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Abstract. The main objective of this paper is to outline a theoretical framework to analyse how humans’ decision-making 

strategies under uncertainty manage the trade-off between information gathering (exploration) and reward seeking 

(exploitation). A key observation, motivating this line of research, is the awareness that human learners are amazingly 

fast and effective at adapting to unfamiliar environments and incorporating upcoming knowledge: this is an intriguing 

behaviour for cognitive sciences as well as an important challenge for Machine Learning. The target problem considered 

is active learning in a black-box optimization task and more specifically how the exploration/exploitation dilemma can 

be modelled within Gaussian Process based Bayesian Optimization framework, which is in turn based on uncertainty 

quantification. The main contribution is to analyse humans’ decisions with respect to Pareto rationality where the two 

objectives are improvement expected and uncertainty quantification. According to this Pareto rationality model, if a 

decision set contains a Pareto efficient (dominant) strategy, a rational decision maker should always select the dominant 

strategy over its dominated alternatives. The distance from the Pareto frontier determines whether a choice is (Pareto) 

rational (i.e., lays on the frontier) or is associated to “exasperate” exploration. However, since the uncertainty is one of 

the two objectives defining the Pareto frontier, we have investigated three different uncertainty quantification measures 

and selected the one resulting more compliant with the Pareto rationality model proposed. The key result is an analytical 

framework to characterize how deviations from “rationality” depend on uncertainty quantifications and the evolution of 

the reward seeking process.  
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1. Introduction 
 

1.1 Motivation 

 

When a human – as well as an algorithm – is asked to search for a target under limited resources (trials, time, 

effort, or money), he/she has to sequentially perform queries in a decision/action space and observe the 

associated outcomes or rewards. This activity at all levels of behaviour and time scales of decision-making 

requires dealing with the exploration-exploitation dilemma: exploitation means using the knowledge collected 

so far to get closer to the target (i.e., maximizing immediate reward), while exploration means investing 

resources to acquire more knowledge to update one’s beliefs and potentially upset the current belief (i.e., 

maximizing immediate information gain). The dilemma arises because of the need to make decisions under 

uncertainty: decisions allowing for increasing knowledge do not necessarily lead to the greatest immediate 

reward (Wilson et al., 2020a; Wilson et al., 2014).  

The trade-off between explorative and exploitative behaviours characterizes many disciplines (Berger-Tal et 

al., 2014) and has originated a multidisciplinary framework that applies to humans, animals, and organizations. 

The analysis of the strategies implemented by humans in dealing with uncertainty has been an actively 

researched topic (Schulz et al., 2015; Gershman, 2018; Schulz and Gershman, 2019). A key observation, 

motivating this line of research, is also the awareness that human learners are amazingly fast and effective at 

adapting to unfamiliar environments and incorporating upcoming knowledge: this is an intriguing behaviour 

for cognitive sciences as well as an important challenge for Machine Learning. 

The reference task considered in this paper is the optimization problem: 

 

x∗ = argmax
 𝑥∈Ω⊂ℜ𝑑

𝑓(𝑥)     (1) 

 

with 𝑓(𝑥) is black box, meaning that its analytical form is not given, no derivatives are available and the value 

of 𝑓(𝑥) can be only known pointwise through expensive and noisy evaluations. Finally, Ω denotes the search 

space, usually box bounded. 
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We consider sequential optimization to solve (1). At each iteration 𝑛, the agent/algorithm chooses a location 

𝑥(𝑛) and the associated function value is observed, possibly perturbed by noise, 𝑦(𝑛) = 𝑓(𝑥(𝑛)) + 𝜀. The goal 

is to get close to 𝑥∗ within a limited number, 𝑁, of trials. A related goal is to maximize the Average Cumulative 

Reward (ACR) over the 𝑁, of trials, that is 𝐴𝐶𝑅(𝑁) =
1

𝑁
∑ 𝑦(𝑖)𝑁

𝑖=1 . 

Recently, the Bayesian optimization framework (BO) (Shahriari, et al., 2015; Frazier, 2018; Archetti and 

Candelieri, 2019) has become one of the most efficient method for solving (1), which is a common problem in 

many application domains ranging from robotics and engineering design to biomedicine and Automated 

Machine Learning (Archetti and Candelieri, 2019). BO is based on a probabilistic surrogate model 

approximating 𝑓(𝑥), usually a Gaussian Process (GP), and an acquisition function (aka infill criterion or utility 

function) which balances exploration/exploitation to implement sample efficiency. 

Moreover, BO is linked to the ongoing discussion in cognitive science as to whether also humans’ strategies 

are sample efficient: (Borji and Itti, 2013; Candelieri et al., 2020) have been arguing, based on empirical 

evidence, that strategies adopted by humans in solving global optimization problems can be associated to BO. 

Evidence of this is captured in Figure 1: compared to other global optimization methods, the estimated location 

of 𝑥∗ provided by BO is the closest to the humans’ ones.  

 

 
Figure 1. Density plot of the distance between the estimated location of 𝑥∗ provided by humans and those provided by 

different global optimization strategies: Random Search (RS), DIRECT, Generic Algorithms (GA), Particle Swarm 

Optimization (PSO), Simulated Annealing (SA) and Bayesian Optimization (from Candelieri et al., 2020). 
 

A caveat is that although the BO is compliant with humans’ strategies over the entire sequential process, as 

shown empirically in (Candelieri et al., 2020), it is not necessarily sufficient to capture the exploration-

exploitation balance performed by humans at each decision step. The working hypothesis of this paper is that 

this misalignment between Bayesian model of active learning in optimization and humans’ strategies might be 

due to some shortcomings in the general BO’s modelling framework: first, the approximation of 𝑓(𝑥) 

depending on decisions and associated outcomes, then the uncertainty quantification. 

 

GP modelling and Bayesian learning, first proposed in (Kruschke, 2008; Griffiths et al., 2008) have emerged 

as central paradigms in modelling human learning, where the GP model is used to approximate the outcome 

of the next decision conditioned on previous decisions and observed outcomes. Fitting a GP requires to choose, 

a priori, a kernel as covariance function; different kernels are available, each one implying a different 

characterization for the approximation of 𝑓(𝑥). As already stated in (Wilson et al., 2015), it was demonstrated 

that “GPs with standard kernels struggle on function extrapolation problems that are trivial for human 

learners”. Indeed, they proposed a kernel learning framework to reverse engineer the inductive biases of 

human learners across a set of behavioural experiments, gaining psychological insights and extrapolating in 

humanlike ways that go beyond traditional kernels. Different approximations of 𝑓(𝑥) can lead to completely 

different decisions, due to the optimization of the acquisition function whose value depends on the GP model. 

Many acquisition functions are available; a basic differentiation can be between two “families”: the 

improvement-based acquisition functions, searching for the optimum value 𝑓∗ = 𝑓(𝑥∗), and the information-
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based acquisition functions, searching for the 𝑥∗. This distinction is critically important because the two 

families relate to different quantifications of the uncertainty – as discussed later in the paper – which has been 

proved to be a key concept also in theories of cognition and emotion (Gershman, 2019). A recent contribution 

(Bertram et al., 2020) investigates the relationship between entropy and the emotional state and the perception 

of uncertainty. 

