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Abstract   

Fabric surface flaw inspection is essential for textile quality control, and it is demanding to replace human inspectors with the 
automatic machine vision-based flaw inspection system. To alleviate the time-consuming problem of sparse coding in detecting 
phase, this work presents a real time fabric flaw inspection method by using grouped sparse dictionary. Firstly, the over-complete 
sparse dictionary is learned from normal fabric images; Secondly, the learned sparse dictionary is grouped into several sub-
dictionaries by evaluating reconstruction error. Finally, the grouped dictionary is used to represent image and identify flaw regions 
as they cannot be represented well, leading to large reconstruction error. In addition, a non-maximum suppression algorithm is also 
proposed to reduce false inspection further. Experiments on various fabric flaws and real-time implementation on the proposed 
vision-based hardware system are conducted to evaluate the performance of proposed method. In comparison with other dictionary 
learning methods, the experimental results demonstrate that the proposed method can reduce the running time significantly and 
achieve a decent performance, which is capable of meeting the real-time inspection requirement without compromising inspection 
accuracy. 
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1. Introduction 

Textile fabric flaws or flaws are generally caused by raw 

materials (warp or weft yarns), mechanical failures and human 

factors in the production process. The occurred fabric flaws 

would seriously impair the quality of final products, leading to 

a reduction in the sale prices. Thus, the fabric flaw inspection 

plays a key role in quality control process. At present, the flaw 

inspection is mainly conducted by human inspectors, suffering 

from low efficiency and high laboring cost. Therefore, it is of 

great significance to apply fast and reliable image processing 

and machine vision techniques to perform automated flaw 

inspection instead of human. 

According to different types of solutions, textile fabric flaw 

inspection can be mainly divided into five categories [1]: 

structural methods, statistical method, frequency-domain 

method, model method, and machine learning method. The 

structural method obtains structural features by extracting the 

basic texture structure of the image from the fabric. The 

existence of defects destroys the original structural texture, and 

the flaws can be detected by comparing the similarity with the 

normal texture [2]. Statistics-based methods mainly use the 

grayscale properties of pixels and their neighborhoods to 

calculate the statistics in different orders. Commonly used 

statistical methods are histogram statistics [3, 4], gray co-

occurrence matrix [5, 6], mathematical morphology [7] and so 

on. The spectrum-based method utilizes the similarity between 

the periodicity of the fabric texture and the spectral 

characteristics, and applies the method of analyzing the 

spectrum to the image texture. Fourier transform [8], Gabor 

transform [9], wavelet transform [10] and so on are commonly 

used methods. The model-based method is based on the 

assumption that the texture obeys a specific distribution model 

and the parameters of the model, so as to judge the image under 

test according to the specific distribution model, and realize the 

defect detection, which is suitable for the situation that the 

surface characteristics of the fabric change irregularly. 

Common ones are autoregressive models and Markov random 

fields. The learning-based approach is more adaptable to 

different fabrics and flaws, which can be further divided into 

traditional machine learning and deep learning [11]. Traditional 

machine learning includes support vector machines, dictionary 

learning [12, 13], etc. On the contrary, deep learning-based 

methods manage to learn the optimized deep hierarchical 

features from low to high level for image representation, and 
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typical models are convolutional neural networks (CNNs), 

generative adversarial networks (GANs), etc. Although such 

hierarchy of features learned from deep learning models is quite 

feasible and powerful, it is time consuming to train those 

models and a large amount of labelled data is required [14]. 

Referring to related works, Mak [15] proposes a 

morphological filter-based defect detection scheme. It uses 

Gabor wavelet networks to extract features from defect-free 

images and then matches the optimal morphological filter 

applied to the same texture background to improve the detection 

accuracy for different fabric types and defects. Arnia [16] 

proposed a framework for real-time textile defect detection 

based on energy and contrast features of the grayscale co-

occurrence matrix (GLCM). The proposed framework use 

DCTb-I to calculate the energy and contrast generated by a 

small number of DCT coefficients to distinguish if it is a 

defective patch, and conveniently, there is no need to define 

thresholds for new textile rolls with different backgrounds. 

