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ABSTRACT
In this paper, we employ a reduced basis method for solving the PDE constrained
optimization problem governed by a fractional parabolic equation with the fractional
derivative in time from order β ∈ (0, 1) is defined by Caputo fractional derivative.
Here we use optimize-then-discretize method to solve it. In order to this, First, we
extract the optimality conditions for the problem, and then solve them by reduced
basis method. To get a numerical technique, the time variable is discretized using a
finite difference plan. In order to show the effectiveness and accuracy of this method,
some test problem are considered, and it is shown that the obtained results are in
very good agreement with exact solution.
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1. Introduction

Fractional calculus appear in many settings across engineering and science disciplines,
it can be refered to Sun et al. (2018) for more information. Also, many real-life ex-
amples are modeled by PDE constarined optimization, such as the optimal control of
tumor invasion, the optimal strategy of a thermal treatment in cancer therapy, and
the medical image analysis Mang et al. (2018); Quiroga et al. (2018, 2015). Thanks
to the increasing use of fractional derivative and fractional calculus in ordinary and
partial differential equations and related problems, there is a interest for presenting
efficient and reliable solutions for them.
The reduced basis method is a model order reduction effective technique for approx-
imating the solution of parameterized partial differential equations which have been
used in the past few decades. Firstly, the RB method was proposed to solve the non-
linear analysis of structures in the late 1970s and has subsequently been further in-
vestigated and developed more broadly Balmes (1996); Grepl and Patera (2005).
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The main idea of the RB method for parameter dependent PDEs is to approximate
its solution by a linear combination of few global basis functions, obtained from a
set of FE solutions corresponding to different parameter values. The RB method was
repeatedly used to solve the PDE constrained optimization problem (PCOP). A re-
duced basis surrogate model was proposed for PCOP in Dihlmann and Haasdonk
(2015). Authors in Qian et al. (2017) used RB method in conjunction with a trust
region optimization framework to accelerate PCOP. RB method was applied to solve
quadratic multi-objective optimal control problems governed by linear parameterized
variational equations in Lapichino et al. (2017). Authors in Aquino et al. (2018)
employed a locally adapted RB method for solving risk-averse PCOP.

1.1. Literature review

Many researchers pay attention to finding the numerical solution for solving fractional
PDE constrained optimization problem. Antil and Otarola (2015) use finite element
method (FEM) for an Optimal Control Problem of Fractional Powers of Elliptic
Operators. In Otarola (2017) a piecewise linear FEM was proposed for an optimal
control problem involving the fractional powers of a symmetric and uniformly elliptic
second order operator. A spectral method for optimal control problems governed by
the time fractional diffusion equation with control constraints was presented in Ye
and Xu (2014). Authors in Bhrawy et al. (2016) provided a space-time Legendre
spectral tau method for the two-sided space-time Caputo fractional diffusion-wave
equation. A new spectral collocation algorithm for solving time-space fractional
partial differential equations with subdiffusion was reported in Bhrawy (2016). A
hybrid meshless method was proposed for FODCP in Darehmiraki et al. (2016).
Zacky and Mchado Zaky and Machado (2017) provided a solution for FODCP
by pseudo-spectral method. As well as there exist variety of solutions for various
fractional optimal control problems that the some of them can be seen in Bai et al.
(2018); Salati et al. (2018).

1.2. The main aim of this paper

Our main motivation in this paper is to apply reduced basis method for the rapid and
reliable solution of fractional PDE constrained optimization problem. There exists, to
the best of our knowledge, no previous work providing reduced order approximations
for fractional PDE constrained optimization problem. It is known that the reduced
basis method has been an efficient tool for computing numerical solutions of differential
equations because of its high-order accuracy. We demonstrate the efficiency of the
proposed schemes by considering several numerical examples.
The outline of this paper is as follows. After stating the exact form of the problem
in Section 2, we present the weak form of the problem in Section 3. Necessary and
sufficient conditions for the problem are introduced in section 4. Sections 5 review finite
element method and reduced basis method. In section 6, we give some implementation
details and present the numerical results to support the theoretical prediction. The
error bound for proposed method is calculated in Section 7. Three numerical examples
are presented in Section 8 to confirm our theoretical findings. In Section 9, we give
some concluding remarks.
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2. The exact form of the problem

This paper solves an optimal control problem with fractional PDE constraint. In this
section, we present the parameterized optimal control problem.

