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Multiobjective optimization for multiproduct batch plant design
under economic and environmental considerations

A. Dietz, C. Azzaro-Pantel∗, L. Pibouleau, S. Domenech
Laboratoire de Génie Chimique-UMR 5503 CNRS/INP/UPS, 5 Rue Paulin Talabot BP1301, 31106 Toulouse Cedex 1, France

Abstract

This work deals with the multicriteria cost–environment design of multiproduct batch plants, where the design variables are the size of the
equipment items as well as the operating conditions. The case study is a multiproduct batch plant for the production of four recombinant proteins.
Given the important combinatorial aspect of the problem, the approach used consists in coupling a stochastic algorithm, indeed a genetic algorithm
(GA) with a discrete-event simulator (DES). Another incentive to use this kind of optimization method is that, there is no easy way of calculating
derivatives of the objective functions, which then discards gradient optimization methods. To take into account the conflicting situations that may be
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ncountered at the earliest stage of batch plant design, i.e. compromise situations between cost and environmental consideration, a m
enetic algorithm (MOGA) was developed with a Pareto optimal ranking method. The results show how the methodology can be use
ange of trade-off solutions for optimizing batch plant design.

eywords: Batch plant design; Multicriteria genetic algorithm; Environmental impact

. Introduction

Batch processes are typically used to manufacture low-
olume high-value-added products (for instance, pharmaceuti-
als). In that context, batch process development is generally
ifferent from continuous traditional processes because of the
eed of approval of the production recipe by some organiza-

ion (for instance, the Food and Drug Administration, FDA).
ny later modification to the production recipe will require a
ew approval, so it is necessary to take into account as much as
ossible all the parameters and criteria from the earliest devel-
pment steps for optimal batch plant design.

It must be emphasized that the design of batch plants has
een for long been identified as a key problem in chemical engi-
eering and much work has been presented in this area in the
ast few years, for instance (Cao & Yuan, 2002;Chunfeng &
in, 2002; Goel Harish, Weijnen Margot, & Grievink Johan,
004; Heo, Lee, Lee, Lee, & Park, 2003;Montagna, 2003;
hakraborty, Malcolm, Colberg Richard, & Linninger Andreas,

2004; Cavin, Fischer, Glover, & Hungerbühler, 2004;Pinto,
Barbosa-Ṕovoa Ana Paula, & Novais Augusto, 2005). The
mulation of batch plant design generally involves mathema
programming methods, such as linear programming (LP),
linear programming (NLP), mixed-integer linear programm
(MILP) or mixed-integer nonlinear programming (MINLP).
use the above-mentioned methods (the list is not exhausti
mathematical model representing the batch plant must be d
oped. An objective function is then defined which refers in m
cases to investment cost. Plant modeling involves satisfa
of constraints related for instance to time horizon or produc
requirements,. . .The main drawback of this methodology is
difficulty, even impossibility, to describe with a high degree
sophistication, the real constraints (various storage polici
operator shift, for instance,. . .). In other cases, the number
equations to take as constraints often renders the problem im
sible to solve.

An alternative to purely mathematical approaches is to
discrete-event simulation (DES) to scheduling and plan
problems. Although the list is not exhaustive, let us men
some well-known simulations tools: “Batches” from Batch P
∗ Corresponding author. Tel.: +33 5 34 61 52 72; fax: +33 5 34 61 52 53.
E-mail address: catherine.Azzaro@ensiacet.fr (C. Azzaro-Pantel).

cess Technologies, Batch Plus, SuperPro Designer and BatchDe-
sign Kit (BDK). Since the development of a generic scheduling



model is an ambitious challenge because of the difficulty to
embed in one formulation all features of every possible produc-
tion system, a methodology of development of discrete-event
simulators was proposed by (Bérard et al., 1999). The DES
framework has thus proven its efficiency to support process
development and was used for both scheduling and design pur-
poses. In our previous works, the DES which serves to evaluate
the feasibility of the production at medium term scheduling
was coupled with a master optimization procedure based on a
genetic algorithm (GA). The optimization variables are only dis-
crete variables and the problem presents a marked combinatorial
feature (the equipment sizes are considered as discrete values).
Following these ideas,Dedieu, Pibouleau, Azzaro-Pantel, and
Domenech (2003)generalized the approach to consider multi-
criteria design and retrofitting. The choice of a hybrid method
GA/DES was then all the more justified as several criteria were
simultaneously taken into account: a tradeoff between invest-
ment cost, equipment number, and a flexibility index based
on the number of campaigns necessary to reach a steady-state
regime was investigated.

Following these guidelines, this work is particularly moti-
vated by the need to consider the capital cost as well as the
environmental impact from the earliest design stage.

The study presented in this paper deals with the multicriteria
cost–environment design of multiproduct batch plants, where
the design variables are the equipment item sizes as well as the
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pare the different alternatives to manufacture a product. Another
concept used the pollution balance (PB) principle (Cabezas,
Bare, & Mallick, 1999), equivalent to the balance made for mass
or energy. It means that a process can not only pollute but also
consume a polluting product and can be, consequently, a benign
process.

Finally, the so-called pollution vector (PV) methodology
(Stefanis, Livingston, & Pistikopoulos, 1995) consists in eval-
uating the environmental impact by means of an impact vector
over different environments (i.e. water, air, etc.) defined as the
mass emitted on an environment divided by the standard limit
value in this environment.

A guideline of this work is to integrate all these aspects for
batch plant design, as much as allowed by information availabil-
ity for the study case.

