Skip to main content
Log in

Operational characterization of weight-based resource quantifiers via exclusion tasks in general probabilistic theories

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The formalism of general probabilistic theories (GPTs), which include classical probability theory and quantum mechanics, has provided us with physical theories beyond quantum mechanics. In this work, we focus on studying the connection between several classes of exclusion tasks and core problems of resource theories-weight-based resource quantifiers and resource manipulations in any GPT. First, we introduce two resourceful quantifiers called the weight of state (WOS) and the weight of measurement (WOM) in any GPT; then, we show that the WOS accurately quantifies the best advantage that a given resource state offers over resourceless states in all channel exclusion tasks. Meanwhile, a similar conclusion can be drawn for the WOM. Second, we introduce the weight-generating power of a channel (WGPC) in any GPT, based on which the resource content of a nonfree channel can be quantified by understanding the number of resources produced by it. It is proven that the WGPC can be considered as the best advantage provided by a given nonfree channel when considering a class of free-state exclusion tasks. In the context of quantum mechanics, we show that the best advantage that a given resource channel provides over resourceless channels in a class of entanglement-assisted state exclusion tasks can be accurately quantified by the weight of channel (WOC). In addition, we introduce the maximum WOC ensemble (MWCE) and find that the MWCE admits an operational interpretation as the best advantage that a given resource channel ensemble provides over free channel ensembles in a class of specific free-channel exclusion tasks. Finally, we show that several classes of channel and state exclusion tasks can constitute complete sets of monotones, completely describing the transformations of states and measurements in any GPT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dowling, J.P., Milburn, G.J.: Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. A 361, 1655 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N., Glaser, S.J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M.F., Schmidt, P.O., Thew, R., Wallraff, A., Walmsley, I., Wilhelm, F.K.: The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018)

    Article  Google Scholar 

  3. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Oszmaniec, M., Guerini, L., Wittek, P., Acín, A.: Simulating positive-operator-valued measures with projective measurements. Phys. Rev. Lett. 119, 190501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Oszmaniec, M., Maciejewski, F.B., Puchaía, Z.: All quantum measurements can be simulated using projective measurements and postselection. Phys. Rev. A 100, 012351 (2019)

    Article  ADS  Google Scholar 

  6. Guerini, L., Bavaresco, J., Cunha, M.T., Acín, A.: Operational framework for quantum measurement simulability. J. Math. Phys. 58, 092102 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Skrzypczyk, P., Linden, N.: Robustness of measurement, discrimination games, and accessible information. Phys. Rev. Lett. 122, 140403 (2019)

    Article  ADS  Google Scholar 

  8. Baek, K., Sohbi, A., Lee, J., Kim, J., Nha, H.: Quantifying coherence of quantum measurements. New J. Phys. 22, 093019 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Rosset, D., Buscemi, F., Liang, Y.-C.: Resource theory of quantum memories and their faithful verification with minimal assumptions. Phys. Rev. X 8, 021033 (2018)

    Google Scholar 

  10. Seddon, J.R., Campbell, E.: Quantifying magic for multi-qubit operations. Proc. R. Soc. A 475, 20190251 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, X., Wilde, M.M., Su, Y.: Quantifying the magic of quantum channels. New J. Phys. 21, 103002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Xu, J.W.: Coherence of quantum channels. Phys. Rev. A 100, 052311 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Saxena, G., Chitambar, E., Gour, G.: Dynamical resource theory of quantum coherence. Phys. Rev. Res. 2, 023298 (2020)

    Article  Google Scholar 

  14. Takagi, R., Wang, K., Hayashi, M.: Application of the resource theory of channels to communication scenarios. Phys. Rev. Lett. 124, 120502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Brand\(\tilde{\text{a}}\)o, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

  16. Del Rio, L., Kraemer, L., Renner, R.: Resource Theories of Knowledge, arXiv:1511.08818

  17. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Z.-W., Hu, X., Lloyd, S.: Resource destroying maps. Phys. Rev. Lett. 118, 060502 (2017)