Feng [17] proposed a hardware accelerated algorithm based on 

a small-scale over-completed dictionary (SSOCD) via sparse 

coding (SC) method, which is realized on a parallel hardware 

platform. They use feature segmentation to accelerate SSOCD 

extraction and improve parallel processing efficiency by 

optimizing synchronization and communication methods and 

DSP programs to achieve significant improvements in final 

detection speed. Wei [18] improved the loss function for image 

similarity comparison based on VAE in image generation and 

combined SSIM and L2 to enhance the overall similarity 

between the generated and input images based on Gaussian 

patches. And a factory-operated fabric defect detection machine 

was deployed with excellent practical application. Jia [19] 

proposed a fabric defect detection system based on migration 

learning and an improved Faster R-CNN. The improved Faster 

R-CNN has greatly enhanced detection accuracy and 

convergence ability, achieving good results for small defects. 

Sparse representation theory is widely used in face 

recognition [20], image denoising [21], target tracking and 

other fields because of its excellent data feature representation 

ability. Ma [22] established the target observation model with 

BOMP as the core, introduced the sparse display into the 

particle filtering framework, and found the optimal solution 

after optimization. And the experiments show that this 

algorithm can still maintain high tracking accuracy and strong 

robustness in the case that the target appearance changes due to 

light changes, partial occlusion and pose changes. Kang [23] 

proposes a generalized adaptive defect detection scheme that 

uses a random dictionary approach to accommodate fabrics 

with various textures. This algorithm achieves an average 

success rate of 100% for the detection of dark-red fabric and 

dot-patterned fabric. 

Sparse dictionary learning method has excellent adaptability 

to fabrics with different textures and flaws. However, the 

learning and solving of sparse dictionary take a lot of time, 

making it difficult to meet the real-time requirements in 

industrial scenarios. Therefore, this work proposes a dictionary 

grouping strategy to optimize the sparse dictionary and speed 

up the sparse coding in inspection stage while guaranteeing the 

inspection accuracy. 

This work is organized as follows: in Section 2, the hardware 

system of the fabric flaw inspection system is introduced, 

including the general construction, the light source system, and 

the image acquisition system. In Section 3, the flow of the flaw 

inspection algorithm and the strategy of sparse dictionary 

grouping optimization are described. In Section 4, the 

experiments on various samples are performed to assess the 

effectivity of the proposed method. In the last Section, the real-

time experiments are conducted to further evaluate the 

performance of the proposed system. 
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Fig.1  Overview of hardware system: (a) diagram of equipment (front view); (b) front view of equipment; (c) diagram of equipment (rear 

view); (d) rear view of equipment; 

 

2. Hardware system  

2.1 Overview of equipment 

As shown in Fig. 1, the schematic diagrams of the equipment 

are illustrated in Fig. 1(a)(c), whose actual pictures are 

presented in Fig. 1(b)(d). In the front view, it is mainly designed 

for operators including main control console, warning lights 

and fabric driving rollers. In the rear view, there are eight 

industrial cameras arranged alone a line with a specified 

interval, in order to cover the full width of a fabric. 

2.2 Light source 

For a vision-based inspection system, the quality of the images 

acquired from the cameras in hardware system is highly 

dependent on the lighting condition, as an appropriateness of 

illumination is capable of enhancing the features of the flaw 

areas as prominent as possible.  

In order to acquire high quality fabric images for different 

types of textile fabrics, here the LED light sources supporting 

external trigger are configured to provide different illumination 

conditions. From Fig. 2, it can be seen that the fabric can be 

illuminated under reflected, transmitted and scattered light by 

switching the light sources. For example, transmitted light is 

more suitable to capture images with lightweight fabrics, while 

reflected light is generally for heavyweight ones, such as denim. 

2.3 Image acquisition 

The camera is a key device of the vision-based inspection 

system of fabric flaw inspection, and the quality of the acquired 

images directly affects the later identification and extraction of 

flaw information. 

Compared with the line scan camera cannot generate a 

complete image at once, the image accuracy may be affected by 

the impact of scanning motion accuracy, thus affecting the 

measurement accuracy of the disadvantages. The area scan 

camera captures the two-dimensional matrix information at 

once, and eliminates the feedback link between scanning 

motion and position of the line camera, making the 

measurement more direct, accurate and efficient. In this work, 

the image acquisition system deploys eight area cameras 

(MER-502-79U3M, having 502 Megapixels and 79 fps) in 

order to capture the full width of the textile fabric, whose 

mounting diagram is illustrated in Fig. 3. 