Let N > 1 and Ω be a bounded open subset of RN with boundary ∂Ω. For a time
T > 0, we set Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). Given α ∈ (0, 1), and D ⊂ Rp
be a p-dimensional compact set of parameters µ = (µ1, ...µp) with p ≥ 1. Let Y with
H1

0 (Ω) ⊂ Y ⊂ H1(Ω) be a Hilbert space with inner product (., .)Y , (v, w) =
∫

Ω vwdΩ

and associated norm ‖.‖Y =
√

(., .)Y . We assume that the norm ‖.‖Y is equivalent
to H1(Ω)-norm and denote the dual space of Y by Y

′
. We also introduce the control

Hilbert space U with its inner product (., .)U and norm ‖.‖ =
√

(., .)U with associated
dual space U

′
. We define the parameterized fractional optimal control problem:

min J(y, u) =
1

2

∫ T

0

∫
Ω

(y(.;µ)− yd)2dΩdt+
γ

2

∫ T

0

∫
Ω
u2(.;µ)dΩdt,

subject to

−∂αt y + µ∆y = u, in Q, (1)

y = 0, on Σ,

y(., 0) = 0, in Ω,

where J(y, u) is the cost functional, γ > 0 is the so-called regularization parameter
and yd is the desired state. Here the variables y ∈ H1(Q) and u ∈ L2(Q) are named the
state variable and the control variable, respectively. They are independent variables
and should be determined.
The fractional derivative ∂αt for α ∈ (0, 1) is the left-sided Caputo fractional derivative
of order α with respect to t and defined as:

∂αt f(t) =
1

Γ(1− α)

∫ t

0

f
′
(τ)

(t− τ)α
dτ, (2)

where Γ is the Gamma function. We consider ∂t for α = 1. The right-sided Caputo
fractional is

∂αT−tf(t) = − 1

Γ(1− α)

∫ T

t

f
′
(τ)

(τ − t)α
dτ α ∈ (0, 1), (3)

where f ∈ L1(0, T ).

Definition 2.1. (Steeb, 1997; Steeb, 2006) Suppose C = (cij)m×n and D are two
arbitary matrices, then the matrix

C ⊗D =


c11D c12D · · · c1nD
c21D c22D · · · c2nD

...
...
. . .

...
cm1D cm2D · · · cmnD


is named Kronocker product of C and D.
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Definition 2.2. Suppose C = (cij)m×n be a given matrix, then vec(C) is a column
vector made of the row of C stacked a top one another from left to right that the size
of it is m× n.

vec(C) = (c11, c12, ..., c1n, c21, c22, ..., cm1, ..., cmn)T .

3. Weak form of the problem

In this section, we consider the weak form of the problem (1).

min J(y, u) =
1

2

∫ T

0

∫
Ω

(y(.;µ)− yd)2dΩdt+
γ

2

∫ T

0

∫
Ω
u2(.;µ)dΩdt,

S.t

−∂αt (y(t), v)− a(y(t), v;µ) = (u(t), v), v ∈ Y, (4)

y = 0, on ∂Ω,

y(., 0) = 0, in Ω.

We introduce the parameter-dependent bilinear form a(., .;µ) : Y × Y → R as

a(v, w;µ) = µ

∫
Ω
∇v∇wdΩ.

It is assumed that a(., .;µ) is continious

0 ≤ γa(µ) = supw∈Y/{0}supv∈Y/{0}
a(w, v;µ)

‖w‖Y ‖v‖Y
≤ γa0 <∞, ∀µ ∈ D,

and coercive

α(µ) = infv∈Y/{0}
a(v, v;µ)

‖v‖2Y
≥ α0 > 0, ∀µ ∈ D. (5)

The bilinear form is assumend to be dependent affinely on the parameter.