    Article  ADS  Google Scholar 

  19. Gour, G.: Quantum resource theories in the single-shot regime. Phys. Rev. A 95, 062314 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Anshu, A., Hsieh, M.-H., Jain, R.: Quantifying resources in general resource theory with catalysts. Phys. Rev. Lett. 121, 190504 (2018)

    Article  ADS  Google Scholar 

  21. Regula, B.: Convex geometry of quantum resource quantification. J. Phys. A 51, 045303 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lami, L., Regula, B., Wang, X., Nichols, R., Winter, A., Adesso, G.: Gaussian quantum resource theories. Phys. Rev. A 98, 022335 (2018)

    Article  ADS  Google Scholar 

  23. Takagi, R., Regula, B., Bu, K., Liu, Z.-W., Adesso, G.: Operational advantage of quantum resources in subchannel discrimination. Phys. Rev. Lett. 122, 140402 (2019)

    Article  ADS  Google Scholar 

  24. Li, L., Bu, K., Liu, Z.-W.: Quantifying the resource content of quantum channels: an operational approach. Phys. Rev. A 101, 022335 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ducuara, A.F., Skrzypczyk, P.: Operational interpretation of weight-based resource quantifiers in convex quantum resource theories. Phys. Rev. Lett. 125, 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Uola, R., Bullock, T., Kraft, T., Pellonp\(\ddot{a}\ddot{a}\), J.-P., Brunner, N.: All quantum resources provide an advantage in exclusion tasks. Phys. Rev. Lett. 125, 110402 (2020)

  27. Ducuara, A.F., Lipka-Bartosik, P., Skrzypczyk, P.: Multiobject operational tasks for convex quantum resource theories of state-measurement pairs. Phys. Rev. Res. 2, 033374 (2020)

  28. Gour, G.: Comparison of quantum channels by superchannels. IEEE Trans. Inf. Theory 65, 5880 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Theurer, T., Egloff, D., Zhang, L., Plenio, M.B.: Quantifying operations with an application to coherence. Phys. Rev. Lett. 122, 190405 (2019)

    Article  ADS  Google Scholar 

  30. Gour, G., Winter, A.: How to quantify a dynamical quantum resource. Phys. Rev. Lett. 123, 150401 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Liu, Y., Yuan, X.: Operational resource theory of quantum channels. Phys. Rev. Res. 2, 012035 (2020)

    Article  Google Scholar 

  32. Regula, B., Takagi, R.: Fundamental limitations on quantum channel manipulation (2020). arXiv:2010.11942

  33. Heinosaari, T., Kiukas, J., Reitzner, D.: Noise robustness of the incompatibility of quantum measurements. Phys. Rev. A 92, 022115 (2015)

    Article  ADS  Google Scholar 

  34. Carmeli, C., Heinosaari, T., Toigo, A.: State discrimination with postmeasurement information and incompatibility of quantum measurements. Phys. Rev. A 98, 012126 (2018)

    Article  ADS  Google Scholar 

  35. Oszmaniec, M., Biswas, T.: Operational relevance of resource theories of quantum measurements. Quantum 3, 133 (2019)

    Article  Google Scholar 

  36. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hartk\(\ddot{\text{ a }}\)mper, A., Neumann, H. (eds.): Foundations of Quantum Mechanics and Ordered Linear Spaces. Springer, Berlin (1974)

  38. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics: Volume 1 Derivation of Hilbert Space Structure. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  39. Lami, L.: Non-classical Correlations in Quantum Mechanics and Beyond, Ph.D. thesis, Universitat Aut\(\grave{o}\)noma de Barcelona (2018)

  40. Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Teleportation in general probabilistic theories. Proc. Sympos. Appl. Math. 71, 25–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Barnum, H., Barrett, J., Clark, L.O., Leifer, M., Spekkens, R., Stepanik, N., Wilce, A., Wilke, R.: Entropy and information causality in general probabilistic theories. New J. Phys. 12(3), 033024 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Chiribella, G., Scandolo, C.M.: Entanglement and thermodynamics in general probabilistic theories. New J. Phys. 17, 103027 (2015)

