the mechanisms which affect PL spectrum, it is understood that selenium doping with graphitic configuration by inducing an electrical dipole moment to the structure leads to increasing charge density in π and π* orbitals at doped regions. Moreover, by decreasing the gap between dominant transitions, it shifts the PL spectrum peak from 484.4 to 520 nm. After functionalizing the doped structure with NH2 groups with a configuration which is close to the structure that will be obtained at real synthesis conditions and also analyzing the dominant states and DOS diagram, it can be figured out that not only a large electrical dipole moment is induced, but also some new inter-band states are formed within the band gap and these new states improve the interactions between charge carrier transitions in the structure just like the inter band trap levels in optical electronics. In addition, they increase the hybridization between the orbitals and also decrease the gap between dominant transitions and thus the PL spectrum peak will shift to 760 nm.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bouchard, F., Sit, A., Hufnagel, F., Abbas, A., Zhang, Y., Heshami, K., et al.: Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express 26, 22563–22573 (2018)
Liu, H., Ma, H., Wei, K., Yang, X., Qu, W., Dou, T., et al.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380, 2349–2353 (2016)
Ryabtsev, I., Tretyakov, D., Kolyako, A., Pleshkov, A., Entin, V., Neizvestny, I.: Experimental quantum cryptography with single photons. Bull. Russ. Acad. Sci. Phys. 81, 1493–1496 (2017)
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)
Walker, T., Miyanishi, K., Ikuta, R., Takahashi, H., Kashanian, S.V., Tsujimoto, Y., et al.: Long-distance single photon transmission from a trapped ion via quantum frequency conversion. Phys. Rev. Lett. 120, 203601 (2018)
Yang, J., Nawrath, C., Keil, R., Joos, R., Zhang, X., Höfer, B., et al.: Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express 28, 19457–19468 (2020)
Zeuner, K.D., Paul, M., Lettner, T., Reuterskiöld Hedlund, C., Schweickert, L., Steinhauer, S., et al.: A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. Appl. Phys. Lett. 112, 173102 (2018)
Kim, J.-H., Cai, T., Richardson, C.J., Leavitt, R.P., Waks, E.: Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016)
MohammadNejad, S., KhodadadKashi, A., Arab, H.: Single-and two-qubit universal quantum gates in photonic Ti: LiNbO3 circuits. Optik 182, 907–921 (2019)
MohammadNejad, S., KhodadadKashi, A.: CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti: LiNbO3 channel waveguides. Opt. Quant. Electron. 51, 301 (2019)
MohammadNejad, S., KhodadadKashi, A.: Realization of quantum SWAP gate using photonic integrated passive and electro-optically active components. Fiber Integr. Opt. 38, 117–136 (2019)
Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., et al.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017)
X.-M. Hu, C. Zhang, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental multi-level quantum teleportation, arXiv preprint, 2019.
Llewellyn, D., Ding, Y., Faruque, I.I., Paesani, S., Bacco, D., Santagati, R., et al.: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020)
Reindl, M., Huber, D., Schimpf, C., da Silva, S.F.C., Rota, M.B., Huang, H., et al.: All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018)
Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15, 913–927 (2016)
Lü, X.-Y., Zhu, G.-L., Zheng, L.-L., Wu, Y.: Entanglement and quantum superposition induced by a single photon. Phys. Rev. A 97, 033807 (2018)
Müller, M., Vural, H., Schneider, C., Rastelli, A., Schmidt, O., Höfling, S., et al.: Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017)
Senellart, P., Solomon, G., White, A.: High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017)
Chen, X., Lu, X., Dubey, S., Yao, Q., Liu, S., Wang, X., et al.: Entanglement of single-photons and chiral phonons in atomically thin WSe 2. Nat. Phys. 15, 221–227 (2019)
Fan, L., Zou, C.-L., Poot, M., Cheng, R., Guo, X., Han, X., et al.: Integrated optomechanical single-photon frequency shifter. Nat. Photonics 10, 766–770 (2016)
Zheng, L.-L., Yin, T.-S., Bin, Q., Lü, X.-Y., Wu, Y.: Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A 99, 013804 (2019)
Børkje, K.: Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Phys. Rev. A 101, 053833 (2020)
