
Retrosynthesis Prediction using Grammar-based Neural Machine
Translation: An Information-Theoretic Approach

Vipul Mann, Venkat Venkatasubramanian∗

Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA

Abstract

Retrosynthetic prediction is one of the main challenges in chemical synthesis because it requires

a search over the space of plausible chemical reactions that often results in complex, multi-step,

branched synthesis trees for even moderately complex organic reactions. Here, we propose an

approach that performs single-step retrosynthesis prediction using SMILES grammar-based rep-

resentations in a neural machine translation framework. Information-theoretic analyses of such

grammar-representations reveal that they are superior to SMILES representations and are better-

suited for machine learning tasks due to their underlying redundancy and high information capacity.

We report the top-1 prediction accuracy of 43.8% (syntactic validity 95.6%) and maximal fragment

(MaxFrag) accuracy of 50.4%. Comparing our model’s performance with previous work that used

character-based SMILES representations demonstrate significant reduction in grammatically invalid

predictions and improved prediction accuracy. Fewer invalid predictions for both known and un-

known reaction class scenarios demonstrate the model’s ability to learn the underlying SMILES

grammar efficiently.

1. Introduction1

One of the important challenges in computational chemistry is the retrosynthetic analysis of2

desired molecules that satisfy property constraints, subject to the commercial availability of the3

precursors and the feasibility of the chemical reactions required for their synthesis. The immense4

interest in this problem over the recent years could be attributed to its practical applications5

across areas such as drug discovery, synthesis of novel organic compounds, and improvements in6

∗Corresponding author
Email addresses: vm2583@columbia.edu (Vipul Mann), venkat@columbia.edu (Venkat Venkatasubramanian )

Preprint submitted to Computers and Chemical Engineering



the reactions pathways from a commercial, social, or economic viability standpoint. The industrial7

applications of retrosynthetic analysis include automobiles, petrochemicals, specialty chemicals, and8

polymer science, with a great potential to revolutionize the entire industry if the right compound9

could be synthesized.10

Retrosynthetic analysis often involves evaluating many potential candidate reaction pathways11

and molecules at multiple stages of the reaction, resulting in complex retrosynthesis trees that12

need to be searched and parsed efficiently. Computational approaches could significantly aid the13

chemist in solving different aspects of the retrosynthesis problem, such as the graph-theoretic search14

methodologies for efficient tree traversal to identify feasible reaction pathways, dictionary-based15

methods to evaluate a large search-space of precursors, and chemistry-driven heuristics to eliminate16

practically infeasible routes. Multi-step retosynthesis is usually formulated as a fundamentally17

different problem compared to the single-step retrosynthesis that we study in our work, and often18

involves either using efficient search techniques combined with one-step forward synthesis models,19

or using a sequence of single-step reverse transformations informed by chemistry-based heuristics.20

One of the first attempts that leveraged computational tools and formalized the retrosynthesis21

problem was LHASA proposed in [1]. This framework used logic and chemistry rules in the form22

of heuristics and transformations along with a chemical programming language to solve the ret-23

rosynthesis problem. Several subsequent approaches were proposed that utilized rule-based expert-24

systems [2–11], with a few of them combining network theory to discover that chemistry networks25

follow scale-free properties, a ubiquitous class of networks reported to be optimal in several other26

areas [12–15]. However, such approaches were hard to scale beyond interesting prototypes as they27

required great human effort and expertise to develop [16].28

However, in recent years, the massive surge in computational capabilities combined with signifi-29

cant advances in machine learning have resulted in a renewed attack on this problem. This includes30

approaches that combine neural network models with known chemistry knowledge encoded in the31

form of reaction templates – e.g., Segler and Waller [17] leveraged neural networks for selecting the32

reactivity centers and most suitable transformations; Wei et al. [18] predicted reaction types and33

used Smiles Molecular Arbitrary Target Specification (SMARTS) templates for predicting the likely34

products given a set of reactants and reagents, and Coley et al. [19] proposed selecting the suitable35

edit-based transformations in a reaction using reaction templates. Such methods, however, again36
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address only certain limitations of the rules-based systems and the inherent limitation of the lack37

of their ability to suggest novel chemical reactions and a bias towards the common reaction types38

still exist.39

This is overcome in purely data-driven approaches that use sophisticated machine learning ar-40

chitectures to learn the complex non-linear dynamics of a chemical reaction – both in the forward41

and the backward directions – primarily by modeling the chemical representations. This includes42

the neural sequence-to-sequence (or seq2seq) models introduced for the forward reaction prediction43

in [20] and the retrosynthetic prediction in [21] that formulated the reaction prediction task as44

a sequence modeling problem. Other recent efforts for the retrosynthesis task include a seq2seq45

approach combined with a Monte Carlo tree search [22] and various transformer model-based ap-46

proaches [23–29].47

Even though the prediction accuracy has significantly improved due to the increased complex-48

ity of model architectures, prior chemistry knowledge in such frameworks is still missing. The49

incorporation of this knowledge should, in principle, improve the model performance on out-of-50

sample examples. All previous works in this area use SMILES representations of molecules, treat-51

ing them as merely character-based strings, except for the recent work by Ucak et al. [30] that52

used substructure-based representations but suffered from lower prediction accuracy. In our earlier53

work on the forward prediction problem [24, 25], we demonstrated that incorporating chemical and54

structural information about molecules ensures that the model learns the underlying chemical trans-55

formations with significantly fewer training parameters. As an extension of that work, we propose56

here a framework for solving the retrosynthesis problem using the rich, SMILES grammar-based57

representation of molecules and highlight the inherent benefits of such representations – both from58

an information-theoretic and model performance standpoint.59

The rest of the paper is organized as follows: In Section 2, we formally define the retrosynthesis60

prediction problem as a sequence modeling task in the machine translation framework and present61

an overview of the methods underlying our work, such as the SMILES grammar, the transformer62

architecture and the beam search decoding procedure in Section 3. In Section 4, we present an63

information-theoretic analysis of the proposed grammar-representations and contrast them with the64

other representations (SMILES and molecular formula) to highlight the differences and quantify the65

advantages of using the underlying chemical structural information. The standard reaction dataset66
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and the model training aspects of our work are presented in Section 5. The evaluation metrics used67

for assessing our model’s performance, the results on the USPTO 50K reactions dataset, comparison68

with other works, and the limitations and future work in this direction are presented in Section 6.69

Finally, the concluding remarks summarizing the major contributions of this work appear in Section70

7.71

2. Problem formulation and objectives72

We formulate the retrosynthesis prediction problem as a sequence modeling task and use a73

machine translation framework for predicting the precursors for a given target molecule. The74

objective is to translate a set of input tokens corresponding to the product molecule to an output75

sequence of tokens corresponding to the precursor molecules. The input sequence may be optionally76

prepended with an identifier that indicates the reaction class. To allow the model to differentiate77

between the different precursors (reactants), a separate identifier token is used to indicate the end78

of the representation of a given precursor and the start of another. This framework is depicted in79

Figure 1.80

Figure 1: The single-step retrosynthesis prediction problem formulation using machine translation. The reaction class
information is optional.