 

Uncertainty quantification is not the only modelling issue related to acquisition functions. Recently, some 

papers proposed to generalize the acquisition mechanism by considering the exploration-exploitation in the 

framework of the theory of rational decision making under uncertainty (Žilinskas and Calvin, 2019). The 

analysis of the Pareto frontier in the space of the GP’s predictive mean and standard deviation offers a set of 

Pareto-efficient decisions which can be significantly more than those selected through “traditional” acquisition 

functions. According to Pareto-based rationality model, if a decision set contains a Pareto efficient (dominant) 

strategy, a rational decision maker should always select the dominant strategy over its dominated alternatives. 

Still, according to a famous Schumpeter quotation (Schumpeter, 1954) traditional decision making under risk 

“has a much better claim to being called a logic of choice than a psychology of value” and indeed deviations 

from Pareto rational behaviour have been documented in domains like economics, business, but also 

Reinforcement Learning. 

The analysis of violations of dominance in decision-making has become mainstream economics under the 

name of behavioural economics and prospect theory (Kahneman, 2011): rather than being labelled “irrational”, 

they are just not well described by the rational-agent model. Would a different uncertainty quantification 

restore rationality? Another key point addressed in this paper is that although BO is the most compliant 

approach to humans’ searching strategies over an entire search task, it could be not sufficiently representative 

of the exploration-exploitation balance performed by humans at each decision step.  

 
 

1.2 Contributions of this paper 

 

The main contribution of this paper is a methodological framework to analyse how humans’ decision-making 

strategies under uncertainty balance information gathering (exploration) and reward seeking (exploitation). 

The target problem considered in this paper is active learning in a black-box optimization task and more 

specifically how this balancing can be represented by different uncertainty quantifications and 

exploration/exploitation trade-off in the framework of Gaussian Process modelling. 

This required a critical analysis of a large body of results from cognitive science and their relationship with 

learning and optimization. This has also spawned a more ambitious task: while most of the previous works 

addressed how people assess the information value of possible queries, in this paper we rather address the issue 

of the perception of probabilistic uncertainty itself. 

This objective has required the development of a software environment for gathering data about human 

behaviour and analysing them, whose use can be helpful, beyond the specific case, to analyse human strategies 

in learning problems. 

 

The computational results and their analysis allow to formulate at least a tentative answer to the following 

research questions: 

• Do humans always make “rational” choices (i.e., Pareto optimal decisions between the improvement 

expected and uncertainty) or, in some cases, they “exasperate” exploration?  

• Do different uncertainty quantification measures lead to different classifications of humans’ decisions? 

And which uncertainty quantification measure make humans “more rational”? 

• Do deviations from (Pareto) “rationality” and switches towards “exasperated” exploration depend on 

the evolution of the optimization process measured as the reward collected over the limited number of 

trials available? 

 
 

1.3 Related works 

 

In Sect. 1.1 we have briefly introduced the issue of uncertainty quantification in humans and its relationship 

with learning and optimization. Coherently with the centrality of this issue, several research lines have 

emerged. Here we provide a more specific analysis of the prior work and significant recent results. 
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An early contribution (Cohen et al., 2007) analyses how humans manage the trade-off between exploration 

and exploitation in non-stationary environments and links the issue to the Multi Armed Bandit (MAB) problem 

and Reinforcement Learning. Successively, (Wilson et al., 2014) demonstrates that humans use both random 

and directed exploration in a two-arms bandit task. More recently, (Gershman and Uchida, 2019) show how 

directed exploration in humans amounts to adding an “uncertainty bonus” to estimated reward values and how 

this brings to the Upper Confidence Bound acquisition function in MAB (Auer et al., 2002) and BO (Srinivas 

et al., 2012). The same approach is elaborated in (Schulz and Gershman, 2019), who distinguish between 

irreducible uncertainty related to the reward stochasticity and uncertainty which can be reduced through 

information gathering. In the former the decision strategy is random search while for the latter is directed 

exploration which attaches an uncertainty bonus to each decision value. This distinction mirrors the one in 

Machine Learning between aleatoric uncertainty – due to the stochastic variability inherent in querying 𝑓(𝑥) 

– and epistemic uncertainty – due to the lack of knowledge about the actual structure of 𝑓(𝑥) – which can be 

reduced by collecting more information. The same point is argued in (Gershman, 2019) which associates 

random exploration to Thompson Sampling, which consists in drawing a sample of 𝑓(𝑥) from the GP model 

and then make the next decision according to the optimization of that sample (Wilson et al., 2020b). 

 

Recent results in the line of research related to brain science are discussed in (Gershman, 2017; Friston et al., 

2014). The former analyses the dopamine response in terms of Bayesian Reinforcement Learning, while the 

second analyses how entropy and expected utility account, respectively, for exploratory and exploitative 

behaviour, arguing that the dynamics of beliefs updates are consistent with the psychology and anatomy of the 

dopaminergic system. Moreover, it has been explored how the neuromodulator dopamine plays a central role 

in encoding and updating of beliefs: “the level of dopamine is related to the discrepancy between observed 

and expected reward, known as the reward prediction error (RPE), which serves as a learning signal for 

updating reward expectations. On the other hand, dopamine also appears to participate in various 

probabilistic computations, including the encoding of uncertainty and the control of uncertainty-guided 

exploration” (Gershman and Uchida, 2019). 

These results have been correlated with molecular analysis (Blanco et al., 2015) where it is empirically 

demonstrated that the carrier of the MET allele in COMT gene will be advantaged in managing the 

exploration/exploitation dilemma, especially in making choices that maximize long term payoffs. 

 

In the BO research community, recent papers proposed to generalize the acquisition mechanism by considering 

the exploration-exploitation dilemma as a bi-objective optimization problem: minimizing the predictive mean 

(associated to exploitation) while maximizing uncertainty, typically the predictive standard deviation 

(associated to exploration). For instance, in (Žilinskas and Calvin, 2019) the important result is that two well-

known acquisition functions, specifically Probability of Improvement (PI) and Expected Improvement (EI), 

are special cases of this bi-optimization framework, because they lay on the Pareto frontier of all the predictive 

mean and standard deviation pairs computed for – theoretically – every possible decision. The mean-variance 

framework has been also considered in (Iwazaki et al., 2020), for multi-task, multi-objective and constrained 

optimization scenarios. (De Ath et al., 2019; De Ath et al., 2020) show that taking a decision by randomly 

sampling from the Pareto frontier can outperform other acquisition functions. The main motivation is that the 

Pareto frontier offers a set of Pareto-efficient decisions wider than that allowed by “traditional” acquisition 

functions. (Paria et al., 2020) introduce a sampling which can be focused on a specific subregion of the Pareto 

frontier.  

 

The issue of deviations from Pareto optimality has become a central topic in behavioural economics from the 

seminal work in (Tversky and Kahneman, 1989) to (Kourouxous and Bauer, 2019) which identifies the most 

common causes for violations of dominance, namely framing (i.e., presentation of a decision problem), 

reference points (i.e., a form of prior expectation), bounded rationality and emotional responses. Emotions 

impact decisions by influencing preferences, triggering ad hoc heuristics, or causing attention shifts to 

catastrophic outcomes. 

 

A recent important contribution is (Sandholtz, 2020) which tackles the problem to infer, given the observed 

search path generated by a human subject in the execution of a black box optimization task, the unknown 

acquisition function underlying the sequence. It is to be remarked that this analysis requires restrictive 

assumptions on the objective function like convexity and smoothness which cannot be assumed in black box 

problems. For the solution of this problem, referred to as Inverse Bayesian Optimization (IBO), a probabilistic 



5 

 

framework for the non-parametric Bayesian inference of the acquisition function is proposed, performed on a 

set of possible acquisition functions. 

