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Multiobjective optimization for multiproduct batch plant design
under economic and environmental considerations

A. Dietz, C. Azzaro-Pantél L. Pibouleau, S. Domenech

Laboratoire de Génie Chimique-UMR 5503 CNRS/INP/UPS, 5 Rue Paulin Talabot BP1301, 31106 Toulouse Cedex 1, France

Abstract

This work deals with the multicriteria cost—environment design of multiproduct batch plants, where the design variables are the size of t
equipment items as well as the operating conditions. The case study is a multiproduct batch plant for the production of four recombinant prote
Given the important combinatorial aspect of the problem, the approach used consists in coupling a stochastic algorithm, indeed a genetic algor
(GA) with a discrete-event simulator (DES). Another incentive to use this kind of optimization method is that, there is no easy way of calculatir
derivatives of the objective functions, which then discards gradient optimization methods. To take into account the conflicting situations that may
encountered at the earliest stage of batch plant design, i.e. compromise situations between cost and environmental consideration, a multiobje
genetic algorithm (MOGA) was developed with a Pareto optimal ranking method. The results show how the methodology can be used to fin
range of trade-off solutions for optimizing batch plant design.

Keywords: Batch plant design; Multicriteria genetic algorithm; Environmental impact

1. Introduction 2004; Cavin, Fischer, Glover, & Hungeiihler, 2004;Pinto,
Barbosa-Bvoa Ana Paula, & Novais Augusto, 2005). The for-
Batch processes are typically used to manufacture lowmulation of batch plant design generally involves mathematical
volume high-value-added products (for instance, pharmaceutprogramming methods, such as linear programming (LP), non-
cals). In that context, batch process development is generallinear programming (NLP), mixed-integer linear programming
different from continuous traditional processes because of th@MILP) or mixed-integer nonlinear programming (MINLP). To
need of approval of the production recipe by some organizadse the above-mentioned methods (the list is not exhaustive), a
tion (for instance, the Food and Drug Administration, FDA). mathematical model representing the batch plant must be devel-
Any later modification to the production recipe will require a oped. An objective function is then defined which refers in most
new approval, so it is necessary to take into account as much aases to investment cost. Plant modeling involves satisfaction
possible all the parameters and criteria from the earliest devebf constraints related for instance to time horizon or production
opment steps for optimal batch plant design. requirements,..The main drawback of this methodology is the
It must be emphasized that the design of batch plants hadifficulty, even impossibility, to describe with a high degree of
been for long been identified as a key problem in chemical engisophistication, the real constraints (various storage policies or
neering and much work has been presented in this area in tlperator shift, for instance, .). In other cases, the number of
past few years, for instance (Cao & Yuan, 20@hunfeng &  equationsto take as constraints often renders the problemimpos-
Xin, 2002; Goel Harish, Weijnen Margot, & Grievink Johan, sible to solve.
2004; Heo, Lee, Lee, Lee, & Park, 2008/ontagna, 2003; An alternative to purely mathematical approaches is to link
Chakraborty, Malcolm, Colberg Richard, & Linninger Andreas, discrete-event simulation (DES) to scheduling and planning
problems. Although the list is not exhaustive, let us mention
some well-known simulations tools: “Batches” from Batch Pro-
* Corresponding author. Tel.: +33 5 34 61 52 72; fax: +33 534 615253, eSS Technologies, Batch Plus, SuperPro Designer and BatchDe-
E-mail address: catherine.Azzaro@ensiacet.fr (C. Azzaro-Pantel). sign Kit (BDK). Since the development of a generic scheduling



model is an ambitious challenge because of the difficulty tgpare the different alternatives to manufacture a product. Another
embed in one formulation all features of every possible produceoncept used the pollution balance (PB) principle (Cabezas,
tion system, a methodology of development of discrete-everBare, & Mallick, 1999), equivalent to the balance made for mass
simulators was proposed by €Bard et al., 1999). The DES or energy. It means that a process can not only pollute but also
framework has thus proven its efficiency to support processonsume a polluting product and can be, consequently, a benign
development and was used for both scheduling and design pyprocess.
poses. In our previous works, the DES which serves to evaluate Finally, the so-called pollution vector (PV) methodology
the feasibility of the production at medium term scheduling(Stefanis, Livingston, & Pistikopoulos, 1995) consists in eval-
was coupled with a master optimization procedure based on @ating the environmental impact by means of an impact vector
genetic algorithm (GA). The optimization variables are only dis-over different environments (i.e. water, air, etc.) defined as the
crete variables and the problem presents a marked combinatori@lass emitted on an environment divided by the standard limit
feature (the equipment sizes are considered as discrete valueglue in this environment.
Following these idead)edieu, Pibouleau, Azzaro-Pantel, and A guideline of this work is to integrate all these aspects for
Domenech (2003)eneralized the approach to consider multi- batch plant design, as much as allowed by information availabil-
criteria design and retrofitting. The choice of a hybrid methodity for the study case.
GA/DES was then all the more justified as several criteria were This paper is organized as follows: Sectidpresents the
simultaneously taken into account: a tradeoff between invesiprocess dedicated to the production of proteins used as an illus-
ment cost, equipment number, and a flexibility index basedration of the proposed methodology. Sect®is devoted to
on the number of campaigns necessary to reach a steady-stéte environmental impact evaluation based on a classical LCA
regime was investigated. approach. Sectiond and 5respectively outline the methodol-
Following these guidelines, this work is particularly moti- ogy for multicriteria batch plant design and display results of
vated by the need to consider the capital cost as well as thihe method applied to the studied plant. Sec@@oncludes the
environmental impact from the earliest design stage. current work and suggests new areas for investigation.
The study presented in this paper deals with the multicriteria
cost—environment design of multiproduct batch plants, wher@. Process description
the design variables are the equipment item sizes as well as the
operating conditions identified as having an important impact The case study is a batch plant for the production of proteins
on the optimization criteria. The formulation of the problem cantaken from the literature (Montagna, Vecchietti, & Iribarren,
be visualized as proposedhig. 1. 2000;Pinto, Montagna, Vecchietti, Iribarren, & Asenjo, 2001).
The cost criterion considered is classically based on investrhis is a multiproduct batch plant, with four products to
ment minimization. Considering environmental impact (El), letbe manufactured by fermentation and eight treatment stages.
us recall that several methodologies are available in the literaFhis example is used as a test bench since short-cut mod-
ture. The most important concept perhaps refers to the life cyclels describing the unit operations involved in the process are
assessment (LCA) methodology (Burgess & Brennan, 1999): ivailable. The batch plant involves eight stages for producing
considers all the wastes generated in order to produce the diffefour recombinant proteins, on one hand two therapeutic pro-
ent products in the upstream stages (i.e. raw material productioteins, Human insulin (I) and vaccine for Hepatitis B (V) and,
energy generation, etc.), in the study stage (i.e. solvents, nomn the other hand, a food grade protein, chymosine (C) and
valuable by-products, etc.) and in the downstream steps (i.@ detergent enzyme, cryophilic protease (P). The methodology
recycling, incineration, etc.). The aim of LCA is to consider theis generic for any plant producing recombinant proteins from
wide chain in order to prevent pollution generation and to comyeast.