From Fig. 3, it can be seen that the eight cameras are mounted 

along a line with a minor view overlap (about 18mm), which is 

able to capture maximum fabric width up to 2.2m with 
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resolution of 8.4pixel/mm (213PPI). To minimize its 

dimension, the mirrors are utilized to change the direction of 

the incident light to cameras (see Fig. 2(a)). 

 

 
(a) 

 
(b) 

Fig.2 Light sources system 
(a) Diagram of LED light source:1-Fabric; 2-Encoder; 3-Transmitted light source; 4-Scattered light source; 5-Reflected light source; 6-

Camera; 7-Mirror. 

(b) Actual picture  
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Fig.3 Diagram of the acquisition system 

3. Methodology 

3.1 Sparse representation theory 

In the field of signal processing, signals can usually be 

decomposed into linear combinations of some basis elements or 

functions for representation. The basic idea of linear 

representation of a fabric texture signal is to find some basis 

elements (i.e., dictionary atoms) whose linear combinations can 

be optimally approximated (reconstructed) for the original 

signal under certain constraints. The resulting sparse dictionary 

can be better adapted to the signal features by learning, allowing 

dictionary learning to represent the input signal more efficiently. 

For textile defect inspection, such a representation can more 

effectively restore the fabric features or structure, highlighting 

the defective parts and facilitating the subsequent identification 

of defective areas. 

The sparse representation usually uses an overcomplete 

dictionary, which the number of dictionary elements is larger 

than their feature dimension, and the sparsity of the feature 

expression is only a small number of elements in the 

overcomplete dictionary. Assuming that the overcomplete 

dictionary size is K, it can be expressed as 

1 2[ , , , ] n K

k
D d d d

  R , in which each column n

k
d R  is 

an atom, and the data matrix is X. Let α be the coded sparse 

matrix, and write as 
1 2

×K n

n
       R , at this time, 

X D   , if there are only )(T T K=  non-zero numbers in 

i
 . The solution of the sparse dictionary can be viewed as a 

mathematical optimization problem with some approximation 

condition as the objective function, and usually the l0 is relaxed 

to l1 for the solution, and the sparse coding problem under D is 

known as Formula (1).  

2
1

1
min || || || ||

2
,

K n FX D


  


 
¡

  (1) 

where λ is the regularization parameter that controls the weight 

of the reconstruction error 2|| ||
F

X D  with respect to the 

sparsity degree 1|| || . When the dictionary D is determined, the 

LARS algorithm can be used to solve the sparse coefficients. 

3.2 Overview of the proposed method  

 
Fig. 4 Algorithm flow chart 

As seen in Fig. 4, the proposed algorithm can be divided into 

two stages. In the learning stage, the input is the flawless fabric 

images Y and divided into image patches of a certain size, which 

are combined into a data matrix after unfolding into column 

vectors. Sparse dictionary learning is performed on the data 

matrix, then we obtain sparse dictionary D and select dictionary 

elements from D to combine into sub-dictionaries by dictionary 

grouping strategy (see the next section for details) as a 

dictionary set  1 2,  ,  ...,  , n t

q iS S S S S
 R  for subsequent 

use, which t is the number of dictionary elements.  

In the test stage, the acquired image X is also divided into 

image patches and combined into a matrix. The corresponding 

coefficient is solved by using the least square method from Si. 

The reconstructed image Xr can be obtained by Formula (2). 
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The residual image Xε containing potential flaw regions can be 

obtained by subtraction operation, which is given by Formula 

(3). 

ri i
X D       (2) 

2|| ||
t ri

X X X       (3) 

 

 
(a) 

    
(b) 

Fig. 5 An example of residual image 
(a) Fusion of residual images; (b) Defective image and its residual 
image 

As there are q groups in set S, the total of q residual images 

will be obtained, and they are fused into a single image Xε by 

adding operation, which is shown in Fig. 5(a). For the residual 

image in Fig. 5(b), the patch strategy is used to locate defective 

regions, which will be discussed in the next section. 