 

This paper is organized as follows. Section 2 introduces the basic definitions about Gaussian Process regression 

and how different acquisition functions deal with the exploration/exploitation dilemma and use different 

uncertainty quantification. Section 3 introduces three specific uncertainty quantification measures, the 

definition of Pareto optimality and the differences induced by different Gaussian Process modelling options 

(i.e., kernels) and uncertainty quantifications measures. Section 4 introduces the experimental framework used 

for data collection about the strategies applied by humans and the proposed analytical framework. Section 5 

describes the relevant results obtained by the application of the analytical framework. Finally, Section 6 

outlines the conclusions about this study and the perspective of future works. 

 

 

2. Materials and methods 
 

2.1 Gaussian Process regression 

 

A GP is a random distribution over functions 𝑓: 𝛺 ⊂ ℜ𝑑 → ℜ denoted with 𝑓(𝑥)~𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′)) where 

𝜇(𝑥) = 𝔼(𝑓(𝑥)): Ω → ℜ is the mean function of the GP and 𝑘(𝑥, 𝑥’): Ω × Ω → ℜ is the kernel or covariance 

function. One way to interpret a GP is as a collection of correlated random variables, any finite number of 

which have a joint Gaussian distribution, so 𝑓(𝑥) can be considered as a sample drawn from a multivariate 

normal distribution. In Machine Learning, GP modelling is largely used for both classification and regression 

tasks (Williams and Rasmussen, 2006; Gramacy, 2020), providing probabilistic predictions by conditioning 

𝜇(𝑥) and 𝜎2(𝑥) on a set of available data/observations. 

Let denote with X1:𝑛 = {𝑥(𝑖)}
𝑖=1,…,𝑛

 a set of 𝑛 locations in Ω ⊂ ℜ𝑑 and with 𝑦1:𝑛 = {𝑓(𝑥(𝑖)) + 𝜀}
𝑖=1,..,𝑛

 the 

associated function values, possibly noisy with 𝜀 a zero-mean Gaussian noise 𝜀~𝒩(0, 𝜆2). Then 𝜇(𝑥) and 

𝜎2(𝑥) are the GP’s posterior predictive mean and standard deviation, conditioned on X1:𝑛 and 𝑦1:𝑛 according 

to the following equations: 

 

𝜇(𝑥) = k(𝑥, X1:𝑛) [K + 𝜆2𝐼]−1 𝑦1:𝑛      (2) 

 

𝜎2(𝑥) = 𝑘(𝑥, 𝑥) − k(𝑥, X1:𝑛) [K + 𝜆2𝐼]−1 k(X1:𝑛, 𝑥)    (3) 

 

where k(𝑥, X1:𝑛) = {𝑘(𝑥, 𝑥(𝑖))}
𝑖=1,…,𝑛

 and K ∈ ℜ𝑛×𝑛 with entries K𝑖𝑗 = 𝑘(𝑥(𝑖), 𝑥(𝑗)).  

 

The choice of the kernel establishes prior assumptions over the structural properties of the underlying (aka 

latent) function 𝑓(𝑥), specifically its smoothness. However, almost every kernel has its own hyperparameters 

to tune – usually via Maximum Log-likelihood Estimation (MLE) or Maximum A Posteriori (MAP) – for 

reducing the potential mismatches between prior smoothness assumptions and the observed data. Common 

kernels for GP regression – considered in this paper – are: 

 

• Squared Exponential: 𝑘𝑆𝐸(𝑥, 𝑥′) = 𝑒
− 

‖𝑥−𝑥′‖2

2ℓ2  

• Exponential: 𝑘𝐸𝑋𝑃(𝑥, 𝑥′) = 𝑒− 
‖𝑥−𝑥′‖

ℓ  

• Power-exponential: 𝑘𝑃𝐸(𝑥, 𝑥′) = 𝑒− 
‖𝑥−𝑥′‖𝑝

ℓ𝑝  

• Matérn3/2: 𝑘𝑀3/2(𝑥, 𝑥′) = (1 +
√3 ‖𝑥−𝑥′‖

ℓ
) 𝑒− 

√3 ‖𝑥−𝑥′‖

ℓ   

• Matérn5/2: 𝑘𝑀5/2(𝑥, 𝑥′) = [1 +
√5 ‖𝑥−𝑥′‖

ℓ
+

5

3
(

 ‖𝑥−𝑥′‖

ℓ
)

2
] 𝑒− 

√5 ‖𝑥−𝑥′‖

ℓ  

 

The main well-known disadvantage of GP modelling is its cubic complexity due to the inversion of the matrix 

[K + 𝜆2𝐼].  
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2.2 Dealing with the exploration-exploitation dilemma 

 

Global optimization methods differ one from another in how they generate the next decision (i.e., location) 

𝑥(𝑛+1). To do this, BO fits a GP according to (2-3) and where X1:𝑛 = {𝑥(𝑖)}
𝑖=1,…,𝑛

 and 𝑦1:𝑛 = {𝑦(𝑖)}
𝑖=1,..,𝑛

 are 

the two sequences of, respectively, decisions made and associated observed outcomes. Then, an acquisition 

function, combining GP’s 𝜇(𝑥) and 𝜎(𝑥), is optimized to obtain 𝑥(𝑛+1), while dealing with the exploration-

exploitation trade-off. 

 

 

2.2.1. Improvement-based acquisition functions 

 

Acquisition functions belonging to this “family” are aimed at searching for 𝑓∗ = max
𝑥∈Ω⊂ℜ𝑑

𝑓(𝑥) – instead of 

searching for 𝑥∗ = argmax
𝑥∈Ω⊂ℜ𝑑

𝑓(𝑥) – and are characterized by “mixing” GP’s mean and standard deviation to 

balance between exploitation and exploration in the choice of 𝑥(𝑛+1). Common acquisition functions from this 

family are Probability of Improvement (PI) (Kushner, 1964), Expected Improvement (EI) (Močkus, 1975) and 

GP Confidence Bound (i.e., Upper Confidence Bound, UCB, for minimization) (Srinivas et al., 2012): 

 

𝑃𝐼(𝑥) = 𝚽 (
𝜇(𝑥) − 𝑦+

𝜎(𝑥)
) 

 

𝐸𝐼(𝑥) = (𝜇(𝑥) − 𝑦+) 𝚽 (
𝜇(𝑥) − 𝑦+

𝜎(𝑥)
) +  𝜎(𝑥)𝜙 (

𝜇(𝑥) − 𝑦+

𝜎(𝑥)
) 

 

𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + √𝛽𝜎(𝑥) 

 

where 𝚽 and 𝜙 are the standard normal cumulative distribution function (cdf) and the standard normal 

probability density function (pdf). Since 𝑃𝐼(𝑥) and 𝐸𝐼(𝑥) are biased to exploration, an additional parameter 𝜉 

can be included in the numerator of the arguments of 𝚽 and 𝜙 to increase exploration (Brochu et al., 2010). 

Alternatively, an exploration enhanced EI has been recently (Berk et al., 2018) while (Preuss and Von 

Toussaint, 2018) (deterministically) alternates between maximization of EI and maximization of GP’s 

predictive variance to switch between exploitative and explorative decisions. 