This paper is organized as follows: Section2 presents the
process dedicated to the production of proteins used as an illus-
tration of the proposed methodology. Section3 is devoted to
the environmental impact evaluation based on a classical LCA
approach. Sections4 and 5respectively outline the methodol-
ogy for multicriteria batch plant design and display results of
the method applied to the studied plant. Section6 concludes the
current work and suggests new areas for investigation.

2. Process description

teins
t en,
2 1).
T to
b ages.
T mod-
e s are
a cing
f pro-
t nd,
o and
a ology
i rom
y

blem
perating conditions identified as having an important im
n the optimization criteria. The formulation of the problem
e visualized as proposed inFig. 1.

The cost criterion considered is classically based on in
ent minimization. Considering environmental impact (EI)
s recall that several methodologies are available in the l

ure. The most important concept perhaps refers to the life
ssessment (LCA) methodology (Burgess & Brennan, 199
onsiders all the wastes generated in order to produce the
nt products in the upstream stages (i.e. raw material produ
nergy generation, etc.), in the study stage (i.e. solvents,
aluable by-products, etc.) and in the downstream steps
ecycling, incineration, etc.). The aim of LCA is to consider
ide chain in order to prevent pollution generation and to c

Fig. 1. Pro
-

-
e
t
r-
,
-
.

The case study is a batch plant for the production of pro
aken from the literature (Montagna, Vecchietti, & Iribarr
000;Pinto, Montagna, Vecchietti, Iribarren, & Asenjo, 200
his is a multiproduct batch plant, with four products
e manufactured by fermentation and eight treatment st
his example is used as a test bench since short-cut
ls describing the unit operations involved in the proces
vailable. The batch plant involves eight stages for produ
our recombinant proteins, on one hand two therapeutic
eins, Human insulin (I) and vaccine for Hepatitis B (V) a
n the other hand, a food grade protein, chymosine (C)
detergent enzyme, cryophilic protease (P). The method

s generic for any plant producing recombinant proteins f
east.

formulation.



Fig. 2. Multiproduct batch plant for proteins production and environmental impact evaluation.

Fig. 2 shows the flowsheet of the multiproduct batch plant
considered in this study. All the proteins are produced as cells
grow in the fermenter (Fer).

Vaccine and protease are considered as being intracellular,
hence, for these two products, the first microfilter (Mf1) is used
to concentrate the cell suspension, which is then sent to the
homogenizer (Hom) for cell disruption to liberate the intracel-
lular proteins. The second microfilter (Mf2) is used to remove
the cell debris from the solution proteins.

The ultrafiltration (Uf1), prior to extraction, is designed to
concentrate the solution in order to minimize the extractor vol-
ume. In the liquid–liquid extractor (Ext), salt concentration
(NaCl) is used to first drive the product to a polyethylene-glycol
(PEG) phase and again into an aqueous saline solution in the
back extraction.

Ultrafiltration (Uf2) is used again to concentrate the solution.
The last stage is finally chromatography (Chr), during which
selective binding is used to better separate the product of interest
from the other proteins.

Insulin and chymosin are extracellular products. Proteins are
separated from the cells in the first microfilter (Mf1), where cells
and some of the supernatant liquid stay behind. To reduce the
amount of valuable products lost in the retentate, extra water is
added to the cell suspension.

The homogenizer (Hom) and microfilter (Mf2) for cell debris
removal are not used when the product is extracellular. Never-
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environmental impact (Fig. 2). For information availability rea-
sons, the study was reduced to the process being studied, which
is of course a limited application of LCA. Products (i.e. vaccine)
and raw materials (glucose, NH3) were considered not having an
environmental impact. After that, a PB is applied, using the PV
to quantify the environmental impact. In this case, an adapted
definition of the pollution vector was introduced, because the
standard limit values for the polluting product were not found in
the literature. This vector has two components; the former is the
total biomass quantity released and the latter concerns the PEG
volume used. Even if the solvent can be recycled, it cannot be
carried out at 100%, so the environmental impact is considered
to be proportional to this quantity. The pollution indexes were
thus defined as the emitted quantities divided by the mass of the
manufactured products. Let us remark that the environmental
impact minimization can be viewed a multicriteria problem in
itself.

4. Methodology for multicriteria batch plant design

4.1. General principles

The framework for batch plant design proposed in this study
integrates simple unit operation models into the batch plant wide
model, which is then embedded in an outer optimization loop
( cou-
p GA)
w ntel,
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heless, the ultrafilter (Uf1) is necessary to concentrate the
olution prior to extraction. The final step of extraction (E
ltrafiltration (Uf2) and chromatography (Chr) are commo
oth the extracellular and intracellular products.

. Environmental impact evaluation

Given the production recipes for the different products
he general flow-sheet, the first step consists in applying the
ethodology to determine all the products contributing to
e
seeFig. 3). The approach adopted in this work consists in
ling a stochastic algorithm, indeed a genetic algorithm (
ith a discrete-event simulator (DES) (Dietz, Azzaro-Pa
ibouleau, & Domenech, 2005). The objective of the maste

nvolved is to propose several good and even optimal solut
hereas the DES allocates the products to equipment item
valuates different criteria. More detail concerning the desig
he DES can be found in (Dietz et al., 2005).