4. Optimality condition

Now, the first order necessary and sufficient optimality conditions for the fractional
optimal control problem (4) are derived using the Lagrangian approach. Let p denote
the adjoint variable, µ ∈ D is given, we define the Lagrangian functional related to
Problem (4) as

L(y, u, p) = J(y, u)−
∫
Q

(−∂αt (y(t), v)− a(y(t), v;µ)− (u(t), v))pdxdt.
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By derivative of L with respect to p, the state equation is as following:
−∂αt (y∗(t), φ)− a(y∗(t), φ;µ) = (u∗, φ), φ ∈ Y,
y∗(., t) = 0, on ∂Ω,

y∗(., 0) = 0 in Ω.

(6)

By differentiating of L with respect to y, the adjoint equations are obtained
−∂αT−t(p∗(t), ϕ)− a(p∗(t), ϕ;µ) = (yd(t)− y∗, ϕ), ϕ ∈ Y,
p∗(., t) = 0, on ∂Ω,

p∗(., T ) = 0, in Ω.

(7)

Finally, by derivative with respect to u, the gradient equation is obtained

γu∗ − p∗ = 0, in Q. (8)

We replace u∗ = 1
γ p
∗ in equation (6). Since the fractional state equation is left-sided

Caputo fractional derivative and the fractional adjoint equation is right-sided, we apply
change of variable p(x, t) = p̄(x, T − t) and then we have

∂αT−tp(x, t) = ∂αt p̄(x, T − t),

for more detail, see (Antil and Otarola , 2015). As a result, the right Caputo fractional
derivative can be written as a left Caputo fractional derivative. Therefore, the equation
(7), (8) change to

−∂αt (y∗(t), φ)− a(y∗(t), φ;µ) = 1
γ (p̄∗(T − t), φ), φ ∈ Y,

−∂αt (p̄∗(T − t), ϕ)− a(p̄∗(T − t), ϕ;µ) = (yd − y∗, ϕ), ϕ ∈ Y,
y∗(., t) = 0, p̄∗(., T − t) = 0, on ∂Ω,

y∗(., 0) = 0, p̄∗(., 0) = 0, in Ω.

(9)

For simplicity, we hereinafter eliminate the star icon in the upper index.

5. Finite element method

In this section, finite element method is used to discretize the problem. We divide the
time interval [0, T ] into K sub-interval of equal length ∆t = T

K and tk = k∆t, 0 ≤ k ≤
K and K = {0, 1, ...,K}. We introduce the finite element spaces Yh ⊆ Y and Ph ⊆ P
of large dimension Nh. Then the following equations are gained
−∂αt (y(tk), φ)− a(y(tk), φ;µ) = 1

γ (p̄(T − tk), φ), φ ∈ Yh, k ∈ K
{0} ,

−∂αt (p̄(T − tk), ϕ)− a(p̄(T − tk), ϕ;µ) = (yd(tk)− y(tk), ϕ), ϕ ∈ Yh, k ∈ K
{K} ,

y(., tk) = 0, p̄(., T − tk) = 0, on ∂Ω,

y(., 0) = 0, p̄(., T − tK) = 0, in Ω.

(10)
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Then, in algebraic formulation we have,
−M∂αt y(tk)− µAy(tk)− 1

γBp̄(T − tk) = 0, k ∈ K
{0} ,

−M ′
∂αt (p̄(T − tk)− µA

′
p̄(T − tk) +B

′
y(tk) = Yd(tk), k ∈ K

{K} ,

y(., tk) = 0, p̄(., T − tk) = 0, on ∂Ω,

y(., 0) = 0, p̄(., T − tK) = 0, in Ω,

(11)

where

yh(tk) =

Nh∑
i=1

yhi(tk)φi, p̄h(T − tk) =

Nh∑
i=1

p̄hi(T − tk)ϕi,

φi and ϕi are the basis of finite element method. The matrices used in the state and
adjoint equations are

(M)ij = (φi, φj), (B)ij = (ϕi, φj),

(M
′
)ij = (ϕi, ϕj), (B

′
)ij = (φi, ϕj),

Yd(tk) = (yd(tk), ϕj),

where M,M
′
, B and B

′
are the mass matrix of the finite element method. Also, we

have

(A)ij = a(φi, φj), (A
′
)ij = a(ϕi, ϕj), 1 ≤ i, j ≤ Nh

where they are the same and are called the stiffness matrix of finite element method.
Now, we express the following lemma for discretization of time fractional derivative.