GP-UCB, it is also classified as an optimistic policy, because it chooses 𝑥(𝑖+1) depending on the most 

optimistic value for 𝑓(𝑥) under the current GP. From a cognitive point of view, (Wu et al., 2018) analysed the 

human search strategy, under a limited number of trials, concluding that GP-UCB offers the best option for 

modelling the exploitation-exploration trade-off adopted by the humans. Furthermore, contrary to 𝑃𝐼(𝑥) and 

𝐸𝐼(𝑥) – at least to their original formulations – GP-UCB is more flexible, thanks to its own hyperparameter 

𝛽, whose value can be set up to give a different relevance to exploitation and exploration in choosing 𝑥(𝑛+1) 

or it can be scheduled to adapt the balance between exploitation and exploration along the optimization process. 

While it is empirically suggested to apply a decreasing schedule for 𝛽 (i.e., preferring exploration at the 

beginning and then moving towards exploitation), in (Srinivas et al., 2012) a convergence proof is given for 

an increasing scheduling of 𝛽, aimed at avoiding to getting stuck at local optima. However, (Berk et al., 2020), 

has recently obtained better performance by randomly sampling 𝛽 from a given distribution. They proved that 

this allows to identify more suitable 𝛽 values and to outperform “traditional” GP-CB on a range of synthetic 

and real-world problems. 

 

 

2.2.2 Information-based acquisition functions 

 
Information-based acquisition functions (Hennig and Schuler, 2012) relies on an information-theoretic perspective, that 

is choosing 𝑥(𝑛+1), given 𝐷1:𝑛 = (𝑋1:𝑛, 𝑦
1:𝑛

), to maximize the information about the location of 𝑥∗ = argmax
𝑥∈Ω⊂ℜ𝑑

𝑓(𝑥). 
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Information gain measures how informative is a set of observations, 𝐷1:𝑛 = (𝑋1:𝑛, 𝑦
1:𝑛

), and it is defined as the mutual 

information between 𝑦(𝑛+1) and 𝑦1:𝑛: 

𝐼(𝑦1:𝑛;  𝑦(𝑛+1)) = 𝐻(𝑦1:𝑛) − 𝐻(𝑦1:𝑛|𝑦(𝑛+1)) 

and where 𝐻(𝑝(𝛼)) = − ∫ 𝑝(𝛼) log 𝑝(𝛼) 𝑑𝛼 is the differential entropy of a generic distribution 𝑝(𝛼) and measures the 

amount of uncertainty in 𝑝(𝛼). In the discrete case, that is related to a discrete random variable Α, differential entropy is 

defined as 𝐻(𝐴) = ∑ 𝑝(𝛼) log
1

𝑝(𝛼)𝛼∈Α . 

Two important acquisition functions from this family are Entropy Search (ES) (Hennig and Schuler, 2012) and Predictive 

Entropy Search (PES) (Hernandez-Lobato et al., 2014). Both use differential entropy to characterize the uncertainty about 

the location of the optimizer, 𝑥∗. More specifically, the aim is to choose the next decision 𝑥 which maximizes the expected 

uncertainty reduction: 

 

𝐸𝑆(𝑥) = 𝐻(𝑝(𝑥∗|𝐷1:𝑛)) − 𝔼[𝐻(𝑝(𝑥∗|𝐷1:𝑛 ∪ {𝑥, 𝑦}))] 
 

𝑃𝐸𝑆(𝑥) = 𝐻(𝑝(𝑦|𝐷1:𝑛, 𝑥)) − 𝔼[𝐻(𝑝(𝑦|𝐷1:𝑛, 𝑥, 𝑥∗))] 
 

The main difference is that ES uses the expectation over 𝑝(𝑥∗|𝐷1:𝑛), while PES uses expectation over 

𝑝(𝑦|𝐷1:𝑛, 𝑥). They are anyway analytically intractable and are approximated via expensive computations 

which requires to sample a set of paths from the GP posterior, at each BO iteration, and compute their optima 

to estimate the differential entropy. Moreover, computational cost drastically increases with the dimensionality 

of the search space. Therefore, ES and PES are useful just in the case that 𝑓(𝑥) is extremely expensive to 

evaluate, so that the cost for sampling from GP can be considered negligible. Due to these limitations, the 

Max-value Entropy Search (MES) acquisition function has been recently proposed (Wang and Jegelka, 2017), 

where the uncertainty about 𝑥∗ is replaced with the uncertainty about 𝑦∗: 

 

𝑀𝐸𝑆(𝑥)  = 𝐼({𝑥, 𝑦}; 𝑦∗|𝐷1:𝑛) = 𝐻(𝑝(𝑦)|𝐷1:𝑛, 𝑥) − 𝔼[𝐻(𝑝(𝑦|𝐷1:𝑛, 𝑥, 𝑦∗))] 
 

MES requires to sample 𝑦∗ (instead of 𝑥∗) which can be done by sampling from the GP posterior or from a 

Gumbel distribution, as also proposed in (Wang and Jegelka, 2017). In (Wang et al., 2016) the relation between 

MES and other popular acquisition functions has been demonstrated, including ES, UCB and PI, which have 

anyway empirically underperformed MES on several optimization tasks. Although MES is still based on 

entropy, the estimation of its information gain via sampling is more efficient, because 𝑦∗ lays in a one-

dimensional space. 

Linked to sampling from GP posterior is Thompson Sampling (TS), which can be also considered as a 

sequential optimization strategy per-se. Iteratively, TS draws a path by sampling from the GP posterior and 

then minimize it to obtain 𝑥(𝑛+1) as a possible estimation of the location of 𝑥∗. After 𝑦(𝑛+1) is observed, the 

GP is updated, and TS continues until a termination criterion is met. An analysis on TS has been recently 

proposed in (Russo & Van Roy 2016), concluding that TS is biased towards exploitation and suggesting that 

an 𝜀-greedy version of TS can lead to a better performance (i.e., randomly selecting 𝑥(𝑛+1) within the search 

space, with probability 𝜀, or performing TS with probability 1 − 𝜀).  

An efficient sampling procedure has been recently proposed in (Hahn et al., 2019) (Wilson et al., 2020b). 

Sampling from GP posterior is at the basis of information-based acquisition functions, described in the 

following section.  

The distinction between the two families of acquisition functions is relevant in terms of computational cost 

but, more relevant at least in this paper, is their difference in terms of the uncertainty quantification, providing 

more options for modelling the uncertainty quantification made by a human. 

 
 

2.3 The problem of uncertainty quantification 

 

From the viewpoint of Machine Learning, uncertainty quantification plays a pivotal role in reduction of errors 

during learning, optimization and decision making. In (Abdar et al., 2020) a wide survey of different 

uncertainty quantification methods is provided, considering many application fields, such as computer vision 
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(e.g., self-driving cars and object detection), image processing (e.g., image restoration), medical image analysis 

(e.g., medical image classification and segmentation), natural language processing (e.g., text classification, 

social media texts and recidivism risk-scoring). 

In decision making, uncertainty is usually associated to exploration: when the uncertainty is “larger” than the 

possible estimated improvement, then it could be more profitable to adopt an explorative behaviour and acquire 

more knowledge about 𝑓(𝑥). 

From a modelling perspective, uncertainty can be split in aleatoric and epistemic (Der Kiureghian and 

Ditlevsen, 2009; Kendall and Gal, 2017), where the aleatoric uncertainty is randomness proper in the 

evaluation of 𝑓(𝑥) (usually named “noise”) and cannot be reduced, while the epistemic uncertainty depends 

on the model and can be reduced by collecting more data. In many applications it could be interesting to 

separate the two types of uncertainty: in (Depeweg et al., 2018) two possible decompositions are described, 

based on two uncertainty quantification metrics that are variance and entropy. This means that information-

based and entropy-based acquisition functions use two different metrics to quantify uncertainty, leading to 

different trade-off between exploitation and exploration, given the same approximation of the objective 

function. 