At this level, it will be reminded that stochastic algorithm
uch as simulated annealing (SA) or genetic algorithms (
re more and more used for combinatorial optimization p



Fig. 3. Optimal batch plant design framework.

lems in various fields, and particularly in chemical engineering
(Pibouleau, Floquet, Domenech, & Azzaro-Pantel, 1999). Given
that: –practical industrial problems might not be “mathemati-
cally” understood when the design is started; –this study aims at
batch plant design taking into account both investment cost and
environmental impact, the choice of the stochastic optimization
method is clearly justified. Several other reasons guide us to the
choice of a genetic algorithm. The final aim is to treat a mixed-
integer non-linear problem (MINLP). In chemical engineering,
the combinatorial aspect of the problem is sometimes important:
for example in batch plant design, the structure variables are the
equipment sizes and number for each unit operation that gener-
ally take discrete values since discrete value ranges are available;
as a consequence, an evolutionist algorithm is more suitable on
the one hand to solve this kind of problem than the mathemati-
cal programming approach of large size problems. On the other
hand, the evolutionist algorithms do not need any information
about the mathematical properties (derivability, convexity etc.)
of the function to optimize that sometimes are too difficult or
impossible to establish; in this case the MOGA is developed
in order to be coupled with a simulation tool that only gives
values for the performance criteria selected. The inconvenient
of this kind of optimization algorithm is that the optimality
of the solution is not guaranteed. Different evolutionist algo-
rithms have been presented and used in the dedicated literature:
simulated annealing (SA) (Kirkpatrick, Gellat, & Vecchi, 1983)
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The process unit performance models are used to compute
the operating time of each process step. A brief description of
each process stage is also given in (Dietz et al., 2005) and the
different assumptions used to compute the processing time and
the mass balance through the plant are given (Pinto et al., 2001).
Let us note that some differences in the hypothesis were car-
ried out because this work aims at describing the involved unit
operations with simple models, in order to obtain complete infor-
mation about the treatment stage (i.e. flow composition, required
amount of utilities, wastes,. . .). In the previous work (Asenjo,
Montagna, Vecchietti, Iribarren, & Pinto, 2000), the model was
only used to compute the operating time and the corresponding
efficiency, with a formulation based on constraints to solve the
optimization problem.

In this work, classical chemical engineering balances are car-
ried out at each treatment stage.

4.2. Optimization criteria

The cost criterion considered in this study is classically based
on investment minimization because there was not enough infor-
mation to evaluate the operational cost of the batch plant (raw
material cost, utilities cost,. . .) and to embed it in a net present
value computation.

The cost criterion involves investment cost for both equip-
ment and storage vessels and is computed from classical formu-
l
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enetic algorithms (GA) (Fonseca & Fleming, 1995) and
olony (AC) (Colorni, Dorizo, & Manniezzo, 1991). GA w
elected here since it has the main advantage over other
ds to manipulate a population of individuals and can dire

ead to the whole set of compromise solutions in one s
ptimization run.

The development of the discrete-event simulation mode
resented in detail in (Dietz et al., 2005) and will not be reca
ere.
h-

ae (see Eq.(1)), where theA constant was neglected:

ost= A + BVα (1)

he numerical values ofB andα were taken from the work o
Montagna et al., 2000).

Concerning the environmental impact, the quantity and
uality of the process effluents depend only on the oper
onditions having an influence on mass balance at each trea
tage. The global index of each environmental impact crite



is defined as weighted sum respect to the production of each
product index (Eq.(2)). Ik is the pollution global index,Ii

k the
k pollution index ofi product defined as the amount of thek
pollutant (kg) by amount ofi product (kg) andPi is the total
production ofi product.

Ik = I ins
k · Pins + Iv

k · Pvac + I
chy
k · Pchy + I

pro
k · Ppro

Pins + Pvac + Pchy + Ppro
(2)

4.3. Multicriteria genetic algorithm

4.3.1. General concepts
As mentioned earlier, real engineering design problems are

usually characterized by the presence of many conflicting objec-
tives that the design has to fulfill. Therefore, it is natural to look at
the engineering design problem as a multiobjective optimization
problem (MOOP). References to multiobjective optimization
could be found in (Bhaskar, Gupta, & Ray, 2000;Coello, 2000;
Ehrgott, 2000). As most optimization problems are multiobjec-
tive by nature, there are many methods available to tackle these
types of problems.

Lately, there has been a large development of different types
of multiobjective genetic algorithms, which are reflected in the
literature. The big advantage of genetic algorithms over other
methods, particularly over other stochastic procedures such as
simulated annealing, is that a GA manipulates a population of
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Table 1
One mathematical function used as a test bench

Problem 1

Functions Minimum

f1 = (x1−2)2

2 + (x2+1)2

13 + 3 f̂1(2;−1) = 3

f2 = (x1+x2−3)2

36 + (−x1+x2+2)2

8 − 17 f̂2(2, 5; 0, 5) = −17

f3 = (3.x1−2.x2−1)2

175 + (−x1+2.x2)2

17 − 13 f̂3(0, 5; 0, 25) = −13

x = (x1, x2) ∈ [−4, 4]2

that was finally implemented in this work, let us present some
key results obtained with these two competitive approaches on
a mathematical problem (seeTable 1).

Fig. 4 reports the results obtained with a weighted sum
method and compares those obtained with a Pareto approach
(A). The results correspond to two different cases: the former
is relative to equal values for the three weighting coefficients
(Fig. 4C) and the latter involves a coefficient that is twice the
value of the two other ones (Fig. 4D).

The use of the weighted sum method drives to a unique
solution of the problem not representing the whole set of
compromise solutions. To get it, it would be necessary to
implement several optimization runs while modifying the
relation between the weighting coefficients in order to get a
bigger number of compromise solutions. This method is very
penalising from a computing time point of view if a stochastic
method is used, as it is the case here.