    Article  ADS  MATH  Google Scholar 

  43. Chiribella, G., Scandolo, C.M.: Microcanonical thermodynamics in general physical theories. New J. Phys. 19, 123043 (2017)

    Article  ADS  Google Scholar 

  44. Lami, L., Palazuelos, C., Winter, A.: Ultimate data hiding in quantum mechanics and beyond. Commun. Math. Phys. 361, 661 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Takakura, R., Miyadera, T.: Preparation uncertainty implies measurement uncertainty in a class of generalized probabilistic theories. J. Math. Phys. 61, 082203 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Takakura, R., Miyadera, T.: Entropic Uncertainty Relations in a Class of Generalized Probabilistic Theories. arXiv:2006.05671 (2020)

  47. Jen\({\check{c}}\)ov\(\acute{a}\), A.: Incompatible measurements in a class of general probabilistic theories. Phys. Rev. A 98, 012133 (2018)

  48. Bluhm, A., Jen\({\check{c}}\)ov\(\acute{a}\), A., Nechita, I.: Incompatibility in general probabilistic theories, generalized spectrahedra, and tensor norms. arXiv:2011.06497 (2021)

  49. Aubrun, G., Lami, L., Palazuelos, C., et al.: Universal gaps for XOR games from estimates on tensor norm ratios. Commun. Math. Phys. 375, 679–724 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Takagi, R., Regula, B.: General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks. Phys. Rev. X 9, 031053 (2019)

    Google Scholar 

  51. Steiner, M.: Generalized robustness of entanglement. Phys. Rev. A 67, 054305 (2003)

    Article  ADS  Google Scholar 

  52. Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 144, 060404 (2015)

    Article  MathSciNet  Google Scholar 

  53. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  54. Bae, J., Chru\(\acute{\text{ s }}\)ci\(\acute{\text{ n }}\)ski, D., Piani, M.: More entanglement implies higher performance in channel discrimination tasks. Phys. Rev. Lett. 122, 140404 (2019)

  55. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  56. Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)

    Article  ADS  Google Scholar 

  57. Skrzypczyk, P., \(\check{\text{ S }}\)upi\(\acute{\text{ c }}\), I., Cavalcanti, D.: All sets of incompatible measurements give an advantage in quantum state discrimination. Phys. Rev. Lett. 122, 130403(2019)

  58. Uola, R., Kraft, T., Shang, J.W., Yu, X.D., G\(\ddot{\text{ u }}\)hne, O.: Quantifying quantum resources with conic programming. Phys. Rev. Lett. 122, 130404 (2019)

  59. Carmeli, C., Heinosaari, T., Miyadera, T., Toigo, A.: Witnessing incompatibility of quantum channels. J. Math. Phys. 60, 122202 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Mori, J.: Operational characterization of incompatibility of quantum channels with quantum state discrimination. Phys. Rev. A 101, 032331 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  61. Uola, R., Kraft, T., Abbott, A.A.: Quantification of quantum dynamics with input-output games. Phys. Rev. A 101, 052306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  62. Elitzur, A.C., Popescu, S., Rohrlich, D.: Quantum nonlocality for each pair in an ensemble. Phys. Lett. A 162, 25 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  63. Lewenstein, M., Sanpera, A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261 (1998)

    Article  ADS  Google Scholar 

  64. Skrzypczyk, P., Navascu\(\acute{\text{ e }}\)s, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

  65. Pusey, M.F.: Verifying the quantumness of a channel with an untrusted device. J. Opt. Soc. Am. B 32, A56 (2015)

    Article  ADS  Google Scholar 

  66. Cavalcanti, D., Skrzypczyk, P.: Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112 (2016)

    Article  ADS  Google Scholar 

  67. Bu, K.F., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)

    Article  ADS  Google Scholar 

  68. Bandyopadhyay, S., Jain, R., Oppenheim, J., Perry, C.: Conclusive exclusion of quantum states. Phys. Rev. A 89, 022336 (2014)