In this framework, the participating product and reactants in a given reaction are represented81

using their corresponding grammar-based representation described in detail in Section 3.1. The82
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representation starts with the token ‘1’ and ends with the token ‘80’ for all the molecules, the83

token ‘81’ separates multiple reactants, and the token ‘82’ signifies the end of all the precursor84

representations. The other identifiers (or tokens) correspond to the sequence of production rules85

required to obtain the given SMILES string, using the grammar productions described in Table 1286

in the Appendix. The sequence modeling task is performed using a transformer model, a state-of-87

the-art architecture for sequence modeling [31].88

3. Methods89

In this section, we describe the methods involving our approach, namely the SMILES grammar-90

based representations used for encoding molecules, the transformer architecture used for the se-91

quence modeling task, and the beam search decoding procedure used for generating a set of most92

likely target sequences for a given input sequence.93

3.1. SMILES grammar94

One of the first works that attempted to formalize natural language through context-free gram-95

mars (CFGs) was proposed by Noam Chomsky [32] that was based on the idea that a group of words96

could be thought of as belonging to a constituent unit and that different constituent units could97

be grouped, hierarchically, to convey a given meaning. Formally, a context-free grammar could98

be thought of as a set of production rules that define the transformation of a set of non-terminal99

symbols to terminal symbols that correspond to strings with meaning in the natural language. In100

addition, there is a designated start symbol that indicates the start of a sentence. Therefore, a CFG101

consists of the following elements: S, a designated start symbol; Σ, the set of terminal symbols; N,102

the set of non-terminal symbols; and R, the set of production rules of the form A −→ β where A ∈103

N is non-terminal and β ∈ Σ is a terminal symbol.104

A similar grammar for the SMILES representation of molecules also exists [33] where the indi-105

vidual tokens in the SMILES string represent the terminal symbols that could be obtained through106

the sequential application of a set of production rules on the non-terminal symbols. Consider, for107

example, a subset of the official SMILES grammar presented in Table 1. The equivalent symbols108

similar to CFG for this grammar are:109

• S: SMILES110
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• Σ: { (, ), =, c, C, O, 1, 2 }111

• N: { SMILES, CHAIN, BRANCHED ATOM, BOND, ATOM, RINGBOND, BB, RB, BRANCH, AROMATIC ORGANIC,112

ALIPHATIC ORGANIC, DIGIT }113

• R: productions (rules) 1 through 20 in Table 1114

Table 1: Reduced SMILES grammar

S.No Production rules

1 SMILES −→ CHAIN

2 CHAIN −→ CHAIN BRANCHED ATOM

3 CHAIN −→ CHAIN BOND BRANCHED ATOM

4 CHAIN −→ BRANCHED ATOM

5 BRANCHED ATOM −→ ATOM RINGBOND

6 BRANCHED ATOM −→ ATOM

7 BRANCHED ATOM −→ ATOM BB

8 BRANCHED ATOM −→ ATOM RB

9 BB −→ BRANCH

10 RB −→ RINGBOND

11 BRANCH −→ ( CHAIN )

12 RINGBOND −→ DIGIT

13 BOND −→ =

14 ATOM −→ AROMATIC ORGANIC

15 ATOM −→ ALIPHATIC ORGANIC

16 AROMATIC ORGANIC −→ c

17 ALIPHATIC ORGANIC −→ C

18 ALIPHATIC ORGANIC −→ O

19 DIGIT −→ 1

20 DIGIT −→ 2

We leverage such underlying grammar to assign structure to a given SMILES string and derive115

from such structures the grammar-based representations. Consider benzene, with the SMILES string116

representation given by C1=CC=CC=C1. This representation could be obtained by applying the117
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set of production rules in Table 1 sequentially with the corresponding parses-tree shown in Figure118

2. The grammar-representation that we work with, originally proposed in our earlier work [24], is119

obtained by extracting production rules from the parse-tree by parsing it in a bottom-up-left-corner120

strategy, i.e., starting at the top and going down the left-most branch, then coming back up to parse121

the immediate right branch, and so on until the entire tree is parsed. The grammar representation122

thus obtained corresponding to the parse-tree for benzene is given in the figure caption.123

Figure 2: The parse-tree obtained for benzene with SMILES string representation as C1=CC=CC=C1. The
production rules from Table 1 applied at each stage are indicated next to the non-terminal symbols.
Parsing this tree in a bottom-up-left-corner strategy gives rise to the grammar-representation given by:
1, 3, 2, 3, 3, 3, 4, 5, 15, 17, 12, 19, 13, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17, 12, 19

Clearly, as compared to a purely character-based SMILES string representation consisting merely124

of the tokens ‘C’, ‘1’, ‘=’, ‘C’, ‘C’, ‘=’, ‘C’, ‘C’, ‘=’, ‘C’, ‘1’, without any additional information125

conveying the relationships between the tokens, the grammar-based representations are significantly126

richer, incorporate chemical and structural information, and contain hierarchical information about127

the underlying chemistry. This is leveraged by the model architecture for modeling the underly-128

ing SMILES grammar. We have shown that these representations are more efficient in modeling129
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the underlying chemistry and eliminate overparameterization in complex machine learning archi-130

tectures [24]. We present an information-theoretic analysis of the grammar representations and the131

text-based representations in Section 4 to establish the fundamental superiority of the grammar132

representations compared to other text-based representations such as SMILES.133

3.2. Sequence-to-sequence models134

We model the reaction prediction problem as a sequence modeling task that involves mapping135

the input sequence to a sequence of tokens corresponding to the output sequence. This framework136

has been used in recent years and has shown a significant promise in reaction modeling. We use the137

state-of-the-art model in this area, known as the transformer framework, proposed in [31].138

Figure 3: The encoder-decoder model architecture of a transformer as depicted in [31]

The transformer framework, shown in Figure 3, consists of an encoder-decoder architecture

where the encoder maps the input sequence to a latent space, and the decoder decodes from the

latent space in an autoregressive manner, one element at a time, to give rise to the output sequence.