It is interesting to compare the solution obtained with an
approach that consists in choosing a solution of compromise
from values of the optimisation variables and not from the
objective function values.Fig. 5shows this comparison for one
mathematical problem treated. It must be observed that the func-
tion optimal values are at different positions in the search space
and a compromise solution chosen as the barycentre of the trian-
gle defined by these three points places this solution outside of
the Pareto optimal solution zone. The low performances of the
w cat-
i trial
p rithm
ndividuals. It is therefore tempting to develop a strateg
hich the population captures the whole Pareto front in
ingle optimization run. For an overview on genetic algorit
n multiobjective optimization, see (Fonseca & Fleming, 19
iterature surveys and comparative studies on multiobje
enetic algorithms are also given in (Holland, 1975; Bha
t al., 2000; Coello, 2000). Fonseca and Fleming have div
ultiobjective genetic algorithms in non-Pareto (Schaffer, 1
nd Pareto-based approaches (Goldberg, 1994).

Let us consider the multicriteria optimization proble
efined by:

Min{f (x) = [f1(x), . . . , fk(x)}, subject tox ∈ X,

whereX is a subset ofRn

The Pareto optimal solutions can be defined as follow
olutionx* ∈ X is called Pareto optimal if:

x ∈ X : either [fi(x) = fi(x
∗)]∀i ∈ I, with I = {1,2, . . . , k}

orfi(x)>fi(x
∗) even if it existsj ∈ I, such thatfj(x)<fj(x

∗)

In most cases, the Pareto optimal set (also called the P
one) is not constituted of a single solution, but involves a s
olutions, called non dominated solutions.

Let us recall here that one intuitive way to take into acco
ultiobjective criteria is to calculate the objective function as
eighted sum of several criteria and to solve the problem
mono-objective genetic algorithm. This aspect was inv

ated at the preliminary stage of this work, with mathema
unctions as test bench. Without going further in the prese
ion of the typical features of the multicriteria genetic algorit
to
f

-

eighted sum approach, combined with the difficult of allo
ng appropriate values of weighting coefficients for indus
roblems are enough convincing to adopt a genetic algo

Fig. 4. Solutions obtained with the weighted sum method.



Fig. 5. Problem 1, Barycentre vs. Pareto.

with a Pareto sort to solve the problem of optimal design for
batch plants.

To characterize the Pareto zone among a population of fea-
sible solutions, following the ideas presented in (Dedieu et al.,
2003) a non dominated sorting procedure, called Pareto sort
(PS) was implemented and included in the multiobjective genetic
algorithm (MOGA).

The option proposed by (Dedieu et al., 2003) in order to
obtain the set of Pareto optimal solution, was to apply a Paret
sort procedure over the set of solutions evaluated during th
GA evolution, from the initial randomly generated population,
towards the final population, selecting the “good” solutions for
the considered criteria.

The implementation of this framework is possible when the
criteria to optimize do not have a conflicting behaviour, i.e. they
have an interdependent evolution towards the optimal solution
Fig. 6a shows qualitatively this kind of behaviour. The method-
ology presented is then simple to implement and is able to find
the set of optimal Pareto solutions.

In the case where the criteria to take into account have
a strong antagonist behaviour, as it often happens in pro
cess engineering (i.e. processing time-product quality, treatmen
cost–environmental impact), the methodology is not able to
find the whole set of Pareto optimal solutions.Fig. 6b shows

schematically the search of this method under strong antago-
nist behaviour criteria. Only a reduced part of the Pareto set
of solutions is found around the optimal value for each opti-
mization criterion. It is therefore necessary to propose a new
genetic search based methodology that can find simultaneously
“good” solutions for each criterion independently as well as a
set of compromise solutions between the optimization criteria
considered.

4.3.2. Presentation of the multiobjective genetic algorithm
Following these guidelines, we have then proposed to take

into account the multiobjective aspects at the selection stage
and the compromise solution search at the cross-over stage. The
selection procedure being carried out by the biased Goldberg’s
roulette, we propose to define a roulette for each criterion to
optimize. An equal number of individuals for each criterion was
selected to complete the total number of individual passing by
the survival procedure to the next population. The cross-over
procedure that proposes compromise solutions was not mod-
ified. It must be pointed that the population was composed of
“good” individuals for each selected criterion thanks to the Gold-
berg’s roulette and that the individuals were chosen through a
random procedure. This allows to cross “good” solutions for a
criterion with “good” solutions for another with a strong prob-
ability to generate a compromise between both criteria. In the
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ase that both “good” chosen solutions correspond to the
riterion, the cross-over procedure will carry out the traditio
unction of generating a better solution than the two prev
nes. The mutation procedure is not modified and its aim
sual, to diversify the search and to avoid local optimum s

ions.
The aim here is to propose a generic multiobjective ge

lgorithm able to evolve naturally towards the whole set of o
al Pareto solution. This evolution must be done from an in
opulation generally randomly generated composed of indi
ls not adapted to the considered criteria; it is necessary to e

hat the added mechanism allows an effective way to sea
he compromise zone (Fig. 6c). Two stakes are put forward
ormer is simultaneous optimization of several criteria and
atter concerns the search of compromise solutions betwee
onsidered criteria.

account multiobjective aspects.



Fig. 7. Multiobjective genetic algorithm.

The MOGA developed in this study involves different pro-
cedures, as summarized in the flowchart presented inFig. 7that
illustrates the cycle{evaluation, selection, cross-over and muta-
tion} which is repeated until a stop criterion is reached. After
this cycle, the Pareto sort is applied.

The optimization problem involves 44 variables, which may
be either continuous (i.e. the operating conditions) or discrete
(parallel equipment number, equipment size) (seeTable 1). Let
us recall that this set of variables was chosen since they have a
major impact on the performance criteria used in the optimiza-
tion procedure.