Batch plant

Optimal * Number of equipment

process « Equipment size

design * Operating conditions

- -

Fig. 1. Problem formulation.



Products Equipment items

| = Insulin Fer = Fermenter Uf1 = First Ultra Filter
V = vaccine Mf1 = First Micro Filter Ext = Liquid-Liquid Extractor
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Fig. 2. Multiproduct batch plant for proteins production and environmental impact evaluation.

Fig. 2 shows the flowsheet of the multiproduct batch plantenvironmental impact (Fig. 2). For information availability rea-
considered in this study. All the proteins are produced as cellsons, the study was reduced to the process being studied, which
grow in the fermenter (Fer). is of course a limited application of LCA. Products (i.e. vaccine)

Vaccine and protease are considered as being intracellulaand raw materials (glucose, NHvere considered not having an
hence, for these two products, the first microfilter (Mf1) is usedenvironmental impact. After that, a PB is applied, using the PV
to concentrate the cell suspension, which is then sent to th® quantify the environmental impact. In this case, an adapted
homogenizer (Hom) for cell disruption to liberate the intracel-definition of the pollution vector was introduced, because the
lular proteins. The second microfilter (Mf2) is used to removestandard limit values for the polluting product were not found in
the cell debris from the solution proteins. the literature. This vector has two components; the former is the

The ultrafiltration (Uf1), prior to extraction, is designed to total biomass quantity released and the latter concerns the PEG
concentrate the solution in order to minimize the extractor volvolume used. Even if the solvent can be recycled, it cannot be
ume. In the liquid—liquid extractor (Ext), salt concentration carried out at 100%, so the environmental impact is considered
(NaCl) is used to first drive the product to a polyethylene-glycolto be proportional to this quantity. The pollution indexes were
(PEG) phase and again into an agueous saline solution in thibus defined as the emitted quantities divided by the mass of the
back extraction. manufactured products. Let us remark that the environmental

Ultrafiltration (Uf2) is used again to concentrate the solution.impact minimization can be viewed a multicriteria problem in
The last stage is finally chromatography (Chr), during whichitself.
selective binding is used to better separate the product of interest
from th? other protelng. ) 4. Methodology for multicriteria batch plant design

Insulin and chymosin are extracellular products. Proteins are
separated from the cells in the fi_rst_microfilter (Mfl), wherecellsy ;  General principles
and some of the supernatant liquid stay behind. To reduce the

amount of valuable products lost in the retentate, extra water is The framework for batch plant design proposed in this study
added to the cell suspension. _ integrates simple unit operation models into the batch plant wide
The homogenizer (Hom) and microfilter (Mf2) for cell debris oqel, which is then embedded in an outer optimization loop
removal are not used when the product is extracellular. Never(seeFig. 3). The approach adopted in this work consists in cou-
theless, the ultrafilter (Uf1) is necessary to concentrate the dilutﬁnng a stochastic algorithm, indeed a genetic algorithm (GA)
solution prior to extraction. The final step of extraction (Ext), with a discrete-event simulator (DES) (Dietz, Azzaro-Pantel,
ultrafiltration (Uf2) and chromatography (Chr) are common topihqyjeau, & Domenech, 2005). The objective of the master GA

both the extracellular and intracellular products. involved is to propose several good and even optimal solutions,
whereas the DES allocates the products to equipment items and
3. Environmental impact evaluation evaluates different criteria. More detail concerning the design of

the DES can be found in (Dietz et al., 2005).
Given the production recipes for the different products and At this level, it will be reminded that stochastic algorithms,
the general flow-sheet, the first step consists in applying the LCAuch as simulated annealing (SA) or genetic algorithms (GA)
methodology to determine all the products contributing to theare more and more used for combinatorial optimization prob-



Master optimization

Multicriteria Genetic procedure
Algorithm

Plant configuration
and operating conditions

Fig. 3. Optimal batch plant design framework.