The positional encodings in a transformer encode the position of a given word (or token) in the

sequence to a high dimensional vector space, getting rid of recurrent or convolution operations

that significantly improved the computational complexity of training the model architecture. These
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mappings are characterized by sines and cosines of different frequencies, given by

~ppos,i =


sin(pos/100002k/d), if i = 2k

cos(pos/100002k/d), if i = 2k + 1

(1)

An attention mechanism lets the transformer model relationships between groups of words in an

input sequence at different stages of the network. The attention-mechanism used in [31] is the

‘Scaled-Dot Product Attention’, characterized by a set of queries, keys, and values vectors. The

query and key vectors are of dimensions dk, and the value vector is of dimension dv which are

used to represent a given word and the corresponding key-value pairs for computing the attention

function. The query, key, and value vectors are obtained from the output of the preceding layers in

the network. The attention-score is computed as softmax function applied over the dot-products of

the queries and key vectors, scaled down by a factor of
√
dk, given by

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q, K, and V are the matrices of query, key, and values vectors, respectively. The atten-

tion score computed above determines the importance of different parts of an input sequence in

the current context. In order to allow the model to jointly factor in information from different

representation subspaces at different positions, multi-headed attention is computed, which involves

computing multiple attention scores in parallel, which are then concatenated and projected using a

linear transformation to compute the multi-head attention scores as,

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)WO (3)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), and WQ

i ∈ Rdpos×dk , WK
i ∈ Rdpos×dk , and W V

i ∈139

Rdpos×dv are the projection matrices for Q, K, and V, respectively. The reader is referred to [31] for140

further details on the transformer model architecture.141
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3.3. Beam search142

In order to generate the output sequences in a transformer framework, a decoding procedure is143

used that decodes from the latent space in an autoregressive manner, with the current prediction as144

input while decoding the next token. Therefore, the decoding procedure could either use a greedy145

strategy that involves selecting the token with the maximum likelihood at each stage for decoding146

the next token, generating a single most-likely sequence in the end; or on the other hand, it could147

employ a beam search procedure that decodes a set of top-B tokens at each stage based on their148

likelihood and return them as the model output. We follow the latter approach for decoding. This149

allows us to evaluate our model’s performance more extensively and compare it with the top-K150

accuracy reported in other similar works in this area. A schematic of the beam-search decoding151

procedure used in our work is shown in Figure 4.152

Figure 4: A partially completed beam search output for a beam width of 3 for a reference input. At each stage, the
most likely grammar-rules are predicted, that are used as input to decode the next most likely set of grammar-rules,
and so on until the entire sequence of grammar-rules corresponding to a given SMILES string is reconstructed. The
log-likelihood values are indicated above each node in the schematic.

4. Information-Theoretic Analysis of Chemical Representations153

Before discussing the model training aspects, we demonstrate the richness of the proposed154

grammar-based representations using an information-theoretic framework. We compare the in-155

formation capacity, information gain, and redundancy characterizing the various symbols-based156

chemical representations, namely, molecular formula, SMILES, and grammar representations. We157

first provide a brief overview of the relevant information-theoretic concepts and their intuition in the158
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next section, followed by their application to chemical representations and quantify the superiority159

of grammar-based representations from an information-theoretic standpoint.160

4.1. Shannon Entropy and Information Content161

The development and formalization of information theory, mainly by Claude Shannon in [34],162

offered a mathematical definition of the amount of information communicated between any two163

components or channels of a given system. The primary motivation was the fundamental problem164

of decoding a source message passing through a noisy channel, either exactly or approximately, at165

any other point in the communication system. However, the applications and adaptations of it are166

not limited to communication systems alone but have had far-reaching consequences across most167

fields of science and engineering.168

The Shannon entropy for a given probability distribution p(x) of a random variable x is defined

as,

H = −
M∑
i=1

p(xi) log2 p(xi) (4)

where p(x) is the probability mass function of x with M possible values. This is equivalent to the169

expected value of the Shannon information or self-information of a variable and is measured in units170

of bits per symbol. There is a direct correspondence between the amount of information in a message171

and the degree of uncertainty that is associated with it. That is, if a system can exist in one of a172

very large number of possible states, then there is a great amount of uncertainty associated with its173

state as opposed to another system that can exist only in a handful states. Therefore, the amount174

of information required is more for the former than the latter.175

Consider the two extremes of zero-information content and maximum information content. The176

Shannon entropy in Equation 4 attains a value of zero when the probability p(xi) of a xi attaining177

a given value is 1 meaning that the outcome or the value that xi could take is known with complete178

certainty, and hence, there is no information content (or gain) associated with knowing its value179

explicitly. On the other hand, when xi could take any of the possible values with equal probability,180

i.e., p(xi) = 1/M where M is the total number of possible values that the symbols in the source181

message could take, the information content is maximized and is equal to log2M . This implies that182
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in such a scenario, specifying the value of a given bit in the sequence would result in the maximum183

information gain when compared to any other scenario.184

The generalization of Equation 4 when several random variables X1, X2, . . . , Xn are present is

given by the joint Shannon entropy as,

H(X1, X2, . . . , Xn) = −
∑

x1,x2,...,xn

p(x1, x2, . . . , xn) log2 p(x1, x2, . . . , xn) (5)

The joint entropy in Equation 5 could be interpreted as an information measure corresponding

to multiple random variables presented simultaneously. Similarly, the conditional entropy that

quantifies the information content of a given random variable X1 conditioned on a set of other

random variable X2, X3, . . . , Xn, is given as

H(X1 | X2, X3, . . . , Xn) = −
∑

x1,x2,...,xn

p(x1, x2, x3, . . . , xn) log2 p(x1 | x2, x3, . . . , xn) (6)

The conditional entropy could be used to measure the information gain when partial information or185

context of other random variables is known. Equipped with information theory concepts, we now186

apply these information measures to chemical systems and molecules.187

4.2. Information theory and Chemical Representations188

Studies in chemical information theory [35] have demonstrated the promise of entropic per-189

spective in chemistry [36–39]. We analyze various chemical representations, namely, the SMILES190

representations, molecular formulas, and our proposed SMILES grammar-based representations191

from the perspective of Shannon entropy. We quantify the superiority of certain representations192

when compared to the others and highlight their inherent benefits when used in machine learning193

algorithms.194

In our framework, we consider the individual tokens in various representations as random vari-195

ables that contain bits of information required to reconstruct a given molecule. The representations196

are therefore a sequence of random variables, X1, X2, . . . , Xn, where n is the length of the represen-197

tation for a given molecule and Xi could take any of the M possible tokens defined in the vocabulary198

of the representation. For instance, consider the earlier example of benzene from Section 3.1. The199

corresponding random variables for each of the three representations is given by,200
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• Molecular formula (C6H6): X
Mo
i ∈ {‘C’, ‘6’, ‘H’}, where M = 3, n = 4201