Lemma 5.1. Mohebbi et al. (2013). Suppose 0 ≤ α ≤ 1 and g(t) ∈ C2[0, tk], it holds
that

| 1

Γ(1− α)

∫ tn

0

g
′
(t)

(tn − t)α
dt− c[b0g(tn)−

n−1∑
m=1

(bn−m−1 − bn−m)g(tm)− bn−1g(t0)]| ≤

1

Γ(2− α)
[
1− α

12
+

22−α

2− α
− (1 + 2−α)] max

0≤t≤tk
|g”(tn)|τ2−α,

where

bm = (m+ 1)1−α −m1−α, c =
τ−α

Γ(2− α)
, τ = ∆t.

Therefore, for n = 1,

∂αt g(t1) ' c[g(t1)− g(t0)],
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and for 2 ≤ n ≤ L,

∂αt g(tn) ' c[b0g(tn)−
n−1∑
m=1

(bn−m−1 − bn−m)g(tm)− bn−1g(t0)].

Since y(t0) = 0 and p̄(0) = p̄(T − tK) = 0, we have the following estimation

∂αt y(tn) ' c[b0y(tn)−
n−1∑
m=1

(bn−m−1 − bn−m)g(tm),

and

∂αt p̄(T − tn) ' c[b0p̄(T − tn)−
K−n−1∑
m=1

(bK−n−m−1 − bK−n−m)p̄(T − tK−m).

We define a matrix

D =


cb0 0 0 · · · 0

c(b1 − b0) cb0 0 · · · 0
c(b2 − b1) c(b1 − b0) cb0 · · · 0

...
...
. . .

...
...

...
c(bK−1 − bK−2) c(bK−2 − bK−3) · · · c(b1 − b0) cb0


and

vec(y) = [y1(t1), · · · , yNh
(t1), y1(t2), · · · , yNh

(t2), · · · , y1(tK), . . . , yNh
(tK)],

vec(yd) = [yd1(t0), · · · , ydNh
(t0), yd1(t1), · · · , ydNh

(t1), · · · , yd1(tK−1), . . . , ydNh
(tK−1)],

vec(p̄) = [p̄1(T − t0), · · · , p̄Nh
(T − t0), p̄1(T − t1), · · · , p̄Nh

(T − t1), · · · ,
p̄1(T − tK−1), · · · , p̄Nh

(T − tK−1)].

By using Lemma 5.1 the algebraic form of equation (11) is as following:
−[D ⊗M + µIK ⊗A]vec(y)− 1

γ [Ib ⊗M ]vec(p̄) = 0,

[ITb ⊗M ]vec(y)− [DT ⊗M + µIK ⊗A]vec(p̄) = vec(Yd),

(12)

where IK is the K ×K unitary matrix and Ib is a K ×K matrix which the first diag
of it is equal to one.

6. Reduced basis method

In general, the RBM constructs the reduced basis using the greedy algorithm and pre-
compute the parameter independent parts of matrices at the off-line stage. We assemble
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the matrices using the coefficients at new parameter, solve the system and compute
the output at the on-line stage. In the whole process, we restrict the approximate
space to the much smaller subspace chosen by the greedy algorithm and discard the
unnecessary modes during the calculation of the basis.

6.1. Off-line stage

We employ the reduced basis method for the efficient solutions of equation (11). We
first assume that a sample set SN = {µ1, ..., µN} is given, the reduced basis spaces are

YN = span{ζyn, 1 ≤ n ≤ N},

PN = span{ξpn, 1 ≤ n ≤ N}.

Here ζyn and ξpn, 1 ≤ n ≤ N are (., .)Y -orthogonal basis functions derived by a Gram-
Schmidt orthogonalization procedure and also N � Nh. We remark the greedy sam-
pling procedure to construct SN , YN , PN in Section 5.2. The reduced optimal control
problem is as following:

min J(yN , uN ;µ) =
1

2

∫
Q
‖yN (.;µ)− yNd‖2YN

+
γ

2

∫
Q
‖uN (.;µ)‖2UN

, (13)