3.3 Parameter selection 

As the defective regions are located in patch-level, it is 

necessary to find a proper size of the image patch. If the patch 

is too small, it cannot contain the complete fabric texture 

information, but the abnormal features of flaws can be well 

highlighted; if the patch is too large, the proportion of the 

defective area in the patch is limited, though it is beneficial for 

representing the fabric texture. Here, the patch size of 16×16 

pixels and 32×32 pixels are tested to demonstrate their effects 

in inspection performance, whose results are shown in Fig. 6. 

 

   

(a)                           (b)                          (c) 

   
(d)                           (e)                          (f) 

   
(g)                           (h)                          (i) 

Fig. 6 Inspection results under different patch sizes.(a) warp flaw; 
(b)(c)Inspection result of (a) using patch sizes of 16×16 pixels 
and32×32 pixels); (d)weft flaw;(e)(f) Inspection result of (d) using 
patch sizes of 16×16 pixels and 32×32 pixels); (g) Blocky flaw; (h)(i) 
Inspection result of (g) using patch size of 16×16 pixels and 32×32 
pixels 

From the above results, it is clear that the patch of 32×32 

pixels can achieve better performance than that of 16×16 pixels 

for different kinds of flaws. For the patch size with 16×16 pixels, 

the defective areas will be broken into several patches, thus 

losing the differentiable defective textures, resulting in poorer 

inspection results. Considering the imaging resolution (8.4 

pixel/mm), the patch with 32×32 pixels is equal to the physical 

dimension about 3.8mm×3.8mm, which is suitable for 

identifying those flaws like commonly occurred linear defects 

with width about 1mm (quarter of patch size). 

Moreover, the size of the sparse dictionary K needs to be 

determined as well, and the reconstruction error is used as the 

index. Fig. 7 shows the results for different K (128, 256, 512, 

1024, 1248). 

  
Fig. 7 Reconstruction error with different K and t: K corresponds to 

the right y-axis; t corresponds to the left y-axis 

From Fig. 7, the curve of K versus reconstruction error 

corresponds to the right y-axis, and the curve of t versus 

reconstruction error corresponds to the left y-axis. it can be seen 

that the reconstruction errors are significantly reduced when K 
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is large than 200, becoming stable after K>512 thus the sparse 

dictionary size is set to K=512. 

Similarly, the reconstruction error is also used to find the 

proper number dictionary elements t in each dictionary groups. 

Theoretically, the increase of t is good for restoring the fabric 

texture and reducing the reconstruction error. But on the other 

hand, if t is too large, it is likely to introduce the defective 

region into the dictionary elements, which makes the defective 

regions being approximated well. 

For different fabric types, the number t of combined 

dictionaries t is needed to change to achieve the best 

reconstruction effect. From Fig. 7, for the fabrics used in this 

work, the reconstruction error no longer decreases rapidly after 

t >8, becoming stable after it. Thus, in order to ensure the 

inspection effect and speed, t=14 is selected under 

comprehensive consideration. 

3.4 Dictionary grouping strategy 

Having obtained the dictionary parameters K and t, the 

dictionary grouping strategy is presented in Algorithm 1. 

The proposed algorithm proceeds through iterations, where 

each iteration selects a sub-dictionary whose the size has been 

chosen previously. In each iteration, the dictionary element 

combination in a sub-dictionary attempt to represent as many 

training data as possible, and in this way the dominant sub-

dictionary combination of the most common features can be 

found more quickly. And the remaining data that cannot be well 

represented by this sub-dictionary will go to the next cycle and 

be represented by other combinations. At the end of this process, 

all the training data are well represented, and the criterion for 

evaluating a good representation is controlled by the 

reconstruction error bound L. 

In Algorithm 1, the input includes the image patches X from 

normal images, learned sparse dictionary D, the number of sub-

dictionaries elements t, the reconstruction error bound L. First 

initialize the number of iterations and select dictionary elements 

from the learned sparse dictionary to combine into a sub-

dictionary S1, and determine whether sub-dictionary S1 meets 

our requirements by Formula (4). Generally speaking, S1 not 

only meets the requirements but also represents most of the 

image patches X. Then, the reconstruction error of the image 

patches below the bound is removed, X gets updated and goes 

to the next iteration. Then keep repeating the previous steps, 

each iteration picks a sub-dictionary Si and determines whether 

Si is available by Formula (4). In the end, all the image patches 

are removed until X becomes an empty set, the output is a 

dictionary set  1 2,  ,  ...,  , n t

q iS S S S S
 R . 