• SMILES (C1 = CC = CC = C1): XS
i ∈ {‘C’, ‘1’, ‘ = ’}, where M = 3, n = 11202

• Grammar1(1, 3, 2, 3, . . . , 12, 19): XG
i ∈ {1, 2, 3, 4, 5, 6, 12, 13, 15, 17, 19}, where M = 11, n = 32203

Defining the random variables and computing their probability distributions over all the molecules204

in the dataset, we compute the corresponding information measures using Shannon entropy in Equa-205

tion 4. Since our objective is to quantify the information capacity for an entire representation instead206

of certain specific molecules, this distribution is computed over all the possible lengths of represen-207

tations, n, in the dataset. Similarly, the conditional information measure in Equation 6 could be208

computed using the conditional distribution of random variables based on the co-occurrence matri-209

ces (up to a given order) of the random variables in the database. The order indicates the number210

of random variables under consideration, with η− 1 conditioned random variables for an order of η.211

An order η = 1 corresponds to Shannon entropy (Equation 4), order η = 0 corresponds to Shannon212

entropy when the random variables follow a uniform distribution, and orders η > 1 correspond to213

conditional entropy with conditioning on η − 1 random variables (Equation 6).214

The Shannon entropy and conditional information measures, presented in Figure 5 and Table 2,215

are computed (at various orders) using Equations 4 and 6, respectively. The USPTO 50K test set216

is used to estimate the required (conditional) probability distributions for the three representations217

(SMILES, grammar, and molecular formula) based on the co-occurrence matrices, conditioned on a218

given number of tokens according to the order of conditioning. The probability distributions for the219

random variables are computed using the three representations for all the molecules in the test-set220

of the USPTO 50K reaction dataset to limit computational requirements, especially for calculating221

the conditional distributions. We evaluate the maximum conditional distribution up to an order of222

η = 5. The molecular formulas are extracted from the SMILES representations of molecules using223

the ‘rcdk’ library in R.224

1using the representative grammar in 1
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Figure 5: Information content vs order of conditioning (η) for the three representations

Table 2: Information content (iη) for various orders of conditioning (η) for the three representations

SMILES Grammar Molecular Formula

i0 5.426 6.022 4.906
i1 3.583 4.322 3.891
i2 2.453 1.254 2.823
i3 1.879 1.070 1.855
i4 1.599 0.822 1.367
i5 1.404 0.756 1.146

It follows from our discussion in the earlier section that the maximum information (corresponding225

to i0) is achieved when the random variables follow a uniform distribution and all the bits have226

the same probability (1/M) of taking a given value. Thus, i0 is independent of the dataset under227

consideration and is purely a property of the representation that is indicative of its information228

storing capacity. Based on Figure 5, the grammar-representations have much higher information229

capacity, followed by the SMILES representation and then the molecular formulas, highlighting the230

theoretically high information capacity of grammar representations.231

When the order of analysis is increased to 1, the information capacity decreases for all the232

representations, indicating that the underlying probability distributions are far from uniform, with233

certain values more likely than others. This is expected since in any chemical representation,234

the identifiers for atoms such as C and H are significantly more likely to occur when compared235
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to others such as F or B. It could be inferred through the probability versus identifier index236

plot depicted in Figure 6 that the SMILES and molecular formula representations are much more237

skewed, with a majority of the identifiers occurring much more frequently than the others. On238

the other hand, the grammar-based representations’ identifiers exhibit a much smoother and slower239

decay, indicating more evenly distributed probabilities for the identifiers. This validates the richness240

of grammar-representations due to the incorporation of structural-hierarchy, an argument that we241

made qualitatively in our earlier work [24].242

Figure 6: Probability of occurrence of a given token versus the sorted index

As the order of conditioning while computing the information measure is increased to η = 2, a243

drastic decrease in the information content is observed for grammar-representations, and the condi-244

tional information content remains significantly lesser than the other representations even for higher245

values of η. This could be attributed to the in-built redundancy in the grammar-representations246

incorporated by means of a hierarchical sequence of production rules encoded in a molecule’s repre-247

sentation. This transforms into lower values of conditional probabilities when an identifier’s context248

in terms of the preceding tokens is known. Qualitatively, this means that when the context of a249

token is provided, the uncertainty associated with the possible values it could take is much lesser250

than its equivalent in the SMILES representation and molecular formula-based representations.251

It is interesting to also note from Figure 5 that the conditional information content plots seem252
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to intercept twice for the SMILES and molecular formula representations, which could possibly253

be explained as follows – the first intercept is due to the relative differences in the theoretical254

information content (i0) and the actual information content (i1) computed using the conditional255

probabilities from the database, indicating that the conditional probabilities at order 1 are much256

more skewed for the SMILES representation (translating to lower entropy) since it has more tokens257

that are repeated compared to molecular formulas; and the second intercept at order 3 could be258

due to the trade-off between the number of tokens and redundancy in the representations where259

the higher number of tokens for SMILES begin to contribute more towards the conditional entropy260

(uncertainty) even after a reduction in entropy due to the partial knowledge of the context (preceding261

tokens). In contrast, the grammar-based representation consistently has the highest theoretical (i0)262

and actual (i1) information content, and the lowest conditional entropy (highest redundancy) beyond263

order 2. This clearly demonstrates the ability of grammar-based representations in overcoming264

the associated trade-off between higher number of tokens and redundancy that the SMILES and265

molecular formula-based representations suffer from.266

In summary, the underlying redundancy in grammar-representations, indicated by iη with η ≥ 2,267

could be leveraged by machine learning algorithms that model the long and short-range dependencies268

between tokens in a given sequence, such as the class of sequence-to-sequence models used in our269

work. In addition, the higher information-storage capacity of these representations, as indicated270

by i0 and i1, implies that they are much richer when compared to the other representations and271

therefore contain additional bits of information that is lacking in the other representations and272

could be crucial for the adequate differentiation between molecules in the latent space. There are273

other representations such as International Chemical Identifier (InChI) that are used to represent274

molecules and performing a similar information-theoretic analysis on such representations would275

part of our future work in this direction.276

5. Data and Model training277

We demonstrate our model’s performance using a standard retrosynthesis prediction dataset278

which is a filtered dataset derived from the text extraction work done on US Patents and Trademark279