Li, X., Zhang, W.-Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 1–8 (2016)
Arab, H., MohammadNejad, S., KhodadadKashi, A., Ahadzadeh, S.: Recent advances in nanowire quantum dot (NWQD) single-photon emitters. Quantum Inf. Process. 19, 44 (2020)
Molotkov, S., Potapova, T.: Faint laser pulses versus a single-photon source in free space quantum cryptography. Laser Phys. Lett. 13, 035201 (2016)
Lukishova, S.G., Bissell, L.J.: Nanophotonic advances for room-temperature single-photon sources. In: Boyd, R.W., Lukishova, S.G., Zadkov, V.N. (eds.) Quantum photonics pioneering advances and emerging applications, pp. 103–178. Springer (2019)
Qi, Z., Du, C., Qin, X., Wang, J., Wei, Z., Zhang, Z.: Improvement of the safe transmission distance via optimization of the photon number distribution for the faint optical pulse in practical quantum key distribution systems. Eur. Phys. J. D 73, 161 (2019)
Xiang, T., Li, Y., Zheng, Y., Chen, X.: Multiple-DWDM-channel heralded single-photon source based on a periodically poled lithium niobate waveguide. Opt. Express 25, 12493–12498 (2017)
Gulati, G.K., Srivathsan, B., Chng, B., Cere, A., Matsukevich, D., Kurtsiefer, C.: Generation of an exponentially rising single-photon field from parametric conversion in atoms. Phys. Rev. A 90, 033819 (2014)
Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)
Zhong, T., Hu, X., Wong, F.N., Berggren, K.K., Roberts, T.D., Battle, P.: High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength. Opt. Lett. 35, 1392–1394 (2010)
Takesue, H., Fukuda, H., Tsuchizawa, T., Watanable, T., Yamada, K., Tokura, Y., et al.: Entanglement generation using silicon wire waveguide. Opt. Spectrosc. 108, 160–164 (2010)
Lukishova, S.G., Schmid, A.W., McNamara, A.J., Boyd, R.W., Stroud, C.R.: Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host. IEEE J. Sel. Top. Quantum Electron. 9, 1512–1518 (2003)
Alléaume, R., Treussart, F., Courty, J.-M., Roch, J.-F.: Photon statistics characterization of a single-photon source. New J. Phys. 6, 85 (2004)
Lukishova, S.G., Schmid, A.W., Supranowitz, C.M., Lippa, N., McNamara, A.J., Boyd, R.W., et al.: Dye-doped cholesteric-liquid-crystal room-temperature single-photon source. J. Modern Opt. 51, 1535–1547 (2004)
Marseglia, L., Saha, K., Ajoy, A., Schröder, T., Englund, D., Jelezko, F., et al.: Bright nanowire single photon source based on SiV centers in diamond. Opt. Express 26, 80–89 (2018)
Khramtsov, I.A., Agio, M., Fedyanin, D.Y.: Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 8, 024031 (2017)
Rodiek, B., Lopez, M., Hofer, H., Porrovecchio, G., Smid, M., Chu, X.-L., et al.: Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica 4, 71–76 (2017)
Benedikter, J., Kaupp, H., Hümmer, T., Liang, Y., Bommer, A., Becher, C., et al.: Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys. Rev. Appl. 7, 024031 (2017)
Neu, E., Steinmetz, D., Riedrich-Möller, J., Gsell, S., Fischer, M., Schreck, M., et al.: Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011)
Schröder, T., Gädeke, F., Banholzer, M.J., Benson, O.: Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 055017 (2011)
Walker, T., Kashanian, S.V., Ward, T., Keller, M.: Improving the indistinguishability of single photons from an ion-cavity system. Phys. Rev. A 102, 032616 (2020)
Ballance, T., Meyer, H., Kobel, P., Ott, K., Reichel, J., Köhl, M.: Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity. Phys. Rev. A 95, 033812 (2017)
Dibos, A., Raha, M., Phenicie, C., Thompson, J.D.: Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018)
Wang, J., Zhou, Y., Wang, Z., Rasmita, A., Yang, J., Li, X., et al.: Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 1–6 (2018)
Grosso, G., Moon, H., Lienhard, B., Ali, S., Efetov, D.K., Furchi, M.M., et al.: Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 1–8 (2017)
Martínez, L., Pelini, T., Waselowski, V., Maze, J., Gil, B., Cassabois, G., et al.: Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016)
Katsumi, R., Ota, Y., Osada, A., Yamaguchi, T., Tajiri, T., Kakuda, M., et al.: Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics 4, 036105 (2019)
Gerhardt, S., Iles-Smith, J., McCutcheon, D.P., He, Y.-M., Unsleber, S., Betzold, S., et al.: Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source. Phys. Rev. B 97, 195432 (2018)