A binary system was chosen for encoding, as it simplifies
the genetic operators, crossover and mutation. This feature is
particularly interesting since it makes the GA generic enough
to be adapted to other optimization problems, without chang-

ing the genetic operators, once the precision degree is specified
as imposed by the physical nature of the variable. The only
changes that are required concern the computation of the adap-
tation function, which is typical of the treated problem. These
guidelines were used in other works with minor changes in
the treatment of engineering problems, such as multiobjective
real-time scheduling (Baez-Senties, Azzaro-Pantel, Pibouleau,
& Domenech, 2005) and determination of the optimal condi-
tions for an emulsification process (Dames, Azzaro-Pantel, &
Xuereb, 2003).

A critical point in the GA development is the treatment of
constraints, particularly here the respect of a time horizon. The
selected strategy for initial population creation was a random
chromosome generation, since the optimum position is totally
unknown at the search beginning. This main advantage of this

nt sa
Fig. 8. Constrai
 tisfaction strategy.



Table 2
List of optimization variables

method is to propose a diversified population. It was yet imposed
that 50% of the initial population verifies the horizon constraint.
For preliminary runs, this constraint was not taken into account
and led to a too low number of randomly generated solutions
satisfying the constraint. Consequently, the solutions that do no
satisfy the given time horizon are not selected in the first phase
of survival since a zero force was allocated to them. This phe-
nomenon reduces strongly the performances of the algorithm.
Secondly, it was imposed that all the individuals of the ini-
tial population verify the horizon constraint. Every generated
individual contributes to the initial population, if the constraint
is verified, otherwise another one is created. In this case, a
conflicting behavior was observed for initial solutions, mainly
constituted of oversized plants. This is why a compromise posi-
tion was finally adopted. On the one hand, enough solutions
verifying the constraint were generated (50%) so that the conver-
gence of the algorithm from the first iteration is not conditioned.
On the other hand, the randomly generated solutions introduce
diversified solutions in the genetic inheritance, which is impor-
tant for the next step of individual crossover, where no feasibility
constraint is imposed (seeFig. 8).

In Table 2, all the optimization variables and their corre-
sponding type (discrete or continuous) are listed. The continuous
variables were discretized and encoded in a binary way by a
variable change. In order to simplify the encoding parameters,
all the continuous variables were encoded using the same bit
n r th
d

men
i uat
a Th
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t r. Th
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equipment items are identical at a given stage. Even if it could
become penalizing for the investment cost criterion when car-
rying out the optimal design of the batch plant, this kind of
configuration is often suitable for reasons such as the mainte-
nance of the equipment item or flexibility (any equipment item
can carry out the tasks affected to another one).

Fig. 9 shows a code part used for operating stage encoding.
For each stage, the number of equipment items was encoded in
a binary manner (part A inFig. 9). The number of bits attributes
to this variable sets the maximum equipment item number at the
stage. The equipment item of the stage is equal to the binary value
plus one, to guarantee the presence of at least one equipment
item at each treatment stage. This was not implemented for the
storage stage because the existence of storage vessels is not
necessary for product synthesis. For equipment item sizes, a
number of bits equal to the available size for the equipment
items was set aside (part B inFig. 9), the chosen size having a
positive value whereas zero was allocated to the other places.
When equipment items are composed of several parts (i.e. the
first micro filter has a retentate vessel, a permeate vessel and
the filter itself, the ultrafilter has a retentate vessel and the filter
itself), the same approach is repeated for each component (part
B and B′ in Fig. 9).

For a better understandingFig. 10 also shows an example
of a multi-part equipment item, indeed a microfilter stage. In
part A, the zero represents one equipment item at the stage, as
e l of a
umber (eight bits). For each one, it was checked whethe

iscretization was accurate enough for the problem.
Concerning the discrete variables dedicated to equip

tems, a typical encoding was proposed with an adeq
rrangement. They were grouped by treatment stages.
eans that the number of equipment items at each stag

he size of these equipment items were encoded togethe
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xplained previously. Part B represents a retentate vesse

Fig. 9. Operating stage encoding method.



Fig. 10. Operating stage encoding example.

big size, part B′ represents a medium sized filter and part B′′
represents a small permeate vessel.

From the previous example, it can be observed that not any
binary sequence represents systematically a treatment stage. In
part B, for example, it is impossible to have the sequence 1 1 0,
which would mean that the retentate vessel is both large and
medium sized, at the same time. The initial procedure for the
generation of population is defined by the user, so this problem
can be avoided. On the other hand, the cross-over and mutation
procedures of the genetic algorithm can transform chromosomes
representing solutions into unrealistic representations. That is
why a correction procedure is implemented to make the chro-
mosomes representation realistic, while being careful not to bias
the algorithm search. The correction procedure was presented
in detail in (Dietz, 2004) and (Dietz et al., 2005) and the impact
of correction on the whole mechanism was studied thoroughly,
more particularly the probability of individuals to undergo a
correction which will be necessary after either an infeasible
crossover or mutation. To have an order of magnitude of the
phenomenon, let us give here the results obtained with typi-
cal values of GA parameters. A survival rate of 70% implies
that 30% of the population will be generated by crossover. The
results show that 14.8% of these individuals will undergo a cor-
rection by mutation, which then involves that 4.44 % of the total
population will mutate due to the correction procedure.

Concerning mutation, the analysis demonstrates that th
p the
p uta-
t will
s ly, it
m . Th
i ed a
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Table 3
Product demands

Product Production (kg/year)

Insulin 1500
Vaccine 1000
Chymosin 3000
Protease 6000

where,f1 represents the investment cost andf2 the environmental
impact. Vectorx = [x1, x2, . . ., xn] are the operating conditions
andy = [y1, y2, . . .,yn] refers to batch plant configuration.