S.t

−∂αt (yN , v)− a(yN , v;µ) = (uN , v), v ∈ YN ,
yN (., t) = 0, on ∂Ω,

y(., 0) = 0, in Ω,

where yNd is the projection of yd on the N dimensional space YN .
The first-order optimality system of (13) reads: Given µ ∈ D, the optimal solution
(yN , p̄N ) satisfies



−∂αt (yN (t), φ)− a(yN (t), φ;µ) = 1
γ (p̄N (T − t), φ), φ ∈ YN ,

−∂αt (p̄N (T − t), ϕ)− a(p̄N (T − t), ϕ;µ) + (yN (t), ϕ) = (yd(t), ϕ), ϕ ∈ YN ,

yN (., 0) = 0, p̄N (., T − tK) = 0, in Ω,

yN (., t) = 0, p̄N (., T − t) = 0, on ∂Ω.
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The system for t = tk is as following:

−∂αt (yN (tk), φ)− a(yN (tk), φ;µ) = 1
γ (p̄N (T − tk), φ), φ ∈ YN , k ∈ K

{0} ,

−∂αt (p̄N (T − tk), ϕ)− a(p̄N (T − tk), ϕ;µ) + (yN (tk), ϕ) = (yd(tk), ϕ), ϕ ∈ YN , k ∈ K
{K} ,

yN (., 0) = 0, p̄N (., T − tK) = 0, on ∂Ω,

yN (., tk) = 0, p̄N (., T − tk) = 0, in Ω.

(14)

The reduced state and adjoint solution are defined as

yN (tk) =

N∑
i=1

yNi(tk)ζi, p̄N (T − tk) =

N∑
i=1

p̄Ni(T − tk)ξi.

Denote the coefficient vectors as ykN (tk) = [yN1(tk), ..., y
k
NN (tk)]

T ∈ RN and p̄N (T −
tk) = [p̄N1(T − tk), ..., p̄NN (T − tk)]T ∈ RN , respectively. By using Lemma 5.1 the
algebraic form of equation (14) is as following:

−[D ⊗MN + µIK ⊗AN ]vec(yN )− 1
γ [Ib ⊗BN ]vec(p̄N ) = 0,

[ITb ⊗B
′

N ]vec(yN )− [DT ⊗M ′

N + µIK ⊗A
′

N ]vec(p̄N ) = vec(YdN ).

(15)

Here, MN ,M
′

N , BN , B
′

N ∈ RN×N are matrices with entries

(MN )ij = (ζi, ζj), (M
′

N )ij = (ξi, ξj),

(BN )ij = (ζi, ξj), (B
′

N )ij = (ξi, ζj).

The parameter dependent matrices AN , A
′

N ∈ RN×N are given by

(AN )ij = a(ζi, ζj), (A
′

N )i,j = a(ξi, ξj)

and Y k
dN is defined as :

YdN (tk) = (yd(tk), ξi),

vec(yN ) = [y1(t1), · · · , yN (t1), y1(t2), · · · , yN (t2), · · · , y1(tK), . . . , yN (tK)],

vec(ydN ) = [yd1(t0), · · · , ydN (t0), yd1(t1), · · · , ydN (t1), · · · , yd1(tK−1), . . . , ydN (tK−1)],
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vec(p̄N ) = [p̄1(T − t0), · · · , p̄N (T − t0), p̄1(T − t1), · · · , p̄N (T − t1), · · · ,
p̄1(T − tK−1), · · · , p̄N (T − tK−1)].

6.2. Greedy Sampling Procedure

We generate the reduced basis space using the greedy sampling procedure summarized
in Algorithm 1. Dtrain ⊂ D is a finite but suitably large parameter train sample; µ1 is
the initial parameter value and ε > 0 is a prescribed desired error tolerance. Since we
can only guarantee the desired error tolerance for all µ ∈ Dtrain, we note that we have
to choose the train sample sufficiently fine. Now we present the greedy algorithm to
generate the reduced basis spaces.