In particular, the number of iterations represents the number 

of sub-dictionaries in the dictionary set S, and the general 

number is around 5. Here, the upper limit of the number of 

iterations is set to 8, because too many sub-dictionaries will 

affect the inspection speed. Considering that Si may fail to 

represent any image patches, the solution is to replace the image 

and adjust the number of sub-dictionary elements t. 

2
      

            otherwise

i i F
i

S X S L
S

   


    (4) 

 

Algorithm 1 Dictionary grouping algorithm 

Input: Image patches X from normal images, learned sparse dictionary D, number of sub-dictionaries elements t, 
reconstruction error bound L. 
Output: Grouped dictionary set S={S1, S2,…, Sq} 
1:  Initial i=1 
2:  repeat 
3:       repeat 
4:           Randomly select t dictionary elements from D as Si 
5:           Update Si according to Formula (4) 
6:       until  i

S    

7:     Add Si to dictionary set S 

8:     Update X if the patches that satisfy 2

i F
X S L   are removed from X 

9:     i=i+1 
10: until X   

 

 
As described in Algorithm 1, the first sub-dictionary S1 are 

able to approximate most of the patches, and all patches are 

gradually approximated in each iteration. There are overlapping 

parts in the elements of different sub-dictionary combinations 

in the dictionary set S, and most sub-dictionaries can represent 

the most common features of the fabric, but for some image 
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patches, one sub-dictionary cannot represent and another sub-

dictionary can reconstruct well, so the sub-dictionaries can 

achieve a complementary effect between them and can 

reconstruct the image excellently. 

3.5 False inspection suppression 

Since the defective image cannot be reconstructed well by 

the learned dictionary, such areas will presents a larger 

reconstruction error than others in the residual image. Therefore, 

for the residual image Xε, the defective patches can be 

segmented by assuming that its background pixels can be 

modeled by a Gaussian distribution. Then, the threshold Th can 

be determined by the following Formula. 

= +Th c      (5) 

where μ and τ are mean value and standard deviation of image 

patches of residual image Xε, c is a predefined constant. 

Normally, in detecting stage, any patch whose pixel value 

larger than Th will be treated as flaws. Owing to undesired noise, 

when using low threshold value, it is prone to treat normal patch 

as flaws, resulting in high false inspection rate. To address this 

limitation, an algorithm to suppress the false inspection is 

designed with reference to the principle of non-maximum 

suppression. 

In the non-maximum suppression, the target inspection 

frames have their corresponding scores, and eventually a frame 

with the highest score is selected [23]. Here the segmented 

defect patch is viewed as the target inspection frame, and the 

corresponding reconstruction error is the score, whose 

suppression algorithm is listed in Algorithm 2.  

In Algorithm 2, The input includes the defective patches Bt 

after segmentation and corresponding reconstruction error Ct, 

control coefficient σ. Firstly, it is to find the maximum 

reconstruction error and its corresponding patch in current 

image, which is the most likely to be true defect. Then multiply 

the reconstruction error with the set control factor to get a 

threshold value δ. Then, all defective patches are divided into 

two categories according to δ. The first category belongs to 

defective patches with reconstruction errors ci larger than the 

threshold δ, and taken them as true flaws, while the second 

category containing patches are all detected falsely, needing to 

be removed. In addition, there is also a case that all the flaws 

are in the first category, which means that the reconstruction 

errors of the defective patches do not have significant difference, 

and it is justified to think that all of them are false inspections. 

Because the real flaw is generally greatly different from the 

fabric structure, and the reconstruction error should be very 

large and prominent, and some examples are presented in Fig. 

8 

 

 

Algorithm 2 Suppression of false inspection 

Input: Defective patches and reconstruction error after threshold segmentation. 
1 2, , ,

t n
B b b b    , 1 2, , ,

t n
C c c c    .Control coefficient  .  