From an informal – yet more intuitive – point of view, uncertainty about a decision is the amount of lack of 

knowledge about it, increasing with the “distance” from decisions already performed and where “distance” 

can be any suitable metric to compare two decisions. When decisions are locations in a search space, as in this 

paper, any spatial distance can be considered: an example of this uncertainty quantification has been recently 

proposed in (Bemporad, 2020) which uses Radial Basis Functions (RBF) as surrogate model and an inverse 

distance weighting such that the proposed distance is zero at sampled points and grows in between. Although 

GP’s predictive standard deviation usually shows a similar behaviour,it exhibit , in some situations , variance 

starvation (Wang et al., 2018), consisting in an underestimation of variance scale compared to mean scale 

which can significantly reduce exploration chances in some portions of the search space. 

Moreover, GP modelling could be also drastically affected by wrong choices about its prior – kernel type, in 

primis – resulting in possible misleading uncertainty quantification and, consequently, suboptimal exploration. 

This issue has been recently addressed in (Neiswanger and Ramdas, 2020), in which authors do not assume 

correctness of the GP prior and generate a confidence sequence for 𝑓(𝑥) function using martingale techniques. 

Cognitive theories of emotion define uncertainty as a cognitive component characterizing emotional states.  

Finally, when humans’ decisions are analysed, there is still another relevant lack in mathematical methods for 

uncertainty quantification as recently demonstrated in (Schultz et al., 2019) and (Bertram et al., 2020), which 

have investigated the role of emotion in judgment, risk assessment, and decision making under uncertainty and 

the different kinds of entropy which can be used to quantify uncertainty in the Sharma-Mittal space of entropy 

measures. Emotional states are significantly connected with subjective uncertainty estimation. While emotions 

such as anger and pride are associated to low uncertainty, anxiety and curiosity are associated to high 

uncertainty. There is not – at the authors’ knowledge – any mathematical “trick” to implement an emotion-

related uncertainty quantification in BO (whichever might be the analogous of “emotion” for an algorithm). 

Indeed, their conclusion is that emotional conditions have no effect on uncertainty appraisal. Sharma-Mittal 

entropy uses a parametrised family of surprise functions but effect on the entropy parameters driven by the 

difference between control and emotional conditions. 

 

 

3. Analytical Framework 
 

3.1 Definition of uncertainty quantification measures 

 

Let 𝒦 denotes the set of kernels to choose as GP’s prior. In this study 𝒦 = {𝑘𝑆𝐸 , 𝑘𝐸𝑋𝑃 , 𝑘𝑃𝐸 , 𝑘𝑀3/2, 𝑘𝑀5/2}. 

Let 𝜁(𝑥) denotes the improvement expected by querying the objective function at location 𝑥, depending on the 

GPs’ posterior (i.e., one GP for each kernel in 𝒦). Formally, 𝜁(𝑥) = 𝜇(𝑥) − 𝑦+, where 𝑦+ = max
𝑖=1,…,𝑛

{𝑦(𝑖)} 

because we are considering max
𝑥∈Ω⊂ℝ𝑑

𝑓(𝑥). Then, let denote with 𝒰 the set of possible uncertainty quantification 

measures. In this paper we consider the following three alternatives: 

 

• GP’s predictive standard deviation, namely 𝜎(𝑥). Typically adopted as uncertainty measure in the 

improvement-based acquisition functions. 
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• GP’s differential entropy. For a GP it is given by 𝐻(𝑦|𝑋1:𝑛) =
1

2
log det(K) +

𝑑

2
log det(2𝜋𝑒), where 

K ∈ ℜ𝑛×𝑛 with entries K𝑖𝑗 = 𝑘(𝑥(𝑖), 𝑥(𝑗)), ∀ 𝑥(𝑖), 𝑥(𝑗) ∈ 𝑋1:𝑛 (Williams and Rasmussen, 2006). 

However, the GP’s differential entropy does not depend on the location 𝑥, but it is just a scalar measure 

of the uncertainty of the overall GP posterior distribution. Thus, we introduce – following this bullet 

list – a location-dependent measure of entropy, denoted with ℎ(𝑥), as a possible entropy-based location 

dependent uncertainty quantification. With respect to the entropy-based uncertainty quantification, 

and starting from the GP’s differential entropy formula, we define: 

 

ℎ(𝑥) = 𝐻(𝑦|{𝑋1:𝑛  ∪ {𝑥}}) =
1

2
log det(K′) +

𝑑

2
log det(2𝜋𝑒)   (4) 

 

where K′ ∈ ℜ(𝑛+1)×(𝑛+1) with entries K′𝑖𝑗 = 𝑘(𝑥(𝑖), 𝑥(𝑗)), ∀ 𝑥(𝑖), 𝑥(𝑗) ∈ {𝑋1:𝑛  ∪ {𝑥}}. This allows us 

to estimate the entropy-based uncertainty at any location 𝑥 depending on all the previous decisions 

𝑋1:𝑛. It is important to remark that, analogously to 𝜎(𝑥), also ℎ(𝑥) depends – indirectly – on both 

decisions and outcomes through the kernel function, whose hyperparameters are tuned depending on 

𝐷1:𝑛. 

 

• Distance from previous decisions, inspired from (Bemporad, 2020) and denoted by 𝑧(𝑥) : 

 

𝑧(𝑥) = {
 0 if ∃ 𝑥(𝑖) ∈ 𝑋1:𝑛 ∶  ‖𝑥 − 𝑥(𝑖)‖

2

2
= 0

 
2

𝜋
tan−1 (

1

∑ 𝑤𝑗(𝑥)𝑛
𝑗=1

) otherwise 
    (5) 

with 𝑤𝑗(𝑥) =
𝑒

−‖𝑥−𝑥(𝑗)‖
2

2

‖𝑥−𝑥(𝑗)‖
2

2 . 

 

Thus, 𝑧(𝑥) is zero at sampled points and grows in between; tan−1 is introduced to damp the growth of 𝑧(𝑥) 

when 𝑥 is located far away from all sampled points. Contrary to 𝜎(𝑥) and ℎ(𝑥), which depend also on 𝑦, the 

uncertainty quantification measure 𝑧(𝑥) depends only on 𝑋1:𝑛, that is it depends only on how decisions “cover” 

the search space, irrespectively to their outcomes 𝑦1:𝑛. Although 𝑧(𝑥) intentionally ignores a portion of 

collected knowledge (i.e., outcomes of decisions), as main advantage it does not suffer, “by design”, from 

variance starvation. 

 

In Figure 2 a simple 1D example is reported to show the differences between the three uncertainty 

quantification measures, given the same set of previous decisions and GP model. Just for visualization 

purposes, each uncertainty quantification measure has been scaled in [0,1]. In this specific case, almost all the 

intervals between two successive decisions are “equally uncertain”, according to 𝜎(𝑥) and ℎ(𝑥), where 

“equally uncertain” means that 𝜎(𝑥) ≈ 𝜎(𝑥′) – as well as ℎ(𝑥) ≈ ℎ(𝑥′) – ∀ 𝑥, 𝑥′ ∉  𝑋1:𝑛 . On the contrary, the 

value of 𝑧(𝑥) changes over the search space providing a different quantification of uncertainty at every 

location. 
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Figure 2. Differences between the three uncertainty quantification measures considered on a simple 1D example. Top: 

a black box function 𝑓(𝑥), eight observations, the GP’s posterior mean and standard deviation. Bottom: the amount of 

location-dependent uncertainty given by the three uncertainty quantification measures (values are scaled in [0,1] for 

visualization purposes. 