Office’s (USPTO) database [40] and further classified into ten different reaction classes [41]. The280

filtered dataset contains only the reactants and products, with the reagent information removed and281
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the SMILES strings canonicalized. Further, similar to [21], the multiple product reactions are split282

into multiple reactions so that each reaction contains only a single major product. This dataset is283

referred to as the USPTO 50K dataset in the literature.284

In order to use our approach, we encode the SMILES strings corresponding to all the molecules in285

the database into their equivalent grammar representations as described in Section 3.1. This implies286

that since we are working with a subset of the official OpenSMILES grammar, certain molecules287

that are not in grammar are skipped and therefore are not included in the model training stage.288

Table 3 summarizes the reaction database with the number of reactions that are in grammar along289

with the train, validation, and test-set splits. Table 4 summarizes the distribution of the various290

reactions across the 10 reaction classes.291

Table 3: An overview of the retrosynthesis dataset used in our work

Dataset train valid test total

USPTO 50K

with (sanitized) molecules 40,029 5,004 5,004 50,037

in grammar 38,995 4,861 4,861 48,717

Table 4: Distribution of reactions across different reaction classes that are in-grammar

Reaction class Reaction name train valid test total

1 Heteroatom alkylation and arylation 11,886 1,476 1,478 14,840

2 Acylation and related processes 9,358 1,165 1,169 11,698

3 C – C bond formation 4,324 544 539 5,407

4 Heterocycle formation 710 89 90 889

5 Protections 513 64 62 639

6 Deprotections 6,357 796 789 7,942

7 Reductions 3,607 448 452 4,507

8 Oxidations 629 80 79 788

9 Functional group interconversion (FGI) 1,434 176 180 1,790

10 Functional group addition (FGA) 177 23 23 223
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Since the retrosynthesis prediction task involves predicting a set of precursors that could be used292

for obtaining a given product molecule, we define identifiers that distinguish the various reactant293

molecules (grammar-representation) from each other and also indicate the end of the set. These two294

additional tokens convey to the model the separation between various precursors’ representations295

and also the end of the entire set of precursors. The reaction class identifiers are appended at296

the start of the source (product) molecule’s representation while evaluating the model performance297

under known reaction type scenarios. This additional step is skipped when the model performance298

is evaluated for the unknown reaction type scenario.. A schematic for this is shown in Figure 7.299

Figure 7: The retrosynthesis reaction encoding strategy used in the machine translation framework. The identifier ‘80’
indicates the end of a given molecule’s grammar-representation, ‘81’ indicates the separation between two precursor
molecules, and ‘82’ indicates the end of the entire set of precursor molecules. The additional token indicating the
reaction type is optional and we report the model performance under both the scenarios with known and unknown
reaction classes.

We train the transformer model for this task using a cross-entropy-based loss function that

minimizes the sequence-to-sequence translation error. The model was trained using the Adam

optimizer [42] with beta β1 = 0.9, β2 = 0.98, and ε = 10−9, and a cyclic learning rate schedule that

is characterized by a fixed number of warmup steps given by

lr = d−0.5
model.min(step num−0.5, step num ∗ warmup steps−0.5) (7)

where d model is the embedding dimension (positional). At the training stage, to avoid overfitting,300

a dropout layer is used for both the feed-forward networks and the attention-mechanism, for the301

encoder and the decoder. A masking approach similar to [43] is used for generating the output302

SMILES strings from the decoded grammar-representation. A loss function based on sparse cate-303

gorical cross-entropy between the predicted and actual target sequences is minimized. The possible304

and the best hyperparameters identified for the model are given in Table 5. The lengths of the305

input and output representations to the model are fixed at 301 and 900, respectively.306
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Both the models were trained using TensorFlow 2.1 and python 3.7 for 12 cycles (∼700 epochs).307

For generating the parse-trees and extracting grammar-based features, we used the Natural Lan-308

guage ToolKit (NLTK) 3.4.5 library. The molecular datasets were processed using the 2019 release309

of the RDKit library.310

Table 5: Possible and best hyperparameter values for the transformer model architecture described in Figure 3

Hyperparameter Possible values Final model

Embedding dimensions 64, 128, 256 256

Attention heads 4, 8, 16 8

Feedforward network units 512, 1024, 2048 512

Number of layers 4, 6 4

Dropout 0.1, 0.2 0.1

Warmup steps 4k, 8k, 12k 8k

6. Results and Discussion311

In this section, we define the performance metrics, evaluate the model’s performance on the312

test-set of the USPTO 50K dataset, and benchmark the performance of our approach against other313

similar works in this area, highlighting the advantages and limitations of this framework.314

6.1. Evaluation metrics315

We evaluate our model’s performance using the following metrics – accuracy, which captures316

the ability to perfectly predict all the precursor molecules; fractional accuracy, which indicates317

the fraction of accurately predicted precursors from the set of molecules in the ground truth; and318

syntactic validity, meaning the percentage of grammatically valid predictions. In addition, we also319

compute the accuracy of prediction of the Maximal Fragment or MaxFrag [29] indicating the pre-320

diction accuracy of the longest reactant involved and report the average BLEU (bilingual evaluation321

understudy) [44] and similarity scores for this maximal fragment. The BLEU score is a standard322

metric used for evaluation of the quality of machine-translated texts against a reference translation,323
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and the similarity scores2 are computed using the similarities between the string substructures of324

the predictions and the ground truth. These metrics are reported for three example predictions in325

Figure 8.326

6.2. Results on USPTO 50K dataset327

The performance evaluation measures computed on the test set of the USPTO 50K dataset328

are presented in Tables 6 and 8 for the known reaction class scenario and in Tables 7 and 9 for329

the scenario when reaction classes are not known. We observe from Table 6 that though the top-330

10 accuracy is 66.6%, the fractional accuracy at 73.7% is much higher and indicates that a major331

fraction of the ground truth reactants is accurately predicted across reactions. The syntactic validity332

is as high as 95.6% for the top-1 predictions and 90.4% for the top-10 predictions. The decreasing333

trend in syntactic validity is expected since as the number of predictions increases, the invalid334

predictions go up because of the model’s susceptibility to decode grammatically invalid strings.335