lems in various fields, and particularly in chemical engineering The process unit performance models are used to compute
(Pibouleau, Floguet, Domenech, & Azzaro-Pantel, 1999). Giverthe operating time of each process step. A brief description of
that: —practical industrial problems might not be “mathemati-each process stage is also given in (Dietz et al., 2005) and the
cally” understood when the design is started; —this study aims atifferent assumptions used to compute the processing time and
batch plant design taking into account both investment cost anthe mass balance through the plant are given (Pinto et al., 2001).
environmental impact, the choice of the stochastic optimizatioet us note that some differences in the hypothesis were car-
method is clearly justified. Several other reasons guide us to thged out because this work aims at describing the involved unit
choice of a genetic algorithm. The final aim is to treat a mixed-operations with simple models, in order to obtain complete infor-
integer non-linear problem (MINLP). In chemical engineering, mation about the treatment stage (i.e. flow composition, required
the combinatorial aspect of the problem is sometimes importanamount of utilities, wastes, .). In the previous work (Asenjo,
for example in batch plant design, the structure variables are thdontagna, Vecchietti, Iribarren, & Pinto, 2000), the model was
equipment sizes and number for each unit operation that genesnly used to compute the operating time and the corresponding
ally take discrete values since discrete value ranges are availabkdficiency, with a formulation based on constraints to solve the
as a consequence, an evolutionist algorithm is more suitable aptimization problem.
the one hand to solve this kind of problem than the mathemati- In this work, classical chemical engineering balances are car-
cal programming approach of large size problems. On the othefed out at each treatment stage.
hand, the evolutionist algorithms do not need any information
about the mathematical properties (derivability, convexity etc.}-2. Optimization criteria
of the function to optimize that sometimes are too difficult or
impossible to establish; in this case the MOGA is developed The cost criterion considered in this study is classically based
in order to be coupled with a simulation tool that only givesoninvestment minimization because there was notenough infor-
values for the performance criteria selected. The inconvenierination to evaluate the operational cost of the batch plant (raw
of this kind of optimization algorithm is that the optimality material cost, utilities cost, .) and to embed it in a net present
of the solution is not guaranteed. Different evolutionist algo-value computation.
rithms have been presented and used in the dedicated literature: The cost criterion involves investment cost for both equip-
simulated annealing (SA) (Kirkpatrick, Gellat, & Vecchi, 1983) ment and storage vessels and is computed from classical formu-
genetic algorithms (GA) (Fonseca & Fleming, 1995) and antdae (see Eq(1)), where thet constant was neglected:
colony (AC) (Colorni, Dorizo, & Manniezzo, 1991). GA was o
. . . ost=A 4+ BV (1)

selected here since it has the main advantage over other meth-
ods to manipulate a population of individuals and can directlyThe numerical values & anda were taken from the work of
lead to the whole set of compromise solutions in one singléMontagna et al., 2000).
optimization run. Concerning the environmental impact, the quantity and the

The development of the discrete-event simulation model waguality of the process effluents depend only on the operating
presented in detail in (Dietz et al., 2005) and will not be recallectonditions having aninfluence on mass balance at each treatment
here. stage. The global index of each environmental impact criterion



is defined as weighted sum respect to the production of eacfable 1

product index (Eq(2)). Ix is the pollution global indexf the ~ ©ne mathematical function used as a test bench
k pollution index ofi product defined as the amount of the Problem 1

pollutant (kg) by amount of product (kg) andp; is the total

. . Functions Minimum
production ofi product. - -
ins v chy pro f="1ag2 4 bk 4 3 h2-1)=3
I = Ik * Pins + Ik - Prac+ Ik ) PChy + Ik i PpI’O (2) fo= (x1+x2—3) + (cx1txp+2? 17 }2(2 5:0,5) = —17
Pins + Pvac+ Pchy + Ppro 5 362 2 s g2 )
fa= GuzZoodl | (CutZo) g3 7(0.5;0,25) = —13
4.3. Multicriteria genetic algorithm x = (x1, x2) €[4, 4]

4.3.1. General concepts that was finally implemented in this work, let us present some

As mentioned _earller, real engineering design proplems_arﬁey results obtained with these two competitive approaches on
usually characterized by the presence of many conflicting objeca-1 mathematical problem (s@able 1)

tives that the design has to fulfill. Therefore, itis natural to look at Fig. 4 reports the results obtained with a weighted sum

the engineering design problem asamulltio.bjegtive Op.timiza.tm?nethod and compares those obtained with a Pareto approach
problem (MOOP). References to multiobjective opt|m|zat|on(A)_ The results correspond to two different cases: the former

could be found in (Bhaskar, Gupta, & Ray, 20@@ello, 2000; is relative to equal values for the three weighting coefficients

Ehrgott, 2000). As most optimization problems are mUItiObjec'(Fig. 4C) and the latter involves a coefficient that is twice the
tive by nature, there are many methods available to tackle the§)°Ellue of the two other ones (Fig. 4D)

types of problems. . The use of the weighted sum method drives to a unique
Lately, there has been a large development of different YPeSolution of the problem not representing the whole set of

of multiobjective genetic algorithms, which are reflected in thecompromise solutions. To get it, it would be necessary to

literature. The big advantage of genetic algorithms over Othefmplement several optimization runs while modifying the

methods, particularly over other stochastic procedures such 3Sation between the weighting coefficients in order to get a

simulated annealing, is that a GA manipulates a population 0ﬂc)igger number of compromise solutions. This method is very
individuals. It is therefore tempting to develop a strategy in

hich th lati he whole P ¢ . (ir)nenalising from a computing time point of view if a stochastic
which the population captures the whole Pareto front In ONg, a4 js used, as it is the case here.
single optimization run. For an overview on genetic algorithms

. R s | It is interesting to compare the solution obtained with an
in multiobjective optimization, see (Fonseca & Fleming, 1995)'approach that consists in choosing a solution of compromise

Literaf[ure SUrveys and compg\rativ_e studies on mUItiObjeCtiV?rom values of the optimisation variables and not from the
genetic algorithms are aiso given in (HoIIand,. 1975; th;ka bjective function values:ig. 5shows this comparison for one
et al:, 2.000.; CoeIIo,_ZOOO)._Fonsgca and Fleming have divide athematical problem treated. It must be observed that the func-
multiobjective genetic algorithms in non-Pareto (Schaffer, 1985 ion optimal values are at different positions in the search space
and Pareto—basgd approache§ (.GoIQberg,'lS'994).. and a compromise solution chosen as the barycentre of the trian-
I__et us consider the multicriteria optimization problem, gle defined by these three points places this solution outside of
defined by: the Pareto optimal solution zone. The low performances of the
Min{f (x) = [f1(x), ..., fr(x)}, subjecttore X, weighted sum approach, combined with the difficult of allocat-
ing appropriate values of weighting coefficients for industrial
problems are enough convincing to adopt a genetic algorithm
The Pareto optimal solutions can be defined as follows. A
solutionx” € X is called Pareto optimal if: 125

whereX is a subset oR”

VxeX: either[£(x) = fi(x)Viel withl ={1,2,...,k) A

or fi(x)> fi(x*) evenifitexistsj € 1, such thatf;(x)<f;(x*) oS

0,5

In most cases, the Pareto optimal set (also called the Pareto S
zone) is not constituted of a single solution, but involves asetof > ©
solutions, called non dominated solutions. 025

Let us recall here that one intuitive way to take into account
multiobjective criteria is to calculate the objective function as the
weighted sum of several criteria and to solve the problem with 0,75
a mono-objective genetic algorithm. This aspect was investi- A
gated at the preliminary stage of this work, with mathematical
functions as test bench. Without going further in the presenta-
tion of the typical features of the multicriteria genetic algorithm Fig. 4. Solutions obtained with the weighted sum method.