 

 

3.2 Pareto rationality  

 

Given the GP conditioned on the decisions performed so far, it is possible to map the next decision 𝑥(𝑛+1) ∈ Ω 

– whichever it is – as a bi-objective choice, with objectives 𝜁(𝑥) and 𝑢(𝑥) ∈ 𝒰 (both to be maximized). 

Pareto rationality is the theoretical framework to analyse multi-objective optimization problems where 𝑞 

objective functions 𝛾1(𝑥), … , 𝛾𝑞(𝑥) where 𝛾𝑖(𝑥): → ℝ are to be simultaneously optimized in Ω ⊆ ℝ𝑑. We use 

the notation 𝛄(𝑥) = (𝛾1(𝑥), … , 𝛾𝑞(𝑥)) to refer to the vector of all objectives evaluated at a location 𝑥. The 

goal in multi-objective optimization is to identify the Pareto frontier of 𝛄(𝑥). 

To do this we need an ordering relation in ℝ𝒒: 𝛄 = (𝑦1, … , 𝑦𝑞) ≼ 𝛄′ = (𝑦1
′ , … , 𝑦𝑞

′ ) if and only if 𝛾𝑖 ≤ 𝛾𝑖
′ for 

𝑖 = 1, … , 𝑞. This ordering relation induces an order in Ω: 𝑥 ≼ 𝑥′ if and only if 𝛄(𝑥) ≼ 𝛄(𝑥′). 

We also say that 𝛾′ dominates 𝛾 (strongly if ∃ 𝑖 = 1, … , 𝑞 for which 𝛾𝑖 < 𝛾𝑖
′). The optimal non-dominated 

solutions lay on the so-called Pareto frontier.  

The interest in finding locations 𝑥 having the associated 𝛄(𝑥) on the Pareto frontier is clear: they represent the 

trade-off between conflicting objectives and are the only ones, according to the Pareto rationality, to be 

considered. 

In this paper 𝑞 = 2, with 𝛾1(𝑥)=𝜁(𝑥) and 𝛾2(𝑥) = 𝑢(𝑥) ∈ 𝒰. Both the objectives are not expensive to 

evaluate, therefore the Pareto frontier can be easily approximated by considering a fine grid of locations in Ω 

without the need to resort to methods approximating expensive Pareto frontiers within a limited number of 

evaluations, such as in (Zuluaga et al., 2013). 

Thus, we approximate our Pareto frontier by sampling a grid of 𝑚 points in Ω, denoted by 𝐗̂1:𝑚 =

{𝑥(𝑗)}
𝑗=1,…,𝑚

, and then computing the associated pairs Ψ1:𝑚 = {(𝜁(𝑥(𝑗)), 𝑢(𝑥(𝑗)))}
𝑗=1,…,𝑚

. 

It is important to remark that a large value of 𝑚 is needed to have a good approximation of the Pareto frontier 

but this is not an issue because the computational cost is dominated by conditioning the GP on observations 

(i.e., 𝒪(𝑛3), with 𝑛 ≪ 𝑚) instead of making predictions (i.e., inference). The Pareto frontier can be 

approximated as: 

 

𝒫(Ψ1:𝑚) = {𝜓 ∈ Ψ1:𝑚: ∀ 𝜓′ ∈ Ψ1:𝑚 𝜓 ≻ 𝜓′} 

 

where 𝜓 = (𝜁(𝑥), 𝑢(𝑥)) and 𝜓′ = (𝜁(𝑥′), 𝑢(𝑥′)), and 𝜓 ≻ 𝜓′  ⟺  𝜁(𝑥) > 𝜁(𝑥′)  ∧ 𝑢(𝑥) > 𝑢(𝑥′). 
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Figure 3 shows an example of Pareto frontier for 𝜁(𝑥) and 𝑢(𝑥) = 𝜎(𝑥). First five charts, top-left to bottom-

right, depict Ψ1:𝑚 and the associated 𝒫(Ψ1:𝑚) for each kernel in 𝒦 = {𝑘𝑆𝐸 , 𝑘𝐸𝑋𝑃, 𝑘𝑃𝐸 , 𝑘𝑀3/2, 𝑘𝑀5/2}, 

separately. The last chart (bottom-right) compares only the five Pareto frontiers, better highlighting the role of 

the GP kernel. For this example, 𝑓(𝑥) is the Branin-Hoo (Jekel and Haftka, 2019) function in 

Ω: [−5; 10] × [0; 15], 𝑚 = 1976 (related to a grid 76 × 26, obtained by using a step of 0.2 on each 

dimension).  

 

 
Figure 3. Pareto frontiers obtained by using the GP’s posterior standard deviation as uncertainty quantification (i.e., 

𝑢(𝑥) = 𝜎(𝑥)). Five different kernels are used to fit as many GPs, leading to as many Pareto frontiers. Last chart 

(bottom-right) depicts the five frontiers all together for an easier comparison.  

 

Similar charts are reported in Figure 4 and Figure 5 for the other two uncertainty quantification measures. 
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Figure 4. Pareto frontiers obtained by using an entropy-based uncertainty quantification (i.e., 𝑢(𝑥) = ℎ(𝑥)). Five 

different kernels are used to fit as many GPs, leading to as many Pareto frontiers. Last chart (bottom-right) depicts the 

five frontiers all together for an easier comparison. 

 

 
Figure 5. Pareto frontiers obtained by using the distance-based uncertainty quantification (i.e., 𝑢(𝑥) = 𝑧(𝑥)). Five 

different kernels are used to fit as many GPs, leading to as many Pareto frontiers. Last chart (bottom-right) depicts the 

five frontiers all together for an easier comparison. 
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The only way to analyse how different uncertainty quantification measures can lead to completely different 

decisions – even if anyway Pareto rational – is to localize, within the search space Ω ⊂ ℜ𝑑, the locations whose 

associated objectives lays on the Pareto frontier (namely, the Pareto set). Figure 6 reports just a 2D example, 

considering ten previous decisions (bold black crosses), five different kernels and three alternative uncertainty 

quantification measure. The black box function considered is Branin-Hoo. 

 

 
Figure 6. Next decision depending on: (i) ten previous observations (bold crosses), (ii) uncertainty quantification 

measures (rows: 𝜎(𝑥), ℎ(𝑥) and 𝑧(𝑥)), and kernels (columns: “gauss” for 𝑘𝑆𝐸, “exp” for 𝑘𝐸𝑋𝑃, “powexp” for 𝑘𝑃𝐸 , 

“matern3_2” for 𝑘𝑀3/2 and “matern5_2” for 𝑘𝑀5/2)  

 

From the figure it is possible to notice that the region of locations associated to Pareto-rational decisions does 

not change so much depending on kernel, as well as by using 𝜎(𝑥) or ℎ(𝑥). The most evident difference arises 

by using 𝑧(𝑥) as uncertainty quantification measure, because it allows to consider as Pareto-rational also 

decisions in the area around, approximately, the location (𝑥1 = 1; 𝑥2 = 11). This area is associated to a more 

explorative behaviour compared to the other – which is also identified by using the other two uncertainty 

quantification measures – meaning that some explorative choice could be still considered Pareto rational when 

𝑢(𝑥) = 𝑧(𝑥). 