Output: 1 2, , ,
t m

B b b b    . 
1: Compute threshold 1 2= max , , ,

n
b b b       

2: For 1i n   do 

3:      if ic  then 

4:       Remove ib in t
B  

5:      end if 
6: end for  
7:      if m n  then 

8:       =
t

B   

9:         return normal 
10:    end if 
11: return 1 2, , ,

t m
B b b b     
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(a) 

        
(b) 

Fig. 8 Example of false inspection suppression 
(a) Image with flaws;(b) Images without flaws 

 
As seen in Fig. 8(a), the reconstruction error of the patches 

containing flaw is much different from that of patch without 

flaws, so it is easy to discriminate them from normal patches, 

suppressing the true flawless patches being mistakenly treated 

as flaws. In Fig. 8 (b), it is a normal image actually, and the 

reconstruction errors of patches are close to each other, and they 

are prone to be mistakenly treated as defective patches without 

using Algorithm 2. It is suggested that, the proposed algorithm 

can perform well in suppressing false inspection. 

4. Experiment 

4.1 Dataset 

To validate the performance of the proposed method in offline 

case, all fabric images are captured by the aforementioned 

fabric inspection equipment (see Fig. 1), with the fabric rolls 

coming from production line. The total length of a fabric roll is 

about 160m and the width of 1.6m. All eight cameras’ 
acquisition resolution are set to 2432×896 pixels, which 

corresponds to an actual size of 28.9cm×10.7cm. For 

continuous image capture of each camera, the actual 

overlapping height of two adjacent frames is about 10mm. Thus, 

there are total of 4628 captured fabric images, including 621 

images with flaws. In order to evaluate the performance of the 

proposed method objectively, images with similar appearance 

of flaws are removed, and a total of 230 defective images are 

selected for testing, including warp flaws, weft flaws and 

blocky flaws. And a total of 700 flawless images selected from 

normal images are used for evaluating false inspection rate, 

which is about three times number of the defective images. Fig. 

9 shows the typical captured flawless and flaw images with a 

size of 512 × 512 pixels. 

 

         
(a)                       (b)                         (c) 

         
(d)                       (e)                         (f) 
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(g)                       (h)                         (i) 

Fig. 9 Flawless and typical defective images 
(a)(b) Flawless. (c)(e) Weft flaws. (d)(f)(i) Block flaws. (g)(h) 

Warp flaws. 
All the 230 images used in the experiment are cropped into a 

size of 512 × 512 pixels, and divided into four categories: 120 

images of warp flaws, 53 images of weft flaws, 57 images of 

block flaws and 700 flawless images. Here, the inspection 

performance of the proposed method is evaluated at the patch 

level, i.e., the images of dataset are cut into image patches, and 

each of them is viewed as a sample, and the effects of the patch 

size has been discussed above, and half overlap means that the 

image is segmented into 32 × 32 pixels patches with half of the 

patch width and height overlapping (16 pixels), e.g., a 512 × 

512 pixels image can be segmented into 961 patches. 

In experiment, two related dictionary-based methods are 

performed for comparison, which are the unconstrained 

dictionary (UD) method and the sparse dictionary (SD) method. 

The UD is that does not impose any constraints on the 

dictionary elements, while the SD method adds an l1 

regularization term to the dictionary learning. The proposed 

method uses the grouped dictionary (GD) as described in the 

previous section. All three methods have used the false 

inspection suppression algorithm proposed. 

Sparse dictionary solution has to choose a suitable 

regularization parameter λ to control the weight of 

reconstruction error 2|| ||
F

X D  with the sparsity degree 1|| || . 

Empirically, the experiments demonstrate that the sparse 

dictionary can achieve a good reconstruction effect for most 

images at λ = 0.6, and the number of dictionary elements used 

to reconstruct patches is around 12. 

In summary, the parameters involved in all methods are 

chosen as follows: the number of UD elements is 14; the 

number of SD elements is 512, and the regularization parameter 

λ=0.6; the GD method contain 5 dictionaries with 14 elements 

inside. All experiments are implemented in Matlab (2018a) 

with Intel Core i5-6300HQ and 8G RAM. 

To objectively evaluate the performance of the proposed 

method in detecting flaws, two evaluation metrics are used, the 

correct inspection rate (CDR) and the false inspection rate 

(FDR). 

CDR 100%
p

df

N

N
     (6) 

eFDR 100%
nf

N

N
     (7) 

where Np is the number of defective samples detected correctly 

and Ndf is the total number of defective samples; Ne is the 

number of normal samples false detected as defective samples 

and Nnf is the total number of normal samples. 