Performance measure top-1 top-3 top-5 top-10

Accuracy 43.8 57.2 61.4 66.6

Fractional accuracy 53.8 65.4 69.2 73.7

Syntactic validity 95.6 92.8 91.6 90.4

Table 6: Accuracy, fractional accuracy, and syntactic va-
lidity on the test set with known reaction class

Performance measure top-1 top-3 top-5 top-10

Accuracy 32.1 44.3 48.9 54.0

Fractional accuracy 39.6 51.5 56.2 61.8

Syntactic validity 94.9 92.6 91.6 90.3

Table 7: Accuracy, fractional accuracy, and syntactic va-
lidity on the test set with unknown reaction class

336

337

The similarity scores in Table 8 indicate that the MaxFrag precursor is predicted with a top-338

10 accuracy of over 70% and a similarity score of over 90%, highlighting the model’s ability to339

correctly identify the characteristics of the most critical molecule (in classical retrosynthesis) with340

a fairly high degree of accuracy. The corresponding BLEU scores also indicate the good quality of341

translation that is achieved for the MaxFrag molecule.342

2computed using the SequenceMatcher routine in python that matches the longest contiguous matching sub-
sequence that does not contain any unwanted (or junk) elements

20



Performance measure top-1 top-3 top-5 top-10

MaxFrag accuracy 50.4 62.1 65.7 70.2

BLEU score 74.8 83.4 85.2 87.4

Similarity score 80.0 87.2 88.6 90.2

Table 8: MaxFrag accuracy and the corresponding BLEU
and similarity scores on the test set with known reaction
class

Performance measure top-1 top-3 top-5 top-10

MaxFrag accuracy 38.1 49.1 53.2 58.4

BLEU score 67.5 76.0 78.3 81.1

Similarity score 75.7 82.2 83.8 85.7

Table 9: MaxFrag accuracy and the corresponding BLEU
and similarity scores on the test set with unknown reaction
class

343

Few of the example top-3 predictions along with the prediction inaccuracies and performance344

metrics are presented in Figure 8.345
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(a) Example from reaction class 1; accuracy: 0.0, fractional accuracy: 0.5; syntactic
validity: 0.67, MaxFrag accuracy: 0.0, MaxFrag similarity: 0.56 , MaxFrag BLEU: 0.36

(b) Example from reaction class 5; accuracy: 1.0, fractional accuracy: 1.0; syntactic
validity: 1.0, MaxFrag accuracy: 1.0, MaxFrag similarity: 1.0 , MaxFrag BLEU: 1.0

(c) Example from reaction class 6; accuracy: 0.0, fractional accuracy: 0.0; syntactic
validity: 0.33, MaxFrag accuracy: 0.0, MaxFrag similarity: 0.89 , MaxFrag BLEU: 0.79

Figure 8: Example top-3 predictions made by our model and their corresponding evaluation metrics indicated in the
figure captions
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6.3. Performance across reaction classes346

In order to further understand the performance of our model across reaction classes, we increase347

the granularity of the analysis and compute the five metrics– accuracy, fractional accuracy, MaxFrag348

accuracy, similarity score, and syntactic validity across the 10 reaction classes. The detailed mea-349

sures of these metrics are summarized in Tables 13, 14, 15, and 16 for the known reaction class350

scenario, and in Tables 17, 18, 19, and 20 for the unknown reaction class scenario in Appendix 2.351

The fraction of invalid predictions across the various reaction types for top-10 analysis are presented352

in Figures 9 and 10.353

Figure 9: Invalid percentages for Top-10 predictions with known reaction class

Figure 10: Invalid percentages for Top-10 predictions without reaction class
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The above trend indicates that except for reaction class 6 (deprotections) and the surprisingly354

accurate predictions on reaction class 10 (functional group addition) when the reaction class is un-355

known, all the reaction types result in nearly the same percentage of invalid predictions. A likely356

possibility for this observation could be the model learning the underlying grammar, irrespective of357

the number of samples in each class or the chemical transformations occurring across the different358

reaction types. This behavior is not trivial since the corresponding top-10 prediction accuracy in359

Tables 16 and 20 do not follow the same trend across reaction classes. Moreover, the percentage of360

invalid predictions shows only minor variations across the two scenarios with known and unknown361

reaction classes. This observation again highlights the ability of our proposed SMILES grammar-362

based representations to force the model to learn the underlying grammar and consequently generate363

grammatically correct predictions, irrespective of the other factors. The high percentage error in364

deprotection reactions could be attributed to several factors that could be specific to the reac-365

tion class and could be analyzed through chemistry-driven heuristics that we envision as a hybrid366

explanation-generation system as a future extension of this work.367

6.4. Comparison with other works368

Here, we compare the performance of our model against other similar works in this area. One of369

the first benchmarks in retrosynthesis prediction using seq2seq models on SMILES string represen-370

tations is by Liu et al. [21]. Their framework is similar to ours in that there are no post-processing371

of predictions, data augmentation strategies, and model performance-boosting methods used for372

further improving the model performance – techniques that usually result in improved accuracy373

custom-fit to a given setting. Our objective is to propose an alternative formulation that is funda-374

mentally different from the other approaches in that it ensures incorporation of chemistry knowledge,375

forcing the model to learn the underlying SMILES grammar and minimize invalid predictions.376

Table 10 compares the prediction accuracy against those reported in Liu et al. We observe that377

our model improves the prediction accuracy by a margin of ∼ 5% across all the top-N measures and378

reduces the percentage of invalid predictions by 53% – 64% when the reaction class is known. We379

attribute the higher accuracy and the reduced invalid predictions to the grammar-representations380

that incorporate structural information about the molecules and are characterized by much higher381

redundancies when compared to SMILES strings as demonstrated using the information-theoretic382
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analysis in Section 4. Figure 11 demonstrates our model’s ability to outperform the top-10 accuracy383

reported in Liu et al. across reaction classes, often by a significant margin. For completeness, we384

also compare out models’ performance with that reported in Liu et al. when the reaction class is385

unknown. Since they did not evaluate the model under this setting, we use the implementation of386

[22] that evaluated the performance of this model with unknown reaction class. This is of interest387

for retrosynthetic planning under certain scenarios where no chemistry information about the target388

molecule is known apriori. A comparison of the accuracy reported under this scenario is presented in389

Table 11. We report the detailed class-wise results for both the models (with and without reaction390

class information) in Appendix 2.391

Table 10: Comparison with other similar works involving purely seq2seq models and USPTO 50K dataset with known
reaction classes

Model
Top-N measure (with reaction class)

accuracy (%) | invalid (%)