Duan, Z.-C., Li, J.-P., Qin, J., Yu, Y., Huo, Y.-H., Höfling, S., et al.: Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source. Opt. Express 28, 18917–18930 (2020)
Hanschke, L., Fischer, K.A., Appel, S., Lukin, D., Wierzbowski, J., Sun, S., et al.: "Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 1–6 (2018)
Zhao, S., Lavie, J., Rondin, L., Orcin-Chaix, L., Diederichs, C., Roussignol, P., et al.: Single photon emission from graphene quantum dots at room temperature. Nat. Commun. 9, 1–5 (2018)
Montejo-Alvaro, F., Oliva, J., Herrera-Trejo, M., Hdz-García, H., Mtz-Enriquez, A.: DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots. Theoret. Chem. Acc. 138, 37 (2019)
Mombrú, D., Romero, M., Faccio, R., Mombrú, Á.W.: Electronic and optical properties of sulfur and nitrogen doped graphene quantum dots: A theoretical study. Phys. E. 113, 130–136 (2019)
Niu, X., Li, Y., Shu, H., Wang, J.: Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots. Nanoscale 8, 19376–19382 (2016)
Lee, J.H., Kwon, S.H., Kwon, S., Cho, M., Kim, K.H., Han, T.H., et al.: Tunable electronic properties of nitrogen and sulfur doped graphene: density functional theory approach. Nanomaterials 9, 268 (2019)
Cui, P.: Effect of boron and nitrogen doping on carrier relaxation dynamics of graphene quantum dots. Mater. Res. Express 5, 065034 (2018)
Yang, G., Wu, C., Luo, X., Liu, X., Gao, Y., Wu, P., et al.: Exploring the emissive states of heteroatom-doped graphene quantum dots. J. Phys. Chem. C 122, 6483–6492 (2018)
Li, R.S., Yuan, B., Liu, J.H., Liu, M.L., Gao, P.F., Li, Y.F., et al.: Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. J. Mater. Chem. B 5, 8719–8724 (2017)
Feng, J., Guo, Q., Liu, H., Chen, D., Tian, Z., Xia, F., et al.: Theoretical insights into tunable optical and electronic properties of graphene quantum dots through phosphorization. Carbon 155, 491–498 (2019)
Xu, Y., Wang, S., Hou, X., Sun, Z., Jiang, Y., Dong, Z., et al.: Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: a promising ion fluorescent probe. Appl. Surf. Sci. 445, 519–526 (2018)
Vatanparast, M., Shariatinia, Z.: Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct. Chem. 29, 1427–1448 (2018)
Kadian, S., Manik, G., Kalkal, A., Singh, M., Chauhan, R.P.: Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: an experimental and theoretical investigation. Nanotechnology 30, 435704 (2019)
Li, X., Lau, S.P., Tang, L., Ji, R., Yang, P.: Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C 1, 7308–7313 (2013)
Feng, J., Dong, H., Yu, L., Dong, L.: The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study. J. Mater. Chem. C 5, 5984–5993 (2017)
Zhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y.: A time-dependent dft study of the absorption and fluorescence properties of graphene quantum dots. ChemPhysChem 15, 950–957 (2014)
Mombrú, D., Romero, M., Faccio, R., A. l. W. Mombrú, : Electronic structure of edge-modified graphene quantum dots interacting with polyaniline vibrational and optical properties. J. Phys. Chem. C 121, 16576–16583 (2017)
Mombrú, D., Romero, M., Faccio, R., Mombrú, A.W.: Curvature and vacancies in graphene quantum dots. Appl. Surf. Sci. 462, 540–548 (2018)
Li, C., Yue, Y.: Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25, 435703 (2014)
Lai, S., Jin, Y., Shi, L., Zhou, R., Zhou, Y., An, D.: Mechanisms behind excitation-and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 12, 591–601 (2020)
Jang, M.-H., Song, S.H., Ha, H.D., Seo, T.S., Jeon, S., Cho, Y.-H.: Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: an experimental evidence of localized sp2 carbon subdomain. Carbon 118, 524–530 (2017)
Lee, H.J., Jana, J., Ngo, Y.-L.T., Wang, L.L., Chung, J.S., Hur, S.H.: The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Mater. Res. Bull. 119, 110564 (2019)
Mei, S., Wei, X., Hu, Z., Wei, C., Su, D., Yang, D., et al.: Amphipathic carbon dots with solvent-dependent optical properties and sensing application. Opt. Mater. 89, 224–230 (2019)
Gu, S., Hsieh, C.-T., Yuan, C.-Y., Gandomi, Y.A., Chang, J.-K., Fu, C.-C., et al.: Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. J. Luminescence 217, 116774 (2020)
Hola, K., Bourlinos, A.B., Kozak, O., Berka, K., Siskova, K.M., Havrdova, M., et al.: Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon 70, 279–286 (2014)
Frisch M. J., and Nielsen A. B.: Gaussian 03 Programmer's Reference: Gaussian, 2003.