Minimize the investment cost,f1, which is function of the
batch plant configuration,y, and the environmental impact,f2,
which is function of the operating conditions,x. subject to the
production constraint. They vector (respectivelyx) contains
respectively only discrete (respectively continuous) variables.
As it was mentioned previously the environmental impact crite-
rion was split into two objective functions but always respecting
the below formulation.

From the simulation results presented in (Dietz et al., 2005),
two production policies were kept, mono and multiproduct, for
optimal batch plant design purposes. In the case of a mono
product production policy, all the batches of a product are manu-
factured before treating a batch of another product. The products
are manufactured alternating intra and extra cellular product,
the order is as follows: insulin, vaccine, chymosin and protease.
The multiproduct production policy is carried out manufactur-
ing alternating one batch of each product in the above mentioned
order.

A set of data must be fixed by the user concerning the opti-
mization problem definition before the implementation of the
design methodology. These data are presented inTables 3–5.

In Table 3, the annual demand for each product is presented.
each
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robability of annihilating the effect of mutation due to
rocedure correction is 44.4%, which is quite high. With a m

ion rate of 10%, 4.4% of the total mutated population
ee the effect of mutation phenomenon destroy. Global
ust be said that the two phenomena are compensating

s why in the experimental runs that will be further present
ower value of the survival rate (50%) and a higher one for

utation rate (40%) were adopted, without biasing the gl
earch.

. Results and discussions

In a general way the optimization problem can be prese
s follows:

inf1(y), minf2(x), s.t.g(x, y) ≤ H
e

is

l

Table 4presents the available range in terms of size for
quipment type. Three sizes are available for each equip

tem: large (L), medium (M) and small (S).Table 4presents th

able 4
vailable equipment item sizes

quipment item Large Middle Smal

ermenter (m3) 6 3 1
irst micro filter-retentate vessel (m3) 6 3 1
irst micro filter-filtration surface (m2) 5 2.5 1
irst micro filter-permeate vessel (m3) 6 3 1
omogenizer-holding vessel (m3) 6 3 1
omogenizer-capacity (m3/h) 0.5 0.25 0.1
econd micro filter-retentate vessel (m3) 6 3 1
econd micro filter-filtration surface (m2) 5 2.5 1
econd micro filter-permeate vessel (m3) 6 3 1
irst ultra filter-filtration surface (m2) 50 25 10
irst ultra filter-permeate vessel (m3) 6 3 1
iquid–liquid extractor 6 3 1
econd ultra filter-permeate vessel (m3) 6 3 1
econd ultra filter-filtration surface (m2) 5 2.5 1
hromatographic separation-holding vessel 6 3
hromatographic separation-column 1 0.5 0
torage vessel 6 3 1



Table 5
Cost coefficients

Unit Size Cost

Fermenter Vj (m3) 63400.V0,6

Micro- and ultrafilter Vretentate(m3) 5750.V0,6

Vpermeate(m3) 5750.V0,6

Vfilter (m2) 2900.A0,85

Homogenizer Vholding (m3) 5750.V0,6

Cap (m3/h) 12100.cap0,75

Extractor Vextr (m3) 23100.V0,65

Vholding (m3) 5750.V0,6

Chromatography column Vchrom (m3) 360000.V0,995

Storage vessel Vsto 5750.V0,6

classical expressions used for computing the investment cost of
the equipment items, following a classical scaling law. Of course,
a thorough economic study would also include the operating cost
estimation and analysis of profitability. Since this kind of anal-
ysis only requires reliable economic data for a real process and
does not induce additional difficulties in the chosen resolution
strategy, a capital cost-based study was finally adopted for the
preliminary economic evaluation of the project for manufactur-
ing biological products.

Table 6presents the lower and upper bounds for all the vari-
ables.

Table 7displays the parameters of the genetic algorithm used
for multicriteria batch plant design. In this work, the genera-
tion number was fixed as twice the population size. The global
survival rate is relatively low as compared to standard values
for optimization of test mathematical functions (Dedieu et al.,
2003). Moreover, a high mutation rate was set as abovemen-
tioned. Although a systematic study was not carried out to find
these values, they were chosen from several preliminary tests
and agree with previous works (Dedieu et al., 2003) where simi-
lar problems were treated. The elitism was used in order to avoid
losing the best solution for each criterion. Let us also note that
typical high values for mutation rates were systematically found
for batch design problems. A thorough analysis for GA param-
eter setting was performed by (Bernal-Haro et al., 2002) via a
design of experiments analysis and showed the same trend.

iza-
t ion.
F were
s lgo-
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t

Table 6
Variable bounds

Variable Lower bound Upper bound

Cx,fer (kg/m3) 35 55
Cv,fer (kg/m3) 35 55
Cc,fer (kg/m3) 35 55
Cp,fer (kg/m3) 35 55
Ci,mf1 (kg/m3) 150 250
Cv,mf1 (kg/m3) 150 250
Cc,mf1 (kg/m3) 150 250
Cp,mf1 (kg/m3) 150 250
Wi,mf1 (m3/m3) 0.5 3.0
Wc,mf1 (m3/m3) 0.5 3.0
NPv,hom 1 3
NPp,hom 1 3
Wv,mf2 (m3/m3) 1 3
Wp,mf2 (m3/m3) 1 3
Ri,ext (m3/m3) 0.05 1.5
Rv,ext (m3/m3) 0.05 1.5
Rc,ext (m3/m3) 0.05 1.5
Rp,ext (m3/m3) 0.05 1.5
Nsto 0 7
Nfer 1 8
Nmf1 1 8
Nhom 1 4
Nmf2 1 4
Nuf1 1 8
Next 1 8
Nuf2 1 8
Nchr 1 8

Given that solutions obtained in one optimization run could be
dominated by solutions of another one, a Pareto sort procedure is
applied to the set of solutions obtained at each optimization run,
and the non-dominated solutions are considered the solutions
proposed by the methodology.