4.2 Result and discussion 

A comparison of the inspection results of the three methods is 

listed in Table 1, and visualized examples of inspection results 

are shown in Fig. 10. Three methods have used the false 

inspection suppression algorithm are used for the other two 

method as well.

 
Table 1 Summary of fabric flaw inspection results 

Method 
Overlap 
mode 

Warp flaw Weft flaw Block flaw Normal  Average Time(ms) CDR(%) FDR(%) CDR(%) FDR(%) CDR(%) FDR(%) FDR(%) CDR(%) FDR(%) 

UD 

half 
overlap 

90.00 0.67 90.57 0.89 89.29 0.69 0.84 89.57 0.81 54.6 

no 
overlap 

90.83 0.66 90.57 0.81 91.07 0.61 0.81 90.43 0.79 14.4 

SD 

half 
overlap 

99.17 0.11 96.23 0.21 94.64 0.16 0.35 96.96 0.33 41268.2 

no 
overlap 

98.33 0.09 96.23 0.21 94.64 0.14 0.34 96.52 0.33 10413.9 

GD 

half 
overlap 

97.50 0.18 94.34 0.35 96.43 0.21 0.43 96.09 0.41 125.1 

no 
overlap 

96.67 0.16 92.45 0.32 96.43 0.18 0.42 95.22 0.39 32.2 
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(a) 

                
(b) 

                
(c) 

                
(d) 

                
(e) 

Fig. 10 Examples of inspection results. (a)Input images. (b)Reconstructed images. (c)Residual maps. (d)Binary images. (e)Inspection results 
 

As listed in Table 1, it can be seen that three methods have 

high CDR for different types of flaws, and the best results are 

obtained for warp flaws. The FDR of the dataset is close to the 

FDR of the normal dataset, the reason is that this static 

experiment takes patches as samples, and the size of the 

defective parts of the images containing flaws in the dataset is 

different, and the remaining normal patches after removing the 

defective patches are much smaller than the samples of the 

normal set. The table shows that the SD method takes an 

average of 41268.2ms for one image, which is the most time-

consuming among them, while the UD method takes an average 

of 54.6ms, taking shortest processing time. Compared to UD 

method, the proposed method spends more time in computing 

residual images in grouping dictionary, but its running time is 

extremely faster than that of SD method. Theoretically speaking, 

the proposed method and UD method can both meet the 

requirements of real-time inspection, but the CDR of the UD is 

lower than GD method, while the SD method achieve the 

highest CDR. The possible for it may be that the SD do not use 

all dictionary elements patches each time, but selecting the least 

number of elements for patch approximation, helping ignoring 

details such as defective areas. Similarly, the possible reason 

why GD also achieves a competitive CDR is that the proposed 

dictionary grouping strategy is equivalent to the process of 

selecting the optimal dictionary elements for sparse dictionary 

in advance, and each dictionary combination is able to be 

complementary to each other. The FDR and the CDR contradict 

with each other, the higher the CDR achieves, the lower the 

FDR would be, thus under the same CDR, the proposed method 

is slightly higher FDR than the SD method, while computing 

time is almost 300 times faster than it. 

As shown in Fig. 10, it can be seen that the parts of defective 

regions are inevitably recovered in the reconstructed versions 

of detective images (see in Fig 10(b)) due the powerful 

representation of the learned grouped dictionary, but it is 

sufficient to discriminate the defective areas from background 

in patch-level(see in Fig. 10(c)). It also indicates that the 

grouped dictionary is not only capable of representing normal 

fabric textures, but maintain the discriminative power for 

defective patches.  
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In summary, in terms of inspection accuracy, the proposed 

method is in the middle of the sparse dictionary method and the 

unconstrained dictionary method, but it can achieve an 

acceptable inspection accuracy with the lowest computation 

burden, rendering it capable of being used those real-time 

industrial inspection applications. 