1 3 5 10

Liu Seq2Seq [21] 37.4 | 12.2 52.4 | 15.3 57.0 | 18.4 61.7 | 22.0

Our work 43.8 | 4.4 57.2 | 7.2 61.4 | 8.4 66.6 | 9.6

Table 11: Comparison with other similar works involving purely seq2seq models and USPTO 50K dataset with
unknown reaction classes

Model
Top-N measure (without reaction class)

accuracy (%) | invalid (%)

1 3 5 10

Liu Seq2Seq 3 28.3 | - 42.8 | - 47.3 | - 52.8 | -

Our work 32.1 | 5.1 44.3 | 7.4 48.9 | 8.4 54.0 | 9.7

3as implemented in [22]; the invalid fractions were not reported for this model
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Figure 11: Comparison of top-10 accuracies across different reaction classes

As mentioned earlier, it is possible to achieve even higher prediction accuracy through additional392

performance boosting techniques as demonstrated in the following studies. Zheng et al. [45] used393

an additional transformer model that takes as input the output of another transformer model to394

correct the invalid predictions. Tetko et al [29] proposed data augmentation strategies that signif-395

icantly increased the size of the dataset used for building a transformer model for retrosynthesis.396

Karpov et al. [26] used model ensembling, snapshot learning methods, and increasing beam search397

temperature to improve the model performance. Lin et al. [22] used averaging of model weights and398

combination with Monte Carlo Tree Search (MCTS) strategies for proposing retrosynthesis routes.399

The accuracy for such augmented (template-based and template-free) models vary significantly and400

the top-1 accuracy could be as high as 65%. However, we emphasize here that the objective of401

this work is not to pursue the state-of-the-art but to highlight the benefits of incorporating prior402

chemistry knowledge into such black-box models. We have shown that incorporation of this knowl-403

edge translates to higher accuracy and fewer invalid predictions when compared to purely black-box404

models using the same framework. Applying such data augmentation and transfer-learning strate-405

gies to boost the model performance further would be the future extension of our work which we406

conjecture would further improve the model accuracy significantly.407
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Finally, we would like to highlight here that building models that leverage as much prior408

chemistry knowledge as possible would be more reliable, acceptable, and explainable as compared409

to purely data-driven, black-box models that completely disregard known underlying chemistry.410

Such prior chemistry knowledge could be in the form of information about molecules (grammar,411

molecular-graph, or structure-based representations), possible reactions (reaction class information,412

molecular descriptors), model architecture and workflow (that mimic expert chemists), and other413

similar approaches utilizing deeper integration of first-principles with machine learning-based mod-414

els.415

7. Conclusions416

Retrosynthesis analysis is a challenging problem since it involves predicting the precursors with417

limited information, searching a combinatorially large number of possible synthesis pathways, and418

approximating an often complex multi-step analysis as a single-step prediction problem. Naturally,419

incorporating additional information about the reaction or the molecules involved would be of con-420

siderable use given the complexity of the task and the limited information often present for making421

the predictions. Towards that goal, we have proposed grammar-based representations of molecules422

that incorporate chemical and structural information extracted from their SMILES string repre-423

sentations. We have shown in our earlier work [24] that such representations successfully overcome424

over-parameterization in models for the forward reaction prediction. Here, we have quantified the425

superiority of SMILES grammar-based representations compared to the character-based SMILES426

representations from an information-theoretic standpoint. We have shown that such representa-427

tions have higher information capacity captured by the Shannon entropy computed for molecules428

in the USPTO 50K dataset. Moreover, the conditional entropy measures highlighted the higher429

redundancy built-in to these representations, making them better-suited for machine learning ar-430

chitectures.431

The performance of our model reinforced the above observations. We report the top-1 prediction432

accuracy of 43.8% and syntactic validity of 95.6% as opposed to 37.4% and 87.8%, respectively,433

reported in Liu et al. We have shown that not only does our model outperform the aggregate434

statistics reported in Liu et al., the performance of our model across the various reaction classes is435

much better. An interesting observation is that owing to the grammar representations, our model436
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results in nearly the same percentage of invalid predictions across reaction classes – independent of437

reaction type, the class-wise number of reactions in the training set, and the known or unknown438

reaction class scenarios. Moreover, the MaxFrag similarity, which could be as high as 90%, indicates439

that the model predicts the major precursors required for synthesis fairly accurately. The future440

extension of our work would involve solving the multi-step retrosynthesis problem and incorporating441

additional contextual information about the reactions into the same framework.442
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Appendix 1455

The SMILES grammar used in this work is the same as that used in our previous work on the456

forward prediction problem [24]. This grammar comprises 80 production rules with 24 non-terminals457

symbols specifying the different structural components of a SMILES string. All the production rules458

for the grammar used in our work are summarized in Table 12. The first and the last production459

rules, SMILES −→ CHAIN and NOTHING −→ NONE, are additional rules included signifying the start460

and end of a SMILES string, which is analogous to the <START> and <END> tokens in natural461

language processing marking the beginning and the end of sentences, respectively.462

Table 12: SMILES grammar used in GO-PRO [24]

S.No Production rules

1 SMILES −→ CHAIN

2 ATOM −→ BRACKET ATOM | ALIPHATIC ORGANIC | AROMATIC ORGANIC

3 ALIPHATIC ORGANIC −→ B | C | N | O | S | P | F | I | Cl | Br

4 AROMATIC ORGANIC −→ c | n | o | s | p

5 BRACKET ATOM −→ [ BAI ]

6 BAI −→ ISOTOPE SYMBOL BAC | SYMBOL BAC | ISOTOPE SYMBOL | SYMBOL

7 BAC −→ CHIRAL BAH | BAH | CHIRAL

8 BAH −→ HCOUNT BACH | BACH | HCOUNT

9 BACH −→ CHARGECLASS | CHARGE | CLASS

10 SYMBOL −→ ALIPHATIC ORGANIC | AROMATIC ORGANIC | ELEMENT SYMBOLS

11 ISOTOPE −→ DIGIT | DIGIT DIGIT | DIGIT DIGIT DIGIT

12 DIGIT −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

13 CHIRAL −→ @ | @@

14 HCOUNT −→ H | H DIGIT

15 CHARGE −→ - | - DIGIT | - DIGIT DIGIT | + | + DIGIT | + DIGIT DIGIT

16 BOND −→ - | = | # | / | \\

17 RINGBOND −→ DIGIT | BOND DIGIT

18 BRANCHED ATOM −→ ATOM | ATOM RB | ATOM RB BB

19 RB −→ RB RINGBOND | RINGBOND

20 BB −→ BB BRANCH | BRANCH

21 BRANCH −→ ( CHAIN ) | ( BOND CHAIN )
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Table 12: SMILES grammar used in GO-PRO [24]