This is just an example for explanatory purposes, the hypothesis is investigated and validated in our analysis. 

Moreover, we have also to consider that humans, (Kahneman, 2011) could take non-Pareto-rational decisions, 

and it is therefore important to measure how much a decision can be considered “far from a Pareto-rational 

one”. This issue is addressed and formalized in the next section. 

 

 

3.3 Distance from the Pareto rationality 

 

Every next decision, 𝑥(𝑛+1), can be analysed according to the distance of its “image” (𝜁(𝑥(𝑛+1)), 𝑢(𝑥(𝑛+1))) 

from the Pareto frontier, computed as follows: 

 

𝑑(𝜓̅, 𝒫̅) = min
𝜓∈𝒫̅

{‖𝜓̅ − 𝜓‖
2

2
} 

 

where 𝜓̅ = (𝜁(𝑥(𝑛+1)), 𝑢(𝑥(𝑛+1))) and 𝒫̅ = 𝒫(Ψ1:𝑚) ∪ {𝜓̅}. 

 

This distance is computed for every choice among the five kernels and the three uncertainty quantification 

measures previously presented. The hypothesis is that humans are mostly Pareto rational, and they should 

therefore make decisions laying on – or close to – the Pareto frontier. 
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We analyse the distances from all the 15 possible Pareto frontiers (5 kernels × 3 uncertainty quantification 

measures) and how they change along the optimization process. Figure 7 shows an example taken from our 

experimental results and anticipated here just for explanatory purposes. The 10 charts refer to as many black 

box optimization problems solved by a single human subject. At each iteration, and for each uncertainty 

quantification measure, the minimum distance between the associated Pareto frontier and the human decision 

is reported, irrespectively to the kernel. It is important to remark that distances cannot be compared in absolute 

terms, because the three different uncertainty measures can vary in very different ranges. However, it is 

possible to observe that distances result correlated in some cases and uncorrelated in others. 

Finally, from the charts it is possible to notice that: (a) in some cases Pareto rationality is independent on the 

uncertainty quantification, such as for the problems: bukin6, goldpr, rastr, stybtang, but not in general; (b) a 

higher number of decisions are considered Pareto rational if 𝑢(𝑥) = 𝑧(𝑥); (c) in some cases it is possible to 

observe a shift from Pareto-rationality to not-Pareto rationality (e.g., this is evident in for beale, goldpr and 

rastr). 

 

 
Figure 7. Distance, at each iteration, of the next decision from three different Pareto frontiers, one for each uncertainty 

quantification measure 𝜎(𝑥), ℎ(𝑥) and 𝑧(𝑥). All the fifteen charts are related to as many black box optimization tasks 

performed by a single human subject. 

 

 

4. Experimental setup 
 

4.1 Data collection 

 

To collect data about humans’ strategies we have used a gaming application based on the implementation used 

in (Candelieri et al., 2020). Figure 8 shows the web-based Graphical User Interface (GUI) of our game, with a 

game play example. The game field, with previous decisions and observations, as well as the score and 

remaining “shots”, are reported. 

The game can be arranged according to different goals/conditions. 

• Game mode #1: searching for the location having the highest score; 

• Game mode #2: searching for the location having the highest score, but given the additional 

information about its value;  

• Game mode #3: maximizing the cumulative score (sum of the scores of all the choices).  
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This paper focuses only on the first game mode (i.e., Game mode #1), with the aim to formalize and validate 

an analytical framework which could be successively adopted to investigate how the different goals of the 

other two game modes can imply different the humans’ strategies. 

Fourteen volunteers have been enrolled (among families and friends, which had no competences in computer 

science and/or optimization), asking for solving ten different tasks each (only for Game mode #1). Each task 

refers to a global optimization test function, which subjects “learn and optimize” by clicking at a location and 

observing the associated score (aka reward). For each task, every player has a maximum number of 20 clicks 

(decisions) available. The 10 global optimization test functions adopted are depicted in Appendix (A1). Since 

these functions are related to minimization problems, the score returned to the player is −𝑓(𝑥), translating 

them into maximization tasks.  

Finally, the game has been developed in R, specifically R-shiny for the web-based GUI. All the analytical 

components, described in the following, have been also developed in R as backend of the application. 

 

 

 
Figure 8. Web-based Graphical User Interface (GUI) of our game: a game play example 

 

 

4.2 Data analysis  

 

This study analyses every single decision performed by every volunteer, and how it can be explained in terms 

of uncertainty quantification and Pareto rationality. The analysis is organized in three consecutive steps: 

 

• Step 1: computing the number of Pareto rational decisions, depending on the uncertainty quantification 

measure, and comparing them. A decision is considered Pareto rational if the distance from the Pareto 

frontier is less than 10−4.This analysis step is summarized as follows:  

1. For each player and each test problem do: 

2. Initialize 𝑛 = 3 (i.e., he first three decisions of each user and for each test problem cannot be 

analysed, because fitting a GP over a 2-dimensional search space requires at least three 

observations). 

3. Condition a GP for each one the kernels in 𝒦 to the previous 𝑛 decisions and observations 

performed by that player for that test problem. 

4. For each 𝑢(𝑥) ∈ 𝒰 do: 
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5. Use each one of the conditioned GPs to approximate the associated Pareto frontier by sampling 

a grid of 𝑚 = 30 × 30 = 900 locations in Ω and then computing the associated locations in 

the 𝜁-𝑢 space. 

6. Map 𝑥(𝑛+1) into five associated locations 𝜓 = (𝜁(𝑥(𝑛+1)), 𝑢(𝑥(𝑛+1))) – one for each kernel 

– and compute its minimum distance from the five Pareto frontiers and store it.  

7. 𝑛 ← 𝑛 + 1 and go to Step 3 

8. End For each 𝑢(𝑥) ∈ 𝒰 

9. End For each player and each test problem 

All the results are stored into a data table with columns: user_id, problem_id, n+1, 

uncertainty_measure, min_dist_from_Pareto_frontier. Finally, numbers of Pareto rational 

decisions are separately computed for each uncertainty quantification measure and aggregated by 

(a) players and (b) test problems.  

 

• Step 2: computing the length of consecutive Pareto-rational decisions, depending on the uncertainty 

quantification measure, and comparing them. This analysis step uses the same data table previously 

computed but, instead of the number, the length of consecutive Pareto rational decisions is computed, 

separately for the three uncertainty measures, and aggregated by (a) players and (b) test problems. 

 

• Step 3: depending on results from the two previous steps, the uncertainty quantification measure which 

allows to more frequently classify the humans’ choices as Pareto rational is selected. Then, the 

relationship between the fact that the decision is Pareto rational and the reward collected so far by the 

user is investigated, with the aim to identify a possible motivation for over-explorative decisions (i.e., 

not-Pareto rational decisions). In our analysis reward is represented by the score immediately observed 

by the player implied by his/her own decision. Cumulative reward is therefore the sum of scores 

collected up to a given decision. Finally, the Average Cumulated Reward (ACR), up to a given 

decision, is computed as the arithmetic mean of the cumulated reward up to that decision: 

𝐴𝐶𝑅(𝑛+1) =
1

𝑛
∑ 𝑦(𝑖)

𝑛

𝑖=1

 

we use 𝐴𝐶𝑅(𝑛+1) to denote the average reward collected up to 𝑛 just to be coherent with indexing, 

since this value is analysed in relation with the Pareto distance of decision 𝑥(𝑛+1). The idea is that 

ACR could quantify the amount of “gratification” (high values of ACR) or “stress” (low values of 

ACR) experienced by the player in solving the test problem. The hypothesis is that lower values of 

ACR could be associated to not-Pareto rational decisions, induced by a sense of stress for the 

incapability to (further) improve the score. 