    Article  ADS  Google Scholar 

  69. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  70. Chiribella, G., \(\text{ D}^{\prime }\)Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010)

  71. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  72. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for helping them refine the ideas presented in this article and improve the clarity of the presentation. They would like to thank Yu Luo and Zhengjun Xi for the insightful discussions. This work was supported by National Science Foundation of China (Grant Nos: 12071271, 11671244, 62001274), the Higher School Doctoral Subject Foundation of Ministry of Education of China (Grant No: 20130202110001) and the Research Funds for the Central Universities (GK202003070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Lemma 1

Equation (10) can be rewritten as the following form:

$$\begin{aligned} {\text {minimize}} \quad&w ,&\end{aligned}$$
(A1)
$$\begin{aligned} \text{ subject } \text{ to }\quad&(1-w)\sigma \preceq _{{\mathcal {C}}}\rho ,&\end{aligned}$$
(A2)
$$\begin{aligned}&\sigma \in {\mathcal {F}}.&\end{aligned}$$
(A3)

Let \({\tilde{\sigma }}=(1-w)\sigma \), then we have

$$\begin{aligned} {\text {minimize}} \quad&1-\langle U, {\tilde{\sigma }}\rangle ,&\end{aligned}$$
(A4)
$$\begin{aligned} \text{ subject } \text{ to }\quad&{\tilde{\sigma }}\preceq _{{\mathcal {C}}}\rho ,&\end{aligned}$$
(A5)
$$\begin{aligned}&{\tilde{\sigma }}\in cone({\mathcal {F}}).&\end{aligned}$$
(A6)

The Lagrangian is given by

$$\begin{aligned} L({\tilde{\sigma }}; X,Y)&=1-\langle U, {\tilde{\sigma }}\rangle -\langle X, \rho -{\tilde{\sigma }}\rangle -\langle Y,{\tilde{\sigma }}\rangle \\&=1-\langle X, \rho \rangle -\langle U-X+Y, {\tilde{\sigma }}\rangle , \end{aligned}$$

where \(X\in {\mathcal {C}}^*\) and \(Y\in {\mathcal {F}}^*\).

Noticing that

$$\begin{aligned} \mathop {\min }\limits _{{\tilde{\sigma }}} L({\tilde{\sigma }}; X,Y) =\left\{ \begin{array}{ll} {1-\langle X, \rho \rangle ,} &{} { \text{ if } U-X+Y=\mathbf {0}, Y\in {\mathcal {F}}^*}, \\ {-\infty ,} &{} {\text{ otherwise } }. \\ \end{array}\right. \end{aligned}$$

Optimizing over the Lagrange multipliers \(X\in {\mathcal {C}}^*\) and \(Y\in {\mathcal {F}}^*\), we obtain the following dual form:

$$\begin{aligned} {\text {maximize}} \quad&1-\langle X, \rho \rangle ,&\end{aligned}$$
(A7)
$$\begin{aligned} \text{ subject } \text{ to }\quad&X\in {\mathcal {C}}^*,&\end{aligned}$$
(A8)
$$\begin{aligned}&\langle X,\sigma \rangle \ge 1, \forall \sigma \in {\mathcal {F}},&\end{aligned}$$
(A9)

where Eq. (A9) follows from \(Y=X-U\) and \(\langle Y, \sigma \rangle \ge 0\) for any \(\sigma \in {\mathcal {F}}\).