In previous works (Dietz et al., 2005), a GA was applied to
the same example for monocriterion batch design. The mon-
ocriterion results were presented and analyzed in detail inDietz
et al. (2005). In this work, the best solutions obtained for each
criterion are used to evaluate the performance of the MOGA.

The MOGA presented in this work was first used to demon-
strate that the two EI criteria considered, that are respectively
the total biomass quantity and the PEG volume, present antag-
onist goals (Fig. 11). Very similar results were obtained at each
optimization run, so only the results after the final Pareto sort
procedure are presented inFig. 11. Moreover, it must be noted
that slight differences are obtained between both production
policies because the environmental impact depends only on the
mass balance that is function of the continuous variables.

T
G

P Bicriteria
(cost–solvent)

Bicriteria
(cost–biomass)

Tricriteria
(cost–EI)

P 450 450 600
G 9
S
M
E

Considering the stochastic aspect of GAs, several optim
ion runs were carried out for each multicriteria optimizat
irst, 20 initial populations were created and three of them
elected to limit computation time in the further steps of the a
ithm, each one presenting the most favorable behavior re
o the average of one criterion considered individually.

able 7
enetic algorithm parameters

arameter Bicriteria
(solvent–biomass)

opulation size 300
eneration number 600
urvival rate 0.5
utation rate 0.4
litism by criterion 1
00 900 1200
0.5 0.5 0.5
0.4 0.4 0.4
1 1 1



Fig. 11. Pareto’s optimal solutions for biomass released–solvent amount criteria (bicriteria case).

This conflicting behavior can be explained at the liquid–liquid
extraction stage. The more solvent is used, the more efficient
the stage becomes and, consequently, the fewer products are
lost, reducing the environmental impact index computed as kg
of biomass released by kg of final product.

The same approach was also applied to the cost–environment
criteria. First, the amount of solvent used and the investment cost
were considered.

For illustration purposes,Fig. 12shows the results obtained
at each optimization run for the monoproduct production pol-
icy, performed with an identical parameter set to guarantee the
stochastic nature of the GA. In this case, the results are not
superposed as it was the case for the bicriteria optimization
biomass–solvent, which show the need of carrying out several
optimization runs for the same problem.

In Fig. 12, it can be seen that each optimization run is
oriented to a part of the search region. The first optimiza-
tion comes up with the better solution for the cost criterion,
the second for the environmental criterion and the third is a
compromise between both. The final Pareto sort procedure is
carried out over these solutions. The final results for both pro-
duction policies are presented inFig. 13. Let us note that the
Pareto zone is constituted of sparse points, since the adap-
tation function related to the investment cost takes discrete
values.

Slight differences were found between both production poli-
cies. The antagonist behavior between these two criteria, invest-
ment cost-amount of solvent used, can be explained by a com-
promise between the solvent yield and the process global yield.
When process yield is penalized, a bigger, and consequently
more expensive, batch plant is required.

In order to evaluate the search performance of the GA,Table 8
presents the best solution obtained at each optimization run for
each criteria considered as well as the best solution obtained with
a monocriterion approach. Even though the methodology was
not able to find the best solution, the values are relatively near
(around 5% more expensive for the investment cost criterion). It
must be noted that in the monocriterion optimization (seeDietz
et al. (2005)), the best value was obtained only once and, in the
other cases, the solutions were around 2–3% more expensive,
which justifies the results when several criteria are taken into
account simultaneously. The number of solutions obtained in
each optimization run was around of 25. The solutions cover a
large space of the explored domain, which means that there is no
preferential search region in the multicriteria search as shown in
Fig. 13.

It is also interesting to see where the results are placed with
respect to the criterion not considered here, in this case the
amount of biomass released.Table 9presents the range of values
for this criterion for both production policies.

r solv
Fig. 12. Pareto’s optimal solutions fo
 ent used–investment cost (bicriteria case).



Fig. 13. Pareto’s optimal solutions for solvent used–investment cost (bicriteria case).

Table 8
Bicriteria cost–solvent optimization results

Monoproduct Multiproduct

Cost (D) Solvent
(m3/kg product× 103)

Solutions
(number)

Cost (D) Solvent
(m3/kg product× 103)

Solutions
(number)

Run1 1221890 4.4451 32 1303730 5.0697 21
Run2 1290490 4.7794 23 1211100 5.0061 28
Run3 1238050 4.4146 23 1257200 4.4064 23

Best 1140990 4.3860 – 1139100 4.3860 –

They have the same order of magnitude for both production
policies, exhibiting the same order of magnitude. Moreover, the
minimal value of the range is close to the best value obtained in
monocriterion optimization value which allows less antagonism
between investment cost and biomass released criteria.

The last bicriteria optimization considers the investment cost
and biomass released. As for the previous case, three optimiza-
tion runs were carried out for each production policy. The results
obtained after the final Pareto sort procedure are presented in
Fig. 14 and are similar for both production policies as it was
shown for the cost–solvent criteria.