X1
-0,5

-1,25



1,25 schematically the search of this method under strong antago-

1] nist behaviour criteria. Only a reduced part of the Pareto set
of solutions is found around the optimal value for each opti-
St mization criterion. It is therefore necessary to propose a new
0,5 genetic search based methodology that can find simultaneously
0,25 “good” solutions for each criterion independently as well as a
o set of compromise solutions between the optimization criteria
4 1 considered.
-0,25
0,5 X1 4.3.2. Presentation of the multiobjective genetic algorithm
.| _ Following these gu_ide_line_s, we have then propose_d to take
’ into account the multiobjective aspects at the selection stage
-1 and the compromise solution search at the cross-over stage. The
1,25 selection procedure being carried out by the biased Goldberg’s

roulette, we propose to define a roulette for each criterion to
optimize. An equal number of individuals for each criterion was
selected to complete the total number of individual passing by
with a Pareto sort to solve the problem of optimal design forthe survival procedure to the next population. The cross-over
batch plants. procedure that proposes compromise solutions was not mod-
To characterize the Pareto zone among a population of feafied. It must be pointed that the population was composed of
sible solutions, following the ideas presented in (Dedieu et al.;good” individuals for each selected criterion thanks to the Gold-
2003) a non dominated sorting procedure, called Pareto soberg’s roulette and that the individuals were chosen through a
(PS)wasimplemented and included in the multiobjective geneticandom procedure. This allows to cross “good” solutions for a
algorithm (MOGA). criterion with “good” solutions for another with a strong prob-
The option proposed by (Dedieu et al., 2003) in order toability to generate a compromise between both criteria. In the
obtain the set of Pareto optimal solution, was to apply a Paretoase that both “good” chosen solutions correspond to the same
sort procedure over the set of solutions evaluated during theriterion, the cross-over procedure will carry out the traditional
GA evolution, from the initial randomly generated population, function of generating a better solution than the two previous
towards the final population, selecting the “good” solutions forones. The mutation procedure is not modified and its aim is, as
the considered criteria. usual, to diversify the search and to avoid local optimum solu-
The implementation of this framework is possible when thetions.
criteria to optimize do not have a conflicting behaviour, i.e. they The aim here is to propose a generic multiobjective genetic
have an interdependent evolution towards the optimal solutioralgorithm able to evolve naturally towards the whole set of opti-
Fig. 6a shows qualitatively this kind of behaviour. The method-mal Pareto solution. This evolution must be done from an initial
ology presented is then simple to implement and is able to fingpopulation generally randomly generated composed of individu-
the set of optimal Pareto solutions. als notadapted to the considered criteria; itis necessary to ensure
In the case where the criteria to take into account havéhat the added mechanism allows an effective way to search in
a strong antagonist behaviour, as it often happens in prahe compromise zone (Fig. 6¢). Two stakes are put forward: the
cess engineering (i.e. processing time-product quality, treatmefdrmer is simultaneous optimization of several criteria and the
cost—environmental impact), the methodology is not able tdatter concerns the search of compromise solutions between the
find the whole set of Pareto optimal solutiofs$g. 6b shows considered criteria.

Fig. 5. Problem 1, Barycentre vs. Pareto.

Criterion B N ) Criterion B Criterion B o )
A Initial Population A Initial Population A Inltlél_f_?eylatlon

."6 o %‘.
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- O -
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Optimal Pareto’s
solutions

v

Criterion A

(a) Weak criteria antagonist
behaviour

v

Criterion A

(b) Strong antagonist criteria

A 4

Criterion A
(c) Multiobjective Genetic Algorithm.

Fig. 6. Various ways to take into account multiobjective aspects.
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Fig. 7. Multiobjective genetic algorithm.

The MOGA developed in this study involves different pro- ing the genetic operators, once the precision degree is specified
cedures, as summarized in the flowchart presenté@jin/that  as imposed by the physical nature of the variable. The only
illustrates the cycléevaluation, selection, cross-over and muta-changes that are required concern the computation of the adap-
tion} which is repeated until a stop criterion is reached. Aftertation function, which is typical of the treated problem. These
this cycle, the Pareto sort is applied. guidelines were used in other works with minor changes in

The optimization problem involves 44 variables, which maythe treatment of engineering problems, such as multiobjective
be either continuous (i.e. the operating conditions) or discreteeal-time scheduling (Baez-Senties, Azzaro-Pantel, Pibouleau,
(parallel equipment number, equipment size) (Balele 1). Let & Domenech, 2005) and determination of the optimal condi-
us recall that this set of variables was chosen since they havetians for an emulsification process (Dames, Azzaro-Pantel, &
major impact on the performance criteria used in the optimizaXuereb, 2003).
tion procedure. A critical point in the GA development is the treatment of

A binary system was chosen for encoding, as it simplifiesconstraints, particularly here the respect of a time horizon. The
the genetic operators, crossover and mutation. This feature gelected strategy for initial population creation was a random
particularly interesting since it makes the GA generic enouglthromosome generation, since the optimum position is totally
to be adapted to other optimization problems, without changunknown at the search beginning. This main advantage of this

Constraint satisfaction

strategy
1 1 1
\ P s
No constraint on 50% of solutions All solutions
time horizon verify the time horizon constraint | | verify the time horizon constraint
| | |
Few solutions a h & =)
verify the constraint : Population constituted of
Strong Influence Adopted compromise oversized solutions
on convergence
o A /

Fig. 8. Constraint satisfaction strategy.