Appendix B: The proof of Lemma 2

Let \(N'_i=wN_i\), then Eq. (18) can be rewritten as the following form:

$$\begin{aligned} {\text {minimize}} \quad&w,&\end{aligned}$$
(B1)
$$\begin{aligned} \text{ subject } \text{ to }\quad&M_i-N'_i\succeq _\mathcal {E_F}\mathbf {0},&\end{aligned}$$
(B2)
$$\begin{aligned}&N'_i\in {\mathcal {C}}^*, \forall i&\end{aligned}$$
(B3)
$$\begin{aligned}&\sum \limits _iN'_i=wU.&\end{aligned}$$
(B4)

Then we can rewrite it as

$$\begin{aligned} \begin{aligned} \mathcal {W_{E_F}}({\mathbb {M}})=min\{w\in {\mathbb {R}}_+ \mid M_i-N'_i\in \mathcal {E_F}, \forall i,N'_i\in {\mathcal {C}}^*,\forall i, wU-\sum _iN'_i=0_{{\mathcal {V}}^*}\}. \end{aligned} \end{aligned}$$

The Lagrangian is given by

$$\begin{aligned} \begin{aligned} L(\{N_i\}, w;\{\sigma _i\},\{\delta _i\},\eta )&=w-\sum _i\langle M_i-N'_i, \sigma _i\rangle -\sum _i\langle N_i', \delta _i\rangle -\langle wU-\sum _iN'_i,\eta \rangle \\&=w(1-\langle U, \eta \rangle )+\sum _i\langle N'_i, \eta +\sigma _i-\delta _i\rangle -\sum _i\langle M_i, \sigma _i\rangle . \end{aligned} \end{aligned}$$

Optimizing over the Lagrange multipliers \(\sigma _i\in \mathcal {E_F}^*\), \(\delta _i\in {\mathcal {C}}\) and \(\eta \in {\mathcal {V}}\), we obtain the following dual form:

$$\begin{aligned} {\text {maximize}} \quad&-\sum _i\langle M_i, \sigma _i\rangle ,&\end{aligned}$$
(B5)
$$\begin{aligned} \text{ subject } \text{ to }\quad&-\sigma _i\preceq _{\mathcal {C}} \eta , \forall i&\end{aligned}$$
(B6)
$$\begin{aligned}&\eta \in {\mathcal {V}},&\end{aligned}$$
(B7)
$$\begin{aligned}&\sigma _i\in \mathcal {E_F}^*, \forall i.&\end{aligned}$$
(B8)
$$\begin{aligned}&\langle U, \eta \rangle =1.&\end{aligned}$$
(B9)

Defining \(\rho _i=\eta +\sigma _i\), we have

$$\begin{aligned} {\text {maximize}} \quad&1-\sum _i\langle M_i, \rho _i\rangle ,&\end{aligned}$$
(B10)
$$\begin{aligned} \text{ subject } \text{ to }\quad&\rho _i\in {\mathcal {C}}, \forall i&\end{aligned}$$
(B11)
$$\begin{aligned}&\eta \in {\mathcal {V}},&\end{aligned}$$
(B12)
$$\begin{aligned}&\langle F,\eta \rangle \le \langle F,\rho _i\rangle , \forall i, \forall F\in \mathcal {E_F},.&\end{aligned}$$
(B13)
$$\begin{aligned}&\langle U, \eta \rangle =1,&\end{aligned}$$
(B14)

where Eq. (B10) follows from \(\sum _i\langle M_i, \eta \rangle =\langle U, \eta \rangle =1\) and Eq. (B13) follows from \(\rho _i-\eta \in \mathcal {E_F}^*\).

Appendix C: The proof of Proposition 2

We only give the proof of condition (i), the proof of condition (ii) is similar with that. First, we prove the “only if” part. Suppose that there exists \({\tilde{\Lambda }}\in {\mathcal {O}}\) such that \(\rho '={\tilde{\Lambda }}(\rho )\). Then for any \({\mathbb {M}}\in {\mathcal {M}}\), we have

$$\begin{aligned} \begin{aligned} {\tilde{p}}_\mathrm{err}'({\mathbb {M}},\rho ')&=\mathop {\min }\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}} \sum _i p_i\langle M_i, \Lambda _i(\rho ') \rangle \\&=\mathop {\min }\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}} \sum _i p_i\langle M_i, \Lambda _i\circ {\tilde{\Lambda }}(\rho ) \rangle \\&\ge \mathop {\min }\limits _{\Lambda '_i \in {\mathcal {O}},\{p_i, \Lambda '_i\}} \sum _i p_i\langle M_i, \Lambda '_i(\rho ) \rangle \\&={\tilde{p}}_\mathrm{err}'({\mathbb {M}},\rho ), \end{aligned} \end{aligned}$$
(C1)

where the inequality is due to the closedness of \({\mathcal {O}}\) under concatenation.