Table 10presents the best solution obtained at each opti-
mization run for each considered criterion as well as the best
solution obtained with a monocriterion approach. As for the
criterion referring to the amount of biomass released, the best
value is obtained at each optimization run, as it was the case
for the amount of solvent in the previous bicriteria optimiza-
tion. The number of solutions is slightly inferior to the previous
results. This can be explained by the lower antagonism between
the biomass and the cost criteria. As for the investment cost,

for both production policies, a better solution than the one of
the monocriterion GA was found. These solutions are only 2%
better than the previous ones. This shows the drawback of the
stochastic optimization methods because they can not guaran-
tee the solution optimality. On the other hand it must be noted
that the GA parameters were not the same. In the case of the
MOGA, a larger population was used, but at the same time it
must be noted that the fact that several criteria were taken into
account is not penalizing in the GA. The environmental impact
criteria guide the search for batch plants with several equipment
items diversifying the search paths.

Table 9also presents the range of values for the criterion not
considered, the amount of solvent used. These values are dis-
tant from the best values, which reminds the antagonism of this
criterion, with respect to the other ones considered as objective
functions.

The results obtained show the typical compromise between
cost and each environmental index. Since the conflicting behav-
ior between each pair of criteria (investment cost, solvent used
and biomass released) was demonstrated, the final multicriteria

Table 9
Values range for the not considered criterion

Biomass for (cost–solvent) (kg biomass/kg product) Solvent for (cost–biomass) (m3/kg product× 103)

Minimum Maximum Minimum Maximum

M
M

onoproduct 14.39 20.37
ultiproduct 14.26 22.89
36× 10−3 40.58× 10−3

35× 10−3 41.88× 10−3



Fig. 14. Pareto’s optimal solutions for biomass released–investment cost (bicriteria case).

Table 10
Bicriteria cost–biomass optimization results

Monoproduct Multiproduct

Cost (D) Biomass
(kg biomass/kg product)

Solutions
(number)

Cost (D) Biomass
(kg biomass/kg product)

Solutions
(number)

Run1 1143080 13.303 10 1252280 13.307 15
Run2 1235340 13.300 10 1289530 13.303 13
Run3 1129290 13.305 15 1116950 13.302 22

Best 1140990 13.299 – 1139100 13.305 –

Table 11
Multicriteria cost–environmental impact results

Monoproduct Multiproduct

Cost (D) Solvent
(m3/kg product× 103)

Biomass
(kg biomass/kg product)

Cost (D) Solvent
(m3/kg product× 103)

Biomass
(kg biomass/kg product)

Run1 1232630 4.4378 13.303 1130860 4.3935 13.3003
Run2 1207900 4.4214 13.304 1265100 4.4470 13.3034
Run3 1279110 4.3909 13.304 1124630 4.4588 13.3014

Fig. 15. Pareto’s optimal solutions cost–IE (tricriteria case).



Fig. 16. Pareto’s optimal solutions Cost–solvent (tricriteria case).

cost–environment batch plant design was carried out, keeping
the two environmental criteria independent: this simply means
that the same survival rate was considered for each criterion.

As for the previous optimizations, the three optimization runs
(following the same population creation procedure) were carried
out for each production policy. Given the similarity of the results
with both production policies (seeTable 11), only the results
obtained with a multiproduct production policy are presented
(Fig. 15).

It can be observed that most solutions referring to the previ-
ous bi-criteria optimization are found again. In all three cases,
the points are more concentrated near the compromise zone,
which is interesting for final decision. In order to evaluate the
methodology,Figs. 16 and 17show the results projected for each
optimization run. In this case, we observe that several optimiza-
tion runs are necessary, given the complexity of considering a
third criterion; the results are not systematically superposed as
for the bicriteria case study. Two options could be considered
for improvement, larger population and generation number and
some extra optimization runs.

Table 11presents the best solution for each criterion for both
production policies. As it was mentioned, there are only slight
differences between both production policies. It also shows that
the monocriterion search is not penalized by the multicriteria

one. In other words, the same GA is able to carry out both of
them, even when several antagonist objective functions are con-
sidered.

6. Conclusions and perspectives

A methodology has been proposed for batch plant design,
considering both investment cost and environmental impact min-
imization. An optimization scheme has been implemented using
a multiobjective genetic algorithm with a Pareto optimal ranking
method. This technique is ideally suited to this type of problem,
where a number of conflicting considerations must be taken into
account. The use of MOGA enables a robust optimization tech-
nique, across a non-linear search space (the objective functions
are computed by the use of a discrete-event simulator (DES)
integrating shortcut unit operations models) linking multiple
variables and objectives.

The paper clearly shows that opportunities for process opti-
mization and environmental impact minimization must be con-
sidered at the early stages of process development before the
process is frozen due to regulatory reasons.

Current works are now carried out on a modified ver-
sion of the DES, giving more operational flexibility to the
batch plant through the campaign policies and including new

lution
Fig. 17. Pareto’s optimal so
 s Cost–solvent (tricriteria case).



optimization criteria, reflecting the advance or delay of the
production.

It is important to note that optimization was performed with-
out any preference information, which means that the Pareto-
optimal set consists of all solutions according to any rational
decision-maker. Here the search for an optimal set of solutions
is separated from the final decision. The decision-maker is pre-
sented with a set of solutions from which he has to choose, and
the hypothesis is that when the trade-off between the objectives
is visible it would be easier to choose. However, this might not
hold as the number of objectives increases and visualization
becomes harder. This is an interesting field for further research:
a decision making tool, taking into account various weights on
criteria, reflecting the preferences of the decision maker, may be
integrated to the current framework in order to rank the obtained
solutions.
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Aide à la d́ecision pour la supervision d’un atelier discontinu: Application
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