Table 2
List of optimization variables

Equipement Item volume
number [ ] [m3]
Final concentration  Water added at MF2 || Storage (N.) Fermentation (V)
FER [kg/m?] MF2 [m*/m?] Fermentation (N,,) Retentate MF1 (V..
Insuline (C, i
uline (€l Vaccine () 1% microfiltration (Nyy) ~ PermeateMF1 (V)
vaccine (Cyze) Protease (E, ) Homogenization (N,,,,,) Homogenization (V)
Chymosine (C,
ymosine (C ) Water added at 2™ microfiltration () Retentate MF2 (V, ;)
Protease (C, ) MF1 [m*m?] PRI o o MF2 (V.
Insuline (£, ultrafiltration (N,,) ermeate (Vp,mer)
Final concentration . Liq.Liq. Extration (N, Retentate UF1 (V,
MF1 [kg/m?] Chymosine (E; ) B Wexd) o \ f-"“)
insuline (C, ) 2" yltrafiltration (N,.) Liq.-Liq. exctraction (V)
i,mi1 Phase ratio at Chromatography (N,
Vaccine (€, ) EXT [m/m?] Retentate UF2 (V,,r,)
Chymosine (Cy,es) Insuline (R, ..,) E‘Itg;atlon area CHR vessel (V, )
] CHR column (V.
Protease (C, ) Vaccine (R, o} 1=microfiltration (S e
Chymosine (R, .., . X CHR column (V)
' 2" microfiltration (S,,,) Pass number
Protease (R
(Rox) 1t ultrafiltration (S,) HOM[]
2Muttrafiltre (S,) Vaccine (C, om)
Capacity Protease (CP,,,,,,.,,)
. - 3
16 continuous variables Lkl — . .
Homogenization(Capsom) AN CI I @VETTETI L1

44 optimization variables

method is to propose a diversified population. It was yetimposedquipment items are identical at a given stage. Even if it could
that 50% of the initial population verifies the horizon constraint.become penalizing for the investment cost criterion when car-
For preliminary runs, this constraint was not taken into accountying out the optimal design of the batch plant, this kind of
and led to a too low number of randomly generated solutiongonfiguration is often suitable for reasons such as the mainte-
satisfying the constraint. Consequently, the solutions that do nnance of the equipment item or flexibility (any equipment item
satisfy the given time horizon are not selected in the first phasean carry out the tasks affected to another one).
of survival since a zero force was allocated to them. This phe- Fig. 9shows a code part used for operating stage encoding.
nomenon reduces strongly the performances of the algorithnior each stage, the number of equipment items was encoded in
Secondly, it was imposed that all the individuals of the ini-a binary manner (part A iRig. 9). The number of bits attributes
tial population verify the horizon constraint. Every generatedo this variable sets the maximum equipment item number at the
individual contributes to the initial population, if the constraint stage. The equipmentitem of the stage is equal to the binary value
is verified, otherwise another one is created. In this case, plus one, to guarantee the presence of at least one equipment
conflicting behavior was observed for initial solutions, mainlyitem at each treatment stage. This was not implemented for the
constituted of oversized plants. This is why a compromise posistorage stage because the existence of storage vessels is not
tion was finally adopted. On the one hand, enough solutionaecessary for product synthesis. For equipment item sizes, a
verifying the constraint were generated (50%) so that the convenrumber of bits equal to the available size for the equipment
gence of the algorithm from the first iteration is not conditioned.items was set aside (part B ifig. 9), the chosen size having a
On the other hand, the randomly generated solutions introdugaositive value whereas zero was allocated to the other places.
diversified solutions in the genetic inheritance, which is impor-When equipment items are composed of several parts (i.e. the
tant for the next step of individual crossover, where no feasibilityfirst micro filter has a retentate vessel, a permeate vessel and
constraint is imposed (séég. 8). the filter itself, the ultrafilter has a retentate vessel and the filter

In Table 2, all the optimization variables and their corre-itself), the same approach is repeated for each component (part
sponding type (discrete or continuous) are listed. The continuouB and B in Fig. 9).
variables were discretized and encoded in a binary way by a For a better understandirfgig. 10 also shows an example
variable change. In order to simplify the encoding parametermnf a multi-part equipment item, indeed a microfilter stage. In
all the continuous variables were encoded using the same hjart A, the zero represents one equipment item at the stage, as
number (eight bits). For each one, it was checked whether thexplained previously. Part B represents a retentate vessel of a
discretization was accurate enough for the problem.

Concerning the discrete variables dedicated to equipment
items, a typical encoding was proposed with an adequate B | m| s B M ! M| s
arrangement. They were grouped by treatment stages. This
means that the number of equipment items at each stage and A A 5
the size of these equipment items were encoded together. The A B B
encoding method presented was developed for cases where the Fig. 9. Operating stage encoding method.




Table 3
M Product demands
Product Production (kg/year)
B s
Insulin 1500
Vaccine 1000
Chymosin 3000
Protease 6000
o|lof1|lo|olo|t1t|o]o]| o1
L JAN JAN J\ / where f1 represents the investment cost grithe environmental
A B B B impact. Vectorx =[x1, x2, .. ., x,] are the operating conditions
Fig. 10. Operating stage encoding example. andy =[y1, y2, . . .,yn] refers to batch plant configuration.

Minimize the investment cosf;, which is function of the
batch plant configuration;,, and the environmental impagt,
o ) ) ] which is function of the operating conditions, subject to the
big size, part Brepresents a medium sized filter and palft B proquction constraint. The vector (respectively) contains
represents a small permeate vessel. respectively only discrete (respectively continuous) variables.