Then, we prove the “if” part. Suppose that \(\forall {\mathbb {M}}\in {\mathcal {M}}\), we have \({\tilde{p}}_\mathrm{err}'({\mathbb {M}},\rho )\le {\tilde{p}}_\mathrm{err}'({\mathbb {M}},\rho ')\). This signifies that

$$\begin{aligned} \begin{aligned} 0&\le \mathop {inf}\limits _{\{M_i\}\in {\mathcal {M}}}\bigg [ \mathop {\min }\limits _{\Theta _i \in {\mathcal {O}},\{q_i, \Theta _i\}}\sum _i q_i\langle M_i, \Theta _i(\rho ') \rangle -\mathop {\min }\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}}\sum _i p_i\langle M_i, \Lambda _i(\rho ) \rangle \bigg ]\\&\le \mathop {inf}\limits _{\{M_i\}\in {\mathcal {M}}}\bigg [\sum _i p_i\langle M_i, \rho ' \rangle -\mathop {min}\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}}\sum _i p_i\langle M_i, \Lambda _i(\rho ) \rangle \bigg ]\\&=\mathop {inf}\limits _{\{M_i\}\in {\mathcal {M}}}\mathop {\max }\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}}\sum _i p_i\langle M_i, \rho '-\Lambda _i(\rho ) \rangle \\&\le \mathop {\min }\limits _{\{M_i\}_{i=0}^{N}\in {\mathcal {M}}}\mathop {max}\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}_{i=0}^{N-1}}\sum _i p_i\langle M_i, \rho '-\Lambda _i(\rho ) \rangle \\&=\mathop {\max }\limits _{\Lambda _i \in {\mathcal {O}},\{p_i, \Lambda _i\}_{i=0}^{N-1}}\mathop {\min }\limits _{\{M_i\}_{i=0}^{N}\in {\mathcal {M}}}\sum _i p_i\langle M_i, \rho '-\Lambda _i(\rho ) \rangle ,\\ \end{aligned} \end{aligned}$$
(C2)

where the second inequality follows from setting each \(q_i=p_i\) and any \(\Theta _i=id\), the third inequality is because we restricted the minimization over \(N+1\)-outcome measurements where \(N\ge 2\), the last equality follows from Sion’s minimax theorem [71].

To prove that \(\exists \Lambda \in {\mathcal {O}}\) such that \(\rho '=\Lambda (\rho )\), suppose that \(\forall \Lambda \in {\mathcal {O}}\), we have \(\rho '\ne \Lambda (\rho )\). Since any \(\Lambda _i\) is a physical channel and thus normalization preserving, we have

$$\begin{aligned} \langle U, \rho '-\Lambda _i(\rho )\rangle =0, \forall i. \end{aligned}$$
(C3)

In fact, since \(\rho '-\Lambda _i(\rho )\ne \mathbf {0}\) by assumption, we have \(\rho '-\Lambda _i(\rho )\notin C\) for all i. If there exists i such that \(\rho '-\Lambda _i(\rho )\in C\), then we have \(\langle U, \rho '-\Lambda _i(\rho )\rangle >0\), which is contradictory with Eq. (C3). Therefore, by the hyperplane separation theorem [72], for every \(\Lambda _i\) there exists an effect \(E_i\in C^*\) such that \(\langle E_i, \rho '-\Lambda _i(\rho )\rangle <0\). We now construct an incomplete measurement \(\{M_i\}_{i=0}^{N-1}\) by

$$\begin{aligned} M_i=\frac{E_i}{\parallel \sum _j E_j\parallel _{\Omega }^{\circ }}, \end{aligned}$$
(C4)

such that \(\sum _i M_i\preceq _{C^*} U\), and so we can define a complete measurement \(\{M_i\}_{i=0}^{N}\) as

$$\begin{aligned} M_i=\left\{ \begin{array}{ll} \frac{E_i}{\parallel \sum _j E_j\parallel _{\Omega }^{\circ }}, &{} { \text{ if } i\ne N}, \\ {U-\sum _{i=0}^{N-1} M_i,} &{} { \text{ if } i=N}. \end{array}\right. \end{aligned}$$
(C5)