Wu, J., Wang, P., Wang, F., Fang, Y.: Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy. Nanomaterials 8, 864 (2018)
Li, F., Li, T., Sun, C., Xia, J., Jiao, Y., Xu, H.: Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem. Int. Ed. 56, 9910–9914 (2017)
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)
Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)
Simchi, H., Esmaeilzadeh, M., Saani, M.H.: Ab initio study on the effects of MoO3 molecule on graphene clusters. Phys. E. 44, 1675–1679 (2012)
Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)
Runge, E., Gross, E.K.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984)
Hasan, M.T., Gonzalez-Rodriguez, R., Ryan, C., Pota, K., Green, K., Coffer, J.L., et al.: Nitrogen-doped graphene quantum dots: optical properties modification and photovoltaic applications. Nano Res. 12, 1041–1047 (2019)
Feng, J., Dong, H., Pang, B., Shao, F., Zhang, C., Yu, L., et al.: Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys. Chem. Chem. Phys. 20, 15244–15252 (2018)
Faisal, S.N., Haque, E., Noorbehesht, N., Zhang, W., Harris, A.T., Church, T.L., et al.: Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 7, 17950–17958 (2017)
Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., Jeon, S.: Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7, 1239–1245 (2013)
Kumar, G.S., Roy, R., Sen, D., Ghorai, U.K., Thapa, R., Mazumder, N., et al.: Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 6, 3384–3391 (2014)
Shayeganfar, F., Tabar, M.R.R., Simchi, A., Beheshtian, J.: Effects of functionalization and side defects on single-photon emission in boron nitride quantum dots. Phys. Rev. B 96, 165307 (2017)
Yang, S., Sun, J., He, P., Deng, X., Wang, Z., Hu, C., et al.: Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem. Mater. 27, 2004–2011 (2015)
Walekar, L.S., Zheng, M., Zheng, L., Long, M.: Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Microchim. Acta 186, 1–9 (2019)
Luo, W., Wang, Y., Lin, F., Liu, Y., Gu, R., Liu, W., et al.: Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int. J. Nanomed. 15, 10113 (2020)
Rosenkrans, Z.T., Sun, T., Jiang, D., Chen, W., Barnhart, T.E., Zhang, Z., et al.: Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Adv. Sci. 7, 2000420 (2020)
Yeh, H.-C., Lee, S.-W.: Photoluminescence enhancement of amino-functionalized graphene quantum dots in two-dimensional optical resonators. Opt. Express 25, 1444–1451 (2017)
Van Tam, T., Choi, W.M.: One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions. Curr. Appl. Phys. 18, 1255–1260 (2018)
Wang, R., Fan, H., Jiang, W., Ni, G., Qu, S.: Amino-functionalized graphene quantum dots prepared using high-softening point asphalt and their application in Fe3+ detection. Appl. Surf. Sci. 467, 446–455 (2019)
Wang, S., Li, Z., Xu, X., Zhang, G., Li, Y., Peng, Q.: Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance. Adv. Mater. Interfaces 6, 1801480 (2019)
Wu, E., Jacques, V., Zeng, H., Grangier, P., Treussart, F., Roch, J.-F.: Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt. Express 14, 1296–1303 (2006)
Acknowledgements
The authors would like to thank Prof. Mohammad Reza Milani Hosseini and Dr Amin Khorsandi-Langol for their helpful comments and support during this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
There are no conflicts of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Arab, H., MohammadNejad, S. & MohammadNejad, P. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength. Quantum Inf Process 20, 184 (2021). https://doi.org/10.1007/s11128-021-03122-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03122-z