5. Deployment 

To evaluate the dynamic performance of the proposed 

algorithm and hardware system, the proposed algorithm is 

deployed on the inspection system, and the aforementioned 

fabric roll with length of 160m and width of 1.6m is used for 

experiment. In order to ensure the full coverage of entire fabric, 

the two adjacent image frames share an overlap of about 10mm 

in image height direction as same as section 4.1. As external 

trigger mode is used to trigger image acquisition, the camera's 

acquisition frame rate and LED light source frequency are 

automatically adjusted based on the speed encoder moving with 

the fabric synchronously. The image resolution is set to 

2432×896, which corresponds to an actual size of 28.9cm × 

10.7cm. At this resolution, it takes about 104ms to process one 

frame without parallel computation and the non-overlapping 

patch. Theoretically, the machine can run at a maximum speed 

up to 62m/min. To ensure accuracy and stability, the deployed 

algorithm runs at a speed of 20m/min for online inspection 

experiment. 

As full width of fabric is captured, it is necessary to remove 

the fabric selvages. Here, the background subtraction is used to 

crop the fabric selvages automated. With the aid of background 

image, the selvages can be located by find the peaks of the mean 

gray level value of image along column. Fig. 11 illustrates an 

example of finding location of the selvages. 

    
(a)                                           (b)  

 
(c) 

Fig. 11 Fabric selvage removal 

 

The algorithm is coded in C++ by Microsoft Visual Studio 

(2015), and implemented on Intel(R) Core(TM) i9-9900K CPU 

@ 3.60GHz, 16G RAM.  

The evaluation metrics CDR and FDR are still used, but 

computed in image-level. Since the SD method is too time-

consuming and can’t meet the real-time flaw inspection, this 

experiment only tests the performance of UD and GD, and the 

real time test results are listed in the Table 2. 

Table 2 Summary of real-time inspection results 

Method Overlap mode Suppress false inspection CDR (%) FDR (%) Time (ms) 

UD 

half overlap 
yes 90.18 1.50 39.5 

no 90.02 2.28 38.3 

no overlap 
yes 88.57 1.35 10.6 

no 88.89 1.85 10.1 

GD 

half overlap 
yes 96.30 0.93 413.1 

no 96.30 1.15 411.3 

no overlap 
yes 94.85 0.85 104.2 

no 95.17 1.03 102.4 

From Table 2 it can be seen that the use of  overlap scheme 

is able to improve CDR compared to that of nonoverlap mode, 

meanwhile increasing processing time and reducing the FDR 

slightly but can be ignored. The use of the false inspection 

suppression algorithm can significantly reduce FDR, especially 

for non-overlap mode. Compared with the previous static 

experiment, the CDR of this real-time inspection experiment is 

slightly improved, while the FDR is significantly increased. 
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The reason for this is that the FDR are calculated in image-level, 

different from the previous static experiment where the patch 

level is used. Since the majority of flaw regions some of For 

flaw images, it can be correctly detected only if the majority of 

flaw regions are truly classified as a flaw the defective parts in 

an image are detected, the image can be regarded as correctly 

detected, making the slight improvement of CDR. Similarly, 

Since the regions of flaws generally occupies a small 

percentage of whole fabric image, the increase of normal 

images will reduce FDR eventually, and evaluation 

performance based on image-level is equivalent to the reduction 

in the amount of normal samples. 

Fig. 12 shows the proposed flaw inspection machine, and Fig. 

13 shows the results of the flaw inspection using GD in real 

time case. From the results in Fig. 13, it can see that there are 

some false inspections, which are mistakenly treated as the 

flaws, due to the effects of cotton knots in the pure cotton fabric, 

which can be removed after washing.  

6. Conclusions 

With the growing demand for surface flaw inspection on 

industrial products, a vision-based hardware system and the 

grouped sparse dictionary method have been proposed to 

address the real time flaw inspection problem on textile fabric. 

By converting the time-consuming sparse coding into a least 

square problem, the proposed method has been proved to be 

capable of reducing computation time in inspection phase 

significantly. In order to further reduce false inspection rate, a 

non-maximum suppression algorithm was also presented. The 

results on offline experiments shown that the method proposed 

can increase the detecting speed hundreds of times compared to 

spare dictionary, and achieve a decent performance compared 

to other two related methods. For the real-time implementation, 

experiments on 160m fabric demonstrated that the proposed 

method is able to meet the real time inspection requirement, and 

achieve a comparable performance with respect to that of 

offline case. 

     
Fig.12 The deployed machine. 
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(a)                                                                                          (b) 

Fig.13 Detect example in the deployed machine. (a)Input image. (b)Inspection result. 
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