From the previous example, it can be observed that not anks it \as mentioned previously the environmental impact crite-

binary sequence represents systematically a treatment stage.{f, was split into two objective functions but always respecting
part B, for example, it is impossible to have the sequence 11 Qpe pelow formulation.

which would mean that the retentate vessel is both large and Erom the simulation results presented in (Dietz et al., 2005),

medium sized, at the same time. The initial procedure for thy, production policies were kept, mono and multiproduct, for

generatlon'of population is defined by the user, so this proble'ertimm batch plant design purposes. In the case of a mono
can be avoided. On the other hand, the cross-over and mutatioogyct production policy, all the batches of a product are manu-
procedures of the genetic algorithm can transform chromosomégg . red before treating a batch of another product. The products
representing solutions into unrealistic representations. That igre manufactured alternating intra and extra cellular product,
why a correction procedure is implemented to make the chroge order is as follows: insulin, vaccine, chymosin and protease.
mosomes representation realistic, while being careful not to biagp,e multiproduct production policy is carried out manufactur-

the algorithm search. The correction procedure was presentegy aiternating one batch of each product in the above mentioned
in detail in (Dietz, 2004) and (Dietz et al., 2005) and the impact, qer.

of correction on the whole mechanism was studied thoroughly, - A set of data must be fixed by the user concerning the opti-
more particularly the probability of individuals to undergo a mization problem definition before the implementation of the
correction which W.I|| be necessary after either an '”feas'medesign methodology. These data are present@dbites 3-5.
crossover or mutation. To have an order of magnitude of the |, Tapje 3, the annual demand for each product is presented.
phenomenon, let us give here the results obtained with typi- Tapje 4presents the available range in terms of size for each

cal values of GA parameters. A survival rate of 70% imp"esequipment type. Three sizes are available for each equipment

that 30% of the population will be generated by crossover. Thgam- large (L), medium (M) and small (SJable 4presents the
results show that 14.8% of these individuals will undergo a cor-

rection by mutation, which then involves that 4.44 % of the total

population will mutate due to the correction procedure. Aﬁg:;&e equipment item sizes
Concerning mutation, the analysis demonstrates that the

probability of annihilating the effect of mutation due to the Eauipmentitem Large ~ Middle  Small

procedure correction is 44.4%, which is quite high. With a mutaFermenter (%) 6 3 1
tion rate of 10%, 4.4% of the total mutated population will First micro filter-retentate vessel & 6 3 1
see the effect of mutation phenomenon destroy. Globally, it; !rS: micro ;!::er'f"trat'O”tSUffacel(g 2 2-5 11
. . =I[STMICro Titer-permeate vesse
_must b_e said that Fhe two phenomeng are compensating. Tm%mogenizer_hol ding vessel fin 6 3 1
is why in the experlmental runs that will be fur_ther presented 3omogenizer-capacity (th) 05 0.25 01
lower value of the survival rate (50%) and a higher one for thesecond micro filter-retentate vessePm 6 3 1
mutation rate (40%) were adopted, without biasing the globa$econd micro filter-filtration surface 5 25 1
search. Second micro filter-permeate vessefjm 6 3 1
First ultra filter-filtration surface (R) 50 25 10
First ultra filter-permeate vessel fin 6 3 1
5. Results and discussions Liquid—liquid extractor 6 3 1
Second ultra filter-permeate vessefjm 6 3 1
In a general way the optimization problem can be presente@econd ultra filter-filtration surface ¢ 5 25 !
foll . hromatographic separation-holding vessel 6 3 1
as follows: Chromatographic separation-column 1 0.5 0.25
Storage vessel 6 3 1

minfi(y). ~ minfa(x).  stglx.y) < H




Table 5

Cost coefficients

Table 6
Variable bounds

Unit Size Cost Variable Lower bound Upper bound
Fermenter Vi (m3) 63400.96 Cy fer (kg/m®) 35 55
Micro- and ultrafilter Vretentate(M°) 5750.%:6 Cy fer (kg/m®) 35 55
Vpermeate(ma) 5750.19:6 Ce fer (kg/n®) 35 %5
Viiter (M?) 2900.4-85 Cp,fer (Kg/mP) 35 55
Homogenizer Vholding (M®) 5750.1%:6 Cim1 (kg/m®) 150 250
Cap (n¥/h) 12100.cap’® Cy.mi1 (kg/m?) 150 250
Extractor Vextr (M°) 23100.1:65 Cemi1 (kg/m®) 150 250
Vholding (M®) 5750.1%:6 Cp,mi1 (Kg/nT) 150 250
Chromatography column Vehrom (M3) 360000.99%5 W, ne (M3/md) 0.5 3.0
Storage vessel Vsto 5750.1%:6 We,me1 (m3/md) 0.5 3.0
NF’v,hom 1 3
NPy.hom 1 3
Wy, miz2 (M3/m®) 1 3
. . . . W, mf2 (m3/m3) 1 3
classical expressions used for computing the investment cost gf” " 3m2) 0.05 15
the equipmentitems, following a classical scaling law. Of courseg, . (m3/m?) 0.05 15
athorough economic study would also include the operating Cogt, ex: (m*/m®) 0.05 15
estimation and analysis of profitability. Since this kind of anal-Rp.ex (M*/m®) 0.05 15
ysis only requires reliable economic data for a real process angf (1) ;
does not induce additional difficulties in the chosen resolutior}v:; 1 8
strategy, a capital cost-based study was finally adopted for the,,,, 1 4
preliminary economic evaluation of the project for manufactur-Nm 1 4
ing biological products. Nury 1 8
Table 6presents the lower and upper bounds for all the vari-/]zEXt 1 g
ables. o 1 8
hr

Table 7displays the parameters of the genetic algorithm used-
for multicriteria batch plant design. In this work, the genera-
tion number was fixed as twice the population size. The global Giventhatsolutions obtained in one optimization run could be
survival rate is relatively low as compared to standard valueslominated by solutions of another one, a Pareto sort procedure is
for optimization of test mathematical functions (Dedieu et al.,applied to the set of solutions obtained at each optimization run,
2003). Moreover, a high mutation rate was set as abovememnd the non-dominated solutions are considered the solutions
tioned. Although a systematic study was not carried out to fingoroposed by the methodology.
these values, they were chosen from several preliminary tests In previous works (Dietz et al., 2005), a GA was applied to
and agree with previous works (Dedieu et al., 2003) where simithe same example for monocriterion batch design. The mon-
lar problems were treated. The elitism was used in order to avoidcriterion results were presented and analyzed in detBilétr
losing the best solution for each criterion. Let us also note thagt al. (2005). In this work, the best solutions obtained for each
typical high values for mutation rates were systematically founctriterion are used to evaluate the performance of the MOGA.
for batch design problems. A thorough analysis for GA param- The MOGA presented in this work was first used to demon-
eter setting was performed by (Bernal-Haro et al., 2002) via &trate that the two El criteria considered, that are respectively
design of experiments analysis and showed the same trend. the total biomass quantity and the PEG volume, present antag-

Considering the stochastic aspect of GAs, several optimizasnist goals (Fig. 11). Very similar results were obtained at each
tion runs were carried out for each multicriteria optimization.optimization run, so only the results after the final Pareto sort
First, 20 initial populations were created and three of them wer@rocedure are presentedhig. 11. Moreover, it must be noted
selected to limit computation time in the further steps of the algothat slight differences are obtained between both production
rithm, each one presenting the most favorable behavior relativpolicies because the environmental impact depends only on the
to the average of one criterion considered individually. mass balance that is function of the continuous variables.