Notably, the effect \(M_N\) does not affect the measurement with respect to the ensemble \(\{p_i, \Lambda _i\}_{i=0}^{N-1}\). For this measurement \(\{M_i\}_{i=0}^{N}\), we have

$$\begin{aligned} \sum _i p_i\langle M_i, \rho '-\Lambda _i(\rho ) \rangle =\sum _i\frac{p_i}{\parallel \sum _j E_j\parallel _{\Omega }^{\circ }}\langle E_i, \rho '-\Lambda _i(\rho ) \rangle <0. \end{aligned}$$
(C6)

That is to say that for any ensemble \(\{p_i, \Lambda _i\}_{i=0}^{N-1}\) there exists such a measurement such that Eq. (C6) holds. This is contradictory with Eq. (C2), which says that there exists an ensemble \(\{p_i, \Lambda _i\}_{i=0}^{N-1}\) such that any measurement \(\{M_i\}_{i=0}^{N}\) gives \(\sum _i p_i\langle M_i, \rho '-\Lambda _i(\rho ) \rangle \ge 0\). It suggests that our original assumption must be wrong, hence there exists \(\Lambda \in {\mathcal {O}}\) such that \(\rho '=\Lambda (\rho )\).

Appendix D: The proof of Proposition 4

We only give the proof of condition (i), the proof of condition (ii) is similar with that. First, we prove the “only if” part. If there exists \(\Gamma \in \mathcal {O_E}\) such that \({\mathbb {M}}'=\Gamma ({\mathbb {M}})\), then for any ensemble \({\mathcal {A}}=\{p_i,\sigma _i\}\) we have

$$\begin{aligned} \begin{aligned} {\tilde{p}}_\mathrm{err}({\mathcal {A}}, {\mathbb {M}}')&=\mathop {\min }\limits _{\Lambda ^* \in \mathcal {O_E}} \sum _i p_i\langle M_i', \Lambda (\sigma _i) \rangle \\&=\mathop {\min }\limits _{\Lambda ^* \in \mathcal {O_E}} \sum _i p_i\langle \Gamma (M_i), \Lambda (\sigma _i) \rangle \\&=\mathop {\min }\limits _{\Lambda ^* \in \mathcal {O_E}} \sum _i p_i\langle \Lambda ^*\circ \Gamma (M_i),\sigma _i \rangle \\&\ge \mathop {\min }\limits _{{\tilde{\Lambda }}^* \in \mathcal {O_E}} \sum _i p_i\langle {M_i},{\tilde{\Lambda }}(\sigma _i) \rangle \\&={\tilde{p}}_\mathrm{err}({\mathcal {A}},{\mathbb {M}}), \end{aligned} \end{aligned}$$
(D1)

where the inequality is due to the closedness of \(\mathcal {O_E}\) under concatenation.

Then, we prove the “if” part. Suppose \(\forall {\mathcal {A}}\), \({\tilde{p}}_\mathrm{err}({\mathcal {A}},{\mathbb {M}})\le {\tilde{p}}_\mathrm{err}({\mathcal {A}},{\mathbb {M}}')\), we have