 

 

5. Experimental results and their analysis 
 

5.1 Results about analysis step 1  

 

The main result from analysis step 1 is that using 𝑧(𝑥) as uncertainty quantification measure increases the 

number of Pareto rational decisions for some problems, over all the players. Figure 9 shows the number of 

players with respect to the percentage of Pareto rational decisions. A stacked histogram is provided for each 

test problem, comparing the distributions obtained for each one of the three uncertainty quantification 

measures. The increase in terms of number of Pareto rational decisions, by using 𝑢(𝑥) = 𝑧(𝑥), is more evident 

for the test problems schwef and ackley. 
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Figure 9. Number of players with respect to percentage of decisions classified as Pareto rational, separately for the 

three uncertainty quantification measures. One chart for each test problem. 
 

Moreover, the higher number of Pareto rational decisions, obtained by using 𝑢(𝑥) = 𝑧(𝑥), is spread over all 

the players. Indeed, Figure 10 shows the distributions of the number of test problems with respect to the 

percentage of Pareto rational decisions. A stacked histogram is provided for each player, comparing the 

distributions obtained considering each one of the three uncertainty quantification measures. For almost all the 

subjects a higher number of test problems is solved by using a high percentage of Pareto rational decisions 

when 𝑢(𝑥) = 𝑧(𝑥). 

 

 
Figure 10. Number of test problems with respect to percentage of decisions classified as Pareto rational, separately for 

the three uncertainty quantification measures. One chart for each player. 

 



18 

 

5.2 Results about analysis step 2 

 

Results of analysis step 2 confirm those from the previous step. Choosing 𝑢(𝑥) = 𝑧(𝑥) leads to longer 

sequences of consecutive Pareto rational decisions, according to both the number of players for each test 

function (Figure 11) and the number of test functions for each player (Figure 12). 

 

 
 

Figure 11. Number of players with respect to length of consecutive Pareto rational decisions, separately for the three 

uncertainty quantification measures. One chart for each test function. 
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Figure 12. Number of test functions with respect to length of consecutive Pareto rational decisions, separately for the 

three uncertainty quantification measures. One chart for each player. 

 

5.3 Results about analysis step 3 

 

According to the results from the two previous steps, we can conclude that 𝑧(𝑥) is, among the uncertainty 

quantification measures considered, the one inducing the Pareto model with the highest representation power, 

that is the one maximizing the number of Pareto optimal decisions. Indeed, if we assume that every human’s 

decision is Pareto rational, then 𝑧(𝑥) is the only option – at least among those considered – allowing us to get 

close to this rationality model. Therefore, we have selected 𝑢(𝑥) = 𝑧(𝑥) to perform the analysis step 3. 

As the main result of this step, the value of the ACR can help to determine if the next decision 𝑥(𝑛+1) will be 

Pareto rational or not. More specifically, ACR resulted, on average, higher in the case of a Pareto rational 

decision on 8 out of the 10 test problems (in 4 cases, this difference is statistically significant, p-value<0.05, 

U Mann-Whitney test). Only in one case (i.e., stybtang) the ACR is significantly higher for not-Pareto 

decisions (p-value<0.001, U Mann-Whitney test). Results are reported in Table 1 and, for a more immediate 

comparison, also as boxplots in Figure 13. 

 

 
Table 1 Results: comparing ACR between Parto and not-Pareto rational decisions. Results are per test function, over 

all players and decisions. 

  ACR Pareto ACR not-Pareto U Mann-Whitney test 

test function mean (sd) mean (sd) p-value 

ackley  -178.916 (95.209) -188.259 (96.440) 0.409 

beale  -54603.570 (111582.400) -53695.820 (111111.300) 0.170 

branin  -209.413 (224.193) -380.112 (268.029) <0.001* 

bukin6  -482.495 (203.231) -995.122 (473.103) <0.001* 

goldpr  -20.601 (21.869) -24.551 (14.557) 0.030* 

griewank  -7.791 (4.122) -8.485 (5.610) 0.9015 

levy  -92.548 (69.508) -114.750 (88.185) 0.1363 

rastr  -309.380 (145.268) -421.085 (178.801) <0.001* 

schwef  -8859.593 (3905.512) -9426.500 (2749.823) 0.816 

stybtang  157.231 (100.050) 319.434 (227.555) <0.001* 
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Figure 13. Comparing ACR between Pareto and not-Pareto rational decisions: a boxplot for each test problem, data 

aggregated over the decisions of all the players. 
 

 

6. Conclusions and perspectives  
 

The main result of this paper is a methodological framework to collect and analyse data related to humans’ 

decision-making strategies under uncertainty, specifically about how they balance gathering new information 

(exploration) and reward seeking (exploitation). To better model this balance, we have used a bi-objective 

setting and assumed that humans’ choices might be more frequently located on the Pareto frontier (Pareto 

rational choices). Since one of the two objectives is uncertainty, we have analysed three uncertainty 

quantification measures to investigate which one would offer the best fit with the Pareto rationality model (i.e., 

the one maximizing the number of choices laying on the associated Pareto frontier). 

Thus, while most of previous research studies has investigated how people assess the information value of 

possible queries, we rather addressed the issue of the perception of probabilistic uncertainty itself. This 

problem is still an open question in Machine Learning and cognitive sciences and neither our results nor those 

prevailing in the rich literature about this issue provide unequivocal evidence about the underlying algorithms 

used by humans. 

Humans do not always make “rationale” choices (i.e., Pareto optimal decisions in the space of expected 

improvement and uncertainty) and in some cases, they “exasperate” exploration. The computational results 

and their analysis allow to formulate at least a tentative answer to why or rather in which conditions we observe 

deviations from “rationality” and switches towards “exasperated” exploration depending on the dynamics of 

the optimization process as represented by Average Cumulative Reward. 

Next steps should be a probabilistic characterization of the sequence of decisions and a close analysis of the 

dynamics of how people change their behaviour. A big question, which we have only partially addressed in 

this paper, is whether this analysis sits well with the Paretian expected utility theory or should rather be 

developed along entirely different lines of inquiry as for instance those proposed in (Peters, 2019) bringing 
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about new uncertainty quantification measures and a new family of Bayesian Optimization acquisition 

functions.  
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Appendix A 
 

A1. The ten test problems 

The ten global optimization test functions used in this study, including their analytical formulations, search 

spaces and information about optimums and optimizers, can be found at the following link: 

https://www.sfu.ca/~ssurjano/optimization.html 

Since they are minimization test functions, we have returned −𝑓(𝑥) as score in order to translate them into the 

maximization problems depicted in Figure 14. 

 

 
Figure 14. The 10 test problems considered in this study. 

 

  

https://www.sfu.ca/~ssurjano/optimization.html
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A2. Distances from Pareto frontiers for each player, by test function 
 

The following 10 figures – one for each test function – report the distances of each decision from the Pareto 

frontiers and for each player. 

 

 
 

 

 

 

 
 

 

 



26 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 



27 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 



28 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 



29 

 

 

 

 

 
 

 

 

 

 
  



30 

 

A3. Distances from Pareto frontiers for each test functions, by player 
 

The following 14 figures – one for each player – report the distances of each decision from the Pareto frontiers 

and with respect to each test function. 
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