Abstract
Quantum coherence and monogamy relationship for tripartite GHZ and W states, under the influence of local amplitude-damping environments and for two accelerated observers, are studied. It is shown that environmental noise has stronger influence on quantum coherence than Unruh effect. Quantum coherence of GHZ state is symmetric with respect to all observers, which vanishes when any one of the subsystems encounters infinite dissipation, while quantum coherence of W state is asymmetric with respect to observers, which vanishes only when more than two subsystems encounter infinite dissipations. In addition, the coherence of GHZ state is completely global and there is no coherence between any bipartite subsystems, but the coherence of W state is distributed, which equals the sum of coherences between all bipartite subsystems. We also extend the investigation to the N-partite systems. We find that the coherence is a decreasing function of N for N-partite GHZ state, but an increasing function of N for N-partite W state. Similar monogamy relationships for N-partite systems are also established.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980)
Schumacher, B., Westmoreland, M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80, 5695–5697 (1998)
Barnes, S.E., Ballou, R., Barbara, B., Strelen, J.: Quantum coherence in small antiferromagnets. Phys. Rev. Lett. 79, 289–292 (1997)
Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89(1–34), 041003 (2017)
Sharma, U.K., Chakrabarty, I., Shukla, M.K.: Broadcasting quantum coherence via cloning. Phys. Rev. A 96(1–9), 052319 (2017)
Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93(1–6), 032326 (2016)
Brandão, F.G.S.L., Horodecki, M., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U. S. A. 112, 3275–3279 (2015)
Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4(1–6), 2059 (2013)
Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(1–5), 210403 (2015)
Huelga, S.F., Plenio, M.B.: A vibrant environment. Nat. Phys. 10, 621–622 (2014)
Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)
Gärttner, M., Hauke, P., Rey, A.M.: Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120(1–6), 040402 (2018)
Zeng, H.S., Ren, Y.K., Wang, X.L., He, Z.: Non-Markovian dynamics and quantum interference in open three-level quantum systems. Quantum Inf. Process. 18(1–23), 378 (2019)
Wu, S.M., Zeng, H.S.: Multipartite quantum coherence and monogamy for Dirac fields subject to Hawking radiation. Quantum Inf. Process 18(1–12), 305 (2019)
Wang, J., Tian, Z., Jing, J., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93(1–6), 062105 (2016)
de Buruaga, D.N.S.S., Sabín, C.: Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 95(1–7), 022307 (2017)
Liu, X., Tian, Z., Wang, J., Jing, J.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677–3694 (2016)
Liu, T.H., Cao, S., Wu, S.M., Zeng, H.S.: The influence of the Earths curved spacetime on Gaussian quantum coherence. Laser Phys. Lett. 16(1–7), 095201 (2019)
Wu, S.M., Zeng, H.S., Liu, T.H.: Quantum coherence of Gaussian states in curved spacetime. Results Phys. 14(1–6), 102398 (2019)
Huang, Z.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16(1–12), 207 (2017)
Huang, Z., Situ, H.: Quantum coherence behaviors of fermionic systems in non-inertial frame. Quantum Inf. Process. 17(1–18), 95 (2018)
Ding, Z.Y., Liu, C.C., Sun, W.Y., He, J., Ye, L.: Quantum coherence of fermionic systems in noninertial frames beyond the single-mode approximation. Quantum Inf. Process. 17(1–17), 279 (2018)
Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83(1–5), 022314 (2011)
Xu, S., Song, X.K., Shi, J.D., Ye, L.: How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole. Phys. Rev. D 89(1–7), 065022 (2014)
Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83(1–8), 012111 (2011)
Dai, Y., Shen, Z., Shi, Y.: Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D 94(1–17), 025012 (2016)
Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98(1–7), 022320 (2018)
Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93–105 (2019)
Zhang, W., Jing, J.: Multipartite entanglement for open system in noninertial frames (2011). arXiv:1103.4903
Khan, S.: Entanglement of tripartite states with decoherence in noninertial frames. J. Mod. Opt. 59, 250–258 (2012)
Dër, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(1–4), 140401 (2014)
Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)
Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)
Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)
Zeng, H.S., Liao, M.J.: Quantum beat of coherence induced by non-Markovian effect. Eur. Phys. J. D 74(1–5), 109 (2020)
Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74(1–15), 032326 (2006)
Wang, J., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilation black holes. Phys. Rev. D 90(1–6), 025032 (2014)
Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., SoutoRibeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78(1–15), 022322 (2008)
Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(1–4), 032324 (2011)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11275064, 11775075, 11434011) and the Construct Program of the National Key Discipline.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wu, SM., Li, ZC. & Zeng, HS. Multipartite coherence and monogamy relationship under the Unruh effect in an open system. Quantum Inf Process 20, 277 (2021). https://doi.org/10.1007/s11128-021-03209-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03209-7