Table 7

Genetic algorithm parameters

Parameter Bicriteria Bicriteria Bicriteria Tricriteria
(solvent—biomass) (cost—solvent) (cost—hiomass) (cost—El)

Population size 300 450 450 600

Generation number 600 900 900 1200

Survival rate 0.5 0.5 0.5 0.5

Mutation rate 0.4 0.4 0.4 0.4

Elitism by criterion 1 1 1 1
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Fig. 11. Pareto’s optimal solutions for biomass released—solvent amount criteria (bicriteria case).

This conflicting behavior can be explained atthe liquid—-liquid  Slight differences were found between both production poli-
extraction stage. The more solvent is used, the more efficierdies. The antagonist behavior between these two criteria, invest-
the stage becomes and, consequently, the fewer products ament cost-amount of solvent used, can be explained by a com-
lost, reducing the environmental impact index computed as kgromise between the solvent yield and the process global yield.
of biomass released by kg of final product. When process yield is penalized, a bigger, and consequently

The same approach was also applied to the cost—environmemtore expensive, batch plant is required.
criteria. First, the amount of solvent used and the investment cost In order to evaluate the search performance of theTahle 8
were considered. presents the best solution obtained at each optimization run for

For illustration purposes;ig. 12shows the results obtained each criteria considered as well as the best solution obtained with
at each optimization run for the monoproduct production pol-a monocriterion approach. Even though the methodology was
icy, performed with an identical parameter set to guarantee theot able to find the best solution, the values are relatively near
stochastic nature of the GA. In this case, the results are ngaround 5% more expensive for the investment cost criterion). It
superposed as it was the case for the bicriteria optimizatiomust be noted that in the monocriterion optimization (Sextz
biomass—solvent, which show the need of carrying out severat al. (2005)), the best value was obtained only once and, in the
optimization runs for the same problem. other cases, the solutions were around 2—3% more expensive,

In Fig. 12, it can be seen that each optimization run iswhich justifies the results when several criteria are taken into
oriented to a part of the search region. The first optimiza-account simultaneously. The number of solutions obtained in
tion comes up with the better solution for the cost criterion,each optimization run was around of 25. The solutions cover a
the second for the environmental criterion and the third is darge space of the explored domain, which means that there is no
compromise between both. The final Pareto sort procedure greferential search region in the multicriteria search as shown in
carried out over these solutions. The final results for both proFig. 13.
duction policies are presented kig. 13. Let us note that the It is also interesting to see where the results are placed with
Pareto zone is constituted of sparse points, since the adapespect to the criterion not considered here, in this case the
tation function related to the investment cost takes discretamount of biomass releas@@ble 9presents the range of values

values. for this criterion for both production policies.
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Fig. 12. Pareto’s optimal solutions for solvent used—investment cost (bicriteria case).
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Fig. 13. Pareto’s optimal solutions for solvent used—investment cost (bicriteria case).

Table 8
Bicriteria cost—solvent optimization results
Monoproduct Multiproduct
Cost (€ Solvent Solutions Cost (€ Solvent Solutions
(m3/kg productx 10°) (number) (m/kg productx 10°) (number)
Runl 1221890 4.4451 32 1303730 5.0697 21
Run2 1290490 4.7794 23 1211100 5.0061 28
Run3 1238050 4.4146 23 1257200 4.4064 23
Best 1140990 4.3860 - 1139100 4.3860 -

They have the same order of magnitude for both productiorior both production policies, a better solution than the one of
policies, exhibiting the same order of magnitude. Moreover, thehe monocriterion GA was found. These solutions are only 2%
minimal value of the range is close to the best value obtained ibetter than the previous ones. This shows the drawback of the
monocriterion optimization value which allows less antagonisnstochastic optimization methods because they can not guaran-
between investment cost and biomass released criteria. tee the solution optimality. On the other hand it must be noted

The last bicriteria optimization considers the investment costhat the GA parameters were not the same. In the case of the
and biomass released. As for the previous case, three optimiz&lOGA, a larger population was used, but at the same time it
tion runs were carried out for each production policy. The resultsnust be noted that the fact that several criteria were taken into
obtained after the final Pareto sort procedure are presented &tcount is not penalizing in the GA. The environmental impact
Fig. 14 and are similar for both production policies as it was criteria guide the search for batch plants with several equipment
shown for the cost—solvent criteria. items diversifying the search paths.

Table 10presents the best solution obtained at each opti- Table 9also presents the range of values for the criterion not
mization run for each considered criterion as well as the bestonsidered, the amount of solvent used. These values are dis-
solution obtained with a monocriterion approach. As for thetant from the best values, which reminds the antagonism of this
criterion referring to the amount of biomass released, the besfiterion, with respect to the other ones considered as objective
value is obtained at each optimization run, as it was the casinctions.
for the amount of solvent in the previous bicriteria optimiza- The results obtained show the typical compromise between
tion. The number of solutions is slightly inferior to the previous cost and each environmental index. Since the conflicting behav-
results. This can be explained by the lower antagonism betwedar between each pair of criteria (investment cost, solvent used
the biomass and the cost criteria. As for the investment cosgnd biomass released) was demonstrated, the final multicriteria

Table 9
Values range for the not considered criterion
Biomass for (cost—solvent) (kg biomass/kg product) Solvent for (cost-biomass) fitkg productx 10°)
Minimum Maximum Minimum Maximum
Monoproduct 14.39 20.37 36x 1073 40.58x 1073

Multiproduct 14.26 22.89 35x 1073 41.88x 1073
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Fig. 14. Pareto’s optimal solutions for biomass released—investment cost (bicriteria case).