Algorithm 1

Greedy procedure
1 Choose Dtrain ⊂ D, µ1 ∈ Dtrain(arbitary), and ε > 0.
2 N=1, µ∗ ← µ1, SN = {µ∗}, 4N (µ∗)←4Ny(µ

∗) +4Np(µ
∗),

3 Set YN = POD({y1(µ∗), ..., yK(µ∗)}) and
PN = POD({p0(µ∗), ..., pK−1(µ∗)}),

4 while 4N (µ∗) > ε do
5 ∀µ ∈ Dtrain compute the reduced solution (yN , pN ) and
4Ny(µ)← ‖yh(µ)− yN (µ)‖,
4Np(µ)← ‖ph(µ)− pN (µ)‖, 4N (µ)← ‖4Ny(µ)‖+ ‖4Np(µ)‖,

6 µ∗ ← argmaxµ∈Dtrain
4N (µ), SN = SN ∪ {µ∗}, YN = YN ∪ POD({y1(µ∗), ..., yK(µ∗)}),

PN = PN ∪ POD({p0(µ∗), ..., pK−1(µ∗)}),
7 4N (µ∗)← maxµ∈Dtrain

4N (µ),
8 N ←− N + 1,
9 end while.

We note that the reduced basis YN and PN are enlarged in step 6 according to the
evaluation of 4N (µ) defined in step 5 as the real error between the FE solution and
the RB one. This is computationally expensive and time-consuming. To avoid this,
we obtain the error bound described in Section 6.

6.3. Online Stage

Let µ ∈ D is given. By using the information obtained in the offline stage, we solve
the system (15) for the given parameter. For more detail about reduced basis method,
see Karcher et al. (2013)

7. Error bound

To begin, we introduce the dual norm of the primal (state) residual

εpr(µ, tk) ≡ sup
v∈Y

Rpr(v;µ, tk)

‖v‖Y
, (16)
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and the dual norm of the dual (adjoint) residual

εdu(µ, T − tk) ≡ sup
v∈Y

Rdu(v;µ, T − tk)
‖v‖Y

, (17)

where

Rpr(v;µ, tk) = (uk, v) + a(yN (µ, tk), v)− cbk−1(yN (t0), v) (18)

− c
k−1∑
m=1

(bk−m−1 − b− k −m)(yN (µ, tm), v) + cb0(yN (µ, tk), v),

Rdu(v;µ, T − tk) = (yd(tk), v)− (y(µ, tk), v) + a(p̄N (µ, T − tk), v) (19)

− c
K−k−1∑
m=1

(bK−k−m−1 − bK−k−m)(p̄N (µ, T − tK−m), v) + cb0(p̄N (µ, T − tk), v).

Lemma 7.1. Let epr(µ, tk) ≡ y(µ, tk) − yN (µ, tk) be the error in the primal variable
and define the norm

‖v(µ, tk)‖pr = ((v(µ, tk), v(µ, tk);µ) + a(v(µ, tk), v(µ, tk);µ))
1

2 .

The error in the primal variable is then bounded by

‖epr(µ, tk)‖pr ≤ [
1

α(µ)
(εpr(µ, tk))

2 +

k−1∑
k′=1

∆k′ ]
1

2 ,

where

∆k′ =

k
′∑

k”=1

1

α(µ)
(εpr(µ, tk”))2.

Proof. We immediately derive from Equation (16) that epr(µ, tk) satisfies

a(epr(µ, tk), v)+cb0(epr(µ, tk), v) = c

k−1∑
m=1

(bk−m−1−bk−m)(epr(µ, tm), v)+Rpr(v;µ, tk).

11



Set v = epr(µ, tk), by equation (6), we obtain

a(epr(µ, tk), e
pr(µ, tk)) + cb0(epr(µ, tk), e

pr(µ, tk))

≤ c
k−1∑
m=1

(bk−m−1 − bk−m)(epr(µ, tm), epr(µ, tk)) + εpr(µ, tk)‖epr(µ, tk)‖

≤ c
k−1∑
m=1

(bk−m−1 − bk−m)(epr(µ, tm), epr(µ, tk)) + εpr(µ, tk)‖epr(µ, tk)‖

≤ c
k−1∑
m=1

max(bk−m−1 − bk−m)(epr(µ, tm), epr(µ, tk)) + εpr(µ, tk)‖epr(µ, tk)‖.

We know that

b0 = 1, max(bk−m−1 − bk−m) = b0 − b1 < 1, (a, b) ≤ ‖a‖‖b‖,

so we have

(epr(µ, tk), e
pr(µ, tk) + c(epr(µ, tk), e

pr(µ, tk) ≤

≤ c
k−1∑
m=1

‖epr(µ, tm)‖‖epr(µ, tk)‖+ εpr(µ, tk)‖epr(µ, tk)‖.

Since

and (for c, d ∈ R, ρ ∈ R+), 2|a||b| ≤ 1

ρ2
a2 + ρ2b2,

we apply it twice,

a =
√
c

k−1∑
m=1

‖epr(µ, tm)‖, b =
√
c‖epr(µ, tk)‖, ρ = 1,

a = εpr(µ, tk), b = ‖epr(µ, tk)‖, ρ = α(µ),

and by Equation (6), we obtain

a(epr(µ, tk), e
pr(µ, tk) + c(epr(µ, tk), e

pr(µ, tk) ≤ c
k−1∑
m=1

(epr(µ, tm), epr(µ, tm) +
1

α(µ)
(εpr(µ, tk)

2,

a(epr(µ, tk), e
pr(µ, tk) + c‖epr(µ, tk)‖2 ≤ c

k−1∑
m=1

‖epr(µ, tm)‖2 +
1

α(µ)
(εpr(µ, tk)

2.

We now perform it from k
′

= 1 to k and epr(µ, t0) = 0, which completes the proof.
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For k′
′

= 1,

a(epr(µ, t1), epr(µ, t1)) + c‖epr(µ, t1)‖2 ≤ 1

α(µ)
(εpr(µ, tk)

2 = ∆1 ⇒

c‖epr(µ, t1)‖2 ≤ ∆1, (20)

k
′

= 2,

a(epr(µ, t2), epr(µ, t2)) + c‖epr(µ, t2)‖2 ≤ c‖epr(µ, t1)‖2 +
1

α(µ)
(εpr(µ, t2)2.

By equation (20), we obtain

a(epr(µ, t2), epr(µ, t2)) + c‖epr(µ, t2)‖2 ≤ ∆1 +
1

α(µ)
(εpr(µ, t2)2 = ∆2,⇒

c‖epr(µ, t2)‖2 ≤ ∆2,

...

k
′

= k,

a(epr(µ, tk), e
pr(µ, tk) + c‖epr(µ, tk)‖2 ≤ [

1

α(µ)
(εpr(µ, tk))

2 +

k−1∑
k′=1

∆k′ ]⇒

‖epr(µ, tk) ≤ [
1

α(µ)
(εpr(µ, tk))

2 +

k−1∑
k′=1

∆k′ ]
1

2 .

Lemma 7.2. Let edu(µ, T − tk) ≡ p̄(µ, T − tk)− p̄N (µ, T − tk) be the error in the dual
variable and define the norm

‖v(µ, tk)‖du = ((v(µ, tk), v(µ, tk);µ) + a(v(µ, tk), v(µ, tk);µ))
1

2 .

The error in the dual variable is then bounded by

‖edu(µ, T − tk)‖du ≤ [
1

α(µ)
(εdu(µ, T − tk))2 +

K∑
k′=k+1

∆k′ ]
1

2

where

∆k′ =

K∑
k”=k′

1

α(µ)
(εdu(µ, T − tk”))2.

Proof. Follow proof of Lemma 7.1. For more detail, see Karcher et al. (2013)
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8. Numerical simulations

In this section, numerical experiments are conducted to validate the proposed method.
We have solved the following three fractional PDE constrained optimization problems
which are similar to test cases in (Nazemi & Kheyrinataj, 2015). The simulation is
conducted on Matlab 7.

Example 8.1. In the problem (P ), we take T = 1, x ∈ [0, 1], α = 0.7 and

yd = ν(2(t− 1)3x(x− 1) + 12t(t− 1)2x(x− 1) + 3t2(2t− 2)x(x− 1))+

+ t2(1− t)3x(x− 1).

The graphs of finite element solution and reduced solution of y(x, t) and p(x, t) for
t = 0.2, 0.4, 0.6, 0.8 with N = 7, γ = 10−6 and µ = 0.75 are plotted in Fig. 1. As you
can see in Fig. 1 the finite element solution and reduced solution are extremely close.
In Fig. 2, the error functions ‖yh − yN‖2 and ‖ph − pN‖2 with ν = 10−6 are depicted.

(a) (b)

Figure 1. Comparisons between finite element and reduced solutions of y(x, t) (1a) and p(x, t) (1b) in t = 0.2s,

t = 0.4s, t = 0.6s, t = 0.8s with γ = 10−6, µ = 0.75 in Example 8.1.

Figure 2. Plots of ‖yh − yN‖2 and ‖ph − pN‖2 with γ = 10−6, µ = 0.75 in Example 8.1.

See Fig. 8.1 for the error bound of the reduced basis method for the state variable
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and adjoint variable. This method choose 7 parameters to construct the state space
and adjoint space.

(a) (b)

Figure 3. The error bound for the state variable (3a) and adjoint variable (3b).

Example 8.2. In problem (P ), we take T = 1, x ∈ [0, 1], α = 0.99 and

yd = γ(2π2t(t− 1)2(t− 2)2 + π4t2(t− 1)2(t− 2)2 − 2t2(t− 1)2 − 2t2(t− 2)2

− 2(t− 1)2(t− 2)2 − 2t2(2t− 2)(2t− 4)− 4t(2t− 2)(t− 2)2 − 4t(2t− 4)(t− 1)2−
2π2t(t− 1)2(t− 2)2) sin(πx) + t2(1− t)2(2− t)2 sin(πx).

The graphs of finite element and reduced solutions of y(x, t) and p(x, t) for t =
0.2, 0.4, 0.6, 0.8 with N = 1 and γ = 10−8 are plotted in Fig. 4. In Fig. 5, the er-
ror functions ‖yh − yN‖ and ‖ph − pN‖ with γ = 10−8 are shown.

(a) (b)

Figure 4. Comparisons between finite element and reduced solutions of y(x, t) (4a) and p(x, t) (4b) in t = 0.2s,

t = 0.4s, t = 0.6s, t = 0.8s with γ = 10−8, µ = 0.6 in Example 8.2.
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Figure 5. Plots of ‖yh − yN‖2 and ‖ph − pN‖2 with γ = 10−8, µ = 0.6 in Example 8.2.

In this example, the number of chosen parameter is one, so we did not plot the error
bound.

Example 8.3. In the problem (P ), we take T = 1, x ∈ [0, 1], α = 0.7 and

yd = γ((16π4t3(t− 1)3 − 3t3(2t− 2)− 18t2(t− 1)2 − 6t(t− 1)3) cos(2πx))+

γ(3t3(2t− 2) + 18t2(t− 1)2 + 6t(t− 1)3) + t3(1− t)3(1− cos(2πx)).

The graphs of finite element and reduced solutions of y(x, t) and p(x, t) for t =
0.2, 0.3, 0.5, 0.8 with N = 5 and γ = 10−7 are plotted in Fig. 6. In Fig. 7, the er-
ror functions ‖yh− yN‖ and ‖ph−pN‖ with γ = 10−7 plotted. See Fig. 8 for the error

(a) (b)

Figure 6. Comparisons between finite element and reduced solutions of y(x, t) 4a and p(x, t) 4b in t = 0.2s,

t = 0.3s, t = 0.5s, t = 0.8s with γ = 10−3, µ = 0.45 in Example 8.3.

bound of the reduced basis method for the state variable and adjoint variable. This
method choose 8 parameters to construct the state space and adjoint space.
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Figure 7. Plots of ‖yh − yN‖2 and ‖ph − pN‖2 with γ = 10−3 in Example 8.3.

(a) (b)

Figure 8. The error bound for the state variable (8a) and adjoint variable (8b).

9. Conclusion

In this paper, we use parametric model order reduction using reduced basis methods
as an effective tool for obtaining a quick solution of fractional PDE constrained opti-
mization problem. The used technique is applied to solve three test problems and the
resulting solutions are in good agreement with the known exact solutions. For the sake
of simplicity, we only considered the one-dimensional case with standard initial and
boundary conditions, but the method can be extended to multi-dimensional cases with
even non-classic boundary conditions which is the subject of the authors. The accu-
racy of numerical solution by this method is much higher than the classical numerical
solutions. Numerical solutions are obtained efficiently and the stability is maintained
for randomly perturbed data.
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