S.No Production rules

22 CHAIN −→ BRANCHED ATOM | CHAIN BRANCHED ATOM | CHAIN BOND BRANCHED ATOM

23 CLASS −→ DIGIT

24 ELEMENT SYMBOLS −→ H

25 NOTHING −→ NONE
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Appendix 2463

The detailed results capturing the model performance for the five metrics – accuracy, fractional accuracy,464

syntactic validity, maximal fragment (MaxFrag) accuracy and maximal fragment (MaxFrag) similarity are465

reported here. Tables 13, 14, 15, and 16 present the results for the top-1, top-3, top-5, and top-10 predictions,466

respectively, when the reaction class is known. Tables 17, 18, 19, and 20 present the results for the top-1,467

top-3, top-5, and top-10 predictions, respectively, when the reaction class is unknown.468

Scenario 1: Reaction class known469

Top-1 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 40.9 52.2 37.7 26.7 66.1 35.4 50.4 69.6 38.3 56.5

Fractional accuracy 54.9 67.0 49.9 39.4 81.5 35.4 50.4 75.3 45.0 71.7

Syntactic validity 96.7 95.8 96.4 94.1 97.6 90.9 95.2 97.1 98.8 97.8

MaxFrag accuracy 50.3 61.3 44.9 37.8 83.9 35.4 50.4 77.2 44.4 60.9

MaxFrag similarity 82.0 86.2 78.6 71.2 91.8 68.0 79.5 89.0 78.4 82.9

Table 13: The top-1 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-3 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 54.3 66.6 51.4 31.1 80.6 49.9 61.3 77.2 51.7 73.9

Fractional accuracy 66.3 77.4 62.5 49.4 89.5 49.9 61.3 82.9 57.8 80.4

Syntactic validity 94.5 92.6 93.9 91.8 94.4 86.3 89.6 94.4 95.6 91.9

MaxFrag accuracy 61.0 72.1 58.3 46.7 90.3 49.9 61.3 84.8 58.9 73.9

MaxFrag similarity 87.0 91.5 84.3 80.3 98.4 81.0 89.2 96.0 88.0 89.4

Table 14: The top-3 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)
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Top-5 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 59.3 70.9 54.5 36.7 83.9 53.9 64.4 79.7 56.7 73.9

Fractional accuracy 70.7 80.9 66.0 53.9 91.1 53.9 64.4 84.8 61.7 80.4

Syntactic validity 93.4 91.6 92.6 90.9 92.6 84.0 88.9 93.2 94.3 91.6

MaxFrag accuracy 65.2 75.7 61.0 50.0 93.5 53.9 64.4 87.3 62.2 73.9

MaxFrag similarity 88.5 92.2 85.6 81.2 98.5 83.3 90.3 99.2 88.2 89.2

Table 15: The top-5 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-10 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 65.1 75.4 60.3 41.1 85.5 58.6 70.6 82.3 63.3 78.3

Fractional accuracy 75.5 84.2 70.5 58.3 91.9 58.6 70.6 86.7 67.8 82.6

Syntactic validity 92.3 90.4 91.8 90.0 92.3 82.3 87.7 91.4 92.2 92.7

MaxFrag accuracy 69.8 79.4 65.7 53.3 93.5 58.6 70.6 88.6 67.8 78.3

MaxFrag similarity 90.1 93.5 87.8 82.9 98.6 85.0 92.0 98.9 90.5 91.8

Table 16: The top-10 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the
reaction classes (in %)

Scenario 2: Reaction class unknown470

Top-1 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 32.2 39.9 25.8 10.0 35.5 26.7 35.8 38.0 16.1 60.9

Fractional accuracy 42.6 52.2 33.9 15.0 44.4 26.8 35.8 40.5 22.5 63.0

Syntactic validity 95.4 94.8 96.1 92.4 96.4 92.0 94.4 96.8 96.3 100.0

MaxFrag accuracy 40.7 48.9 33.0 11.1 50.0 26.9 35.8 41.8 21.7 60.9
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Top-1 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

MaxFrag similarity 76.7 80.6 72.9 57.3 79.2 70.7 74.3 83.0 72.4 81.6

Table 17: The top-1 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-3 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 43.5 54.8 37.1 15.6 43.5 39.9 48.0 48.1 23.9 69.6

Fractional accuracy 53.5 65.7 46.0 21.1 53.2 39.9 48.0 51.3 30.3 71.7

Syntactic validity 93.2 92.7 93.8 90.0 94.8 89.4 92.0 95.5 93.3 97.7

MaxFrag accuracy 50.3 60.7 44.2 17.8 58.1 39.9 48.0 51.9 28.9 69.6

MaxFrag similarity 82.5 86.7 78.3 65.1 85.1 79.2 83.1 87.2 78.2 89.0

Table 18: The top-3 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)

Top-5 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 48.5 59.8 41.7 17.8 46.8 44.2 51.5 48.1 30.0 69.6

Fractional accuracy 58.7 70.6 51.5 27.8 58.9 44.2 51.5 51.9 35.3 71.7

Syntactic validity 92.3 91.4 93.3 90.5 94.0 88.0 90.6 94.6 92.8 96.4

MaxFrag accuracy 54.6 64.7 48.8 24.4 64.5 44.2 51.5 51.9 32.8 69.6

MaxFrag similarity 83.8 88.2 80.1 68.0 89.1 81.5 84.8 87.8 78.8 88.8

Table 19: The top-5 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the reaction
classes (in %)
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Top-10 measure
Reaction class

1 2 3 4 5 6 7 8 9 10

Accuracy 53.2 64.4 49.0 20.0 58.1 50.1 55.5 57.0 34.4 69.6

Fractional accuracy 64.8 74.4 59.1 31.7 71.8 50.1 55.5 59.5 40.6 73.9

Syntactic validity 91.2 89.9 91.9 90.7 93.2 86.7 88.9 93.1 91.4 96.4

MaxFrag accuracy 59.8 68.6 55.8 30.0 79.0 50.1 55.5 60.8 37.8 69.6

MaxFrag similarity 85.4 89.4 82.3 71.9 92.9 83.9 87.3 88.7 80.1 88.2

Table 20: The top-10 accuracy, fractional accuracy, MaxFrag accuracy and MaxFrag similarity scores across the
reaction classes (in %)
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