Table 10
Bicriteria cost—biomass optimization results
Monoproduct Multiproduct
Cost (¥ Biomass Solutions Cost (¥ Biomass Solutions
(kg biomass/kg product) (number) (kg biomass/kg product) (number)
Runl 1143080 13.303 10 1252280 13.307 15
Run2 1235340 13.300 10 1289530 13.303 13
Run3 1129290 13.305 15 1116950 13.302 22
Best 1140990 13.299 - 1139100 13.305 -

Table 11
Multicriteria cost—environmental impact results

Monoproduct Multiproduct

Cost (€ Solvent Biomass Cost (€ Solvent Biomass

(m3/kg productx 10°) (kg biomass/kg product) (mP/kg productx 10°) (kg biomass/kg product)

Runl 1232630 4.4378 13.303 1130860 4.3935 13.3003
Run2 1207900 4.4214 13.304 1265100 4.4470 13.3034
Run3 1279110 4.3909 13.304 1124630 4.4588 13.3014
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Fig. 16. Pareto’s optimal solutions Cost—solvent (tricriteria case).

cost—-environment batch plant design was carried out, keepingne. In other words, the same GA is able to carry out both of
the two environmental criteria independent: this simply meanshem, even when several antagonist objective functions are con-
that the same survival rate was considered for each criterion. sidered.
As for the previous optimizations, the three optimization runs
(following the same population creation procedure) were carried. Conclusions and perspectives
out for each production policy. Given the similarity of the results
with both production policies (se®ble 11), only the results A methodology has been proposed for batch plant design,
obtained with a multiproduct production policy are presentectonsidering both investment costand environmental impact min-
(Fig. 15). imization. An optimization scheme has been implemented using
It can be observed that most solutions referring to the previa multiobjective genetic algorithm with a Pareto optimal ranking
ous bi-criteria optimization are found again. In all three casesmethod. This technique is ideally suited to this type of problem,
the points are more concentrated near the compromise zonghere a number of conflicting considerations must be taken into
which is interesting for final decision. In order to evaluate theaccount. The use of MOGA enables a robust optimization tech-
methodologyFigs. 16 and 18how the results projected for each nique, across a non-linear search space (the objective functions
optimization run. In this case, we observe that several optimizaare computed by the use of a discrete-event simulator (DES)
tion runs are necessary, given the complexity of considering @tegrating shortcut unit operations models) linking multiple
third criterion; the results are not systematically superposed asriables and objectives.
for the bicriteria case study. Two options could be considered The paper clearly shows that opportunities for process opti-
for improvement, larger population and generation number anchization and environmental impact minimization must be con-
some extra optimization runs. sidered at the early stages of process development before the
Table 11presents the best solution for each criterion for bothprocess is frozen due to regulatory reasons.
production policies. As it was mentioned, there are only slight Current works are now carried out on a modified ver-
differences between both production policies. It also shows thation of the DES, giving more operational flexibility to the
the monocriterion search is not penalized by the multicriterigbatch plant through the campaign policies and including new
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optimization criteria, reflecting the advance or delay of theChunfeng, W., & Xin, Z. (2002). Ants foraging mechanism in the design of
production. multiproduct batch chemical procedadustrial and Engineering Chem-

Itis important to note that optimization was performed with- sy Research, 41(26), 6678-6686. o _
Coello, A. C. (2000). An updated survey of GA-based multiobjective opti-

out. any preferen_ce mformatlon,_ which mea_ns that the Pgreto— mization techniquesiCM Computing Survey, 32, 109-143.
optimal set consists of all solutions according to any rationakiorni, A., Dorizo, M., & Manniezzo, V. (1991). Distributed optimization
decision-maker. Here the search for an optimal set of solutions by ant colonies. IlProceedings of the European Conference on Artificial

is separated from the final decision. The decision-maker is pre- Life ECAL 91 (p. 134).

sented with a set of solutions from which he has to choose, arld@mes: M., Azzaro-Pantel, C., Xuereb, C., 2003. Optimization de la gualit
’ d’'une émulsion par couplage de techniquéseau de neurones et algo-

the hypothesis is that when the trade-off between the objectives e wrptique. In SFGPOFroceedings CD Rom, ISBN 2-910239-64-

is visible it would be easier to choose. However, this might not o september 2003.

hold as the number of objectives increases and visualizationedieu, S., Pibouleau, L., Azzaro-Pantel, C., & Domenech, S. (2003). Design
becomes harder. This is an interesting field for further research: and retrofit of multiobjective batch plants via a multicriteria genetic algo-

a decision making tool, taking into account various weights on _"thm. Computers and Chemical Engineering, 27, 1723-1740. _
Dietz, A., 2004. Multicriteria optimisation for multiproduct batch plant design

f:rltena, reflectlng the preferences Of the decision maker, ma_ly be under economic and environmental considerations, PhD Thesis. INPT.

integrated to the current framework in order to rank the obtained pecemper.

solutions. Dietz, A., Azzaro-Pantel, C., Pibouleau, S., & Domenech, S. (2005). A
Framework for multiproduct batch plant design with environmental con-
sideration: application to protein productiokdustrial and Engineering
Chemistry Research, 44, 2191-2206.

. hieti ib o ) Ehrgott, M. (2000). Lecture notes in economics and mathematical

Asenjo, A., Montagna, J-M., Ve_cc letti, A. R., Ir|_ arren, - A, &Pinto, J. M. systems—multicriteria optimization. Berlin Heidelberg: Springer-Verlag.
(2000). Strqtegles for the S|multaneoqs optimization of the structure an?—’onseca, C., & Fleming, P. (1995). An overview of evolutionary algorithms
process variables of a protein production plaftumputers and Chemical in multiobjective optimization Evolutionary Computation, 3, 1-18.
E"gnee_rmg’oy’ 2277_2290'| c. Piboul h'S. (200 Goel Harish, D., Weijnen Margot, P. C., & Grievink Johan. (2004). Opti-
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