$$\begin{aligned} \begin{aligned} 0&\le \mathop {\min }\limits _{{\mathcal {A}}}\bigg [ \mathop {\min }\limits _{\Theta ^* \in \mathcal {O_E}}\sum _i p_i\langle M_i', \Theta (\sigma _i) \rangle -\mathop {\min }\limits _{\Lambda ^* \in \mathcal {O_E}}\sum _i p_i\langle M_i, \Lambda (\sigma _i) \rangle \bigg ]\\&\le \mathop {\min }\limits _{{\mathcal {A}}}\bigg [\sum _i p_i\langle M_i', \sigma _i \rangle -\mathop {\min }\limits _{\Lambda ^* \in \mathcal {O_E}}\sum _i p_i\langle M_i, \Lambda (\sigma _i) \rangle \bigg ]\\&=\mathop {\min }\limits _{{\mathcal {A}}}\mathop {\max }\limits _{\Lambda ^* \in \mathcal {O_E}}\sum _i p_i\langle M_i'-\Lambda ^*(M_i), \sigma _i\rangle \\&=\mathop {\max }\limits _{\Lambda ^* \in \mathcal {O_E}}\mathop {\min }\limits _{{\mathcal {A}}}\sum _i p_i\langle M_i'-\Lambda ^*(M_i), \sigma _i\rangle ,\\ \end{aligned} \end{aligned}$$
(D2)

where the second inequality follows from setting \(\Theta ^*=id\), and the last equality follows from Sion’s minimax theorem [71].

Next, we will prove that there exists \(\Lambda ^*\in \mathcal {O_E}\) such that \(M_i'-\Lambda ^*(M_i)=\mathbf {0}\) for all i. To achieve this, we use proof by contradiction. Suppose that \(\forall \Lambda ^*\in \mathcal {O_E}\) there exists i such that \(M_i'-\Lambda ^*(M_i)\ne \mathbf {0}\). Due to \(\Lambda ^*\in \mathcal {O_E}\), for all \(\Lambda ^*\) we immediately have

$$\begin{aligned} \sum _i\big [M_i'-\Lambda ^*(M_i)\big ]=U-\Lambda ^*(U)=\mathbf {0}. \end{aligned}$$
(D3)

In particular, it holds that

$$\begin{aligned} \left\langle \sum _i M_i'-\Lambda ^*(M_i), \rho \right\rangle =0, \forall \rho \in C, \end{aligned}$$
(D4)

which means that there exists \(i^*\) such that \(M_{i^*}'-\Lambda ^*(M_{i^*})\notin C^*\). Otherwise, it implies that \(M_i'-\Lambda ^*(M_i)=\mathbf {0}\) for all i, which contradicts with the assumption. Therefore, for any \(\Lambda ^*\in \mathcal {O_E}\) there exist an index \(i^*\) and a state \(\sigma \in \Omega ({\mathcal {V}})\) such that

$$\begin{aligned} \langle M_{i^*}'-\Lambda ^*(M_{i^*}), \sigma \rangle <0. \end{aligned}$$
(D5)

Define the ensemble \(\{p_i,\sigma _i\}\) as \(p_i=0\) if \(i\ne i^*\) and \(p_{i^*}=1, \sigma _{i^*}=\sigma \), then we have

$$\begin{aligned} \sum _i p_i \langle M_i'-\Lambda ^*(M_i), \sigma _i\rangle <0. \end{aligned}$$
(D6)

That is to say that for any \(\Lambda ^*\in \mathcal {O_E}\) there exists a ensemble \({\mathcal {A}}\) such that Eq. (D6) holds. This is contradictory with Eq. (D2), which says that there exists \(\Lambda ^*\in \mathcal {O_E}\) such that any ensemble \({\mathcal {A}}\) gives \(\sum _i p_i\langle M_i'-\Lambda _i^*(M_i), \sigma _i\rangle \ge 0\). It suggests that our original assumption must be wrong, hence there exists \(\Lambda ^*\in \mathcal {O_E}\) such that \({\mathbb {M}}'=\Lambda ^*({\mathbb {M}})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Li, Y. & Li, Z. Operational characterization of weight-based resource quantifiers via exclusion tasks in general probabilistic theories. Quantum Inf Process 20, 317 (2021). https://doi.org/10.1007/s11128-021-03251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03251-5

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy