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Abstract 
 
This paper details the development of an automated vision-based solution for identification of 
paint and substrate defects on painted slates. The developed vision system consists of two 
major components. The first component of the system addresses issues including the 
mechanical implementation and interfacing the inspection system with the sensing and optical 
equipment. The second component involves the development of an image processing 
algorithm that is able to identify the visual defects present on the slate surface. The process of 
imaging the slate proved to be very challenging as the slate surface is darkly coloured and 
presents depth non-uniformities. Hence, a key issue for this inspection system was to devise 
an adequate illumination system that was able to accommodate challenges including the 
slates’ surface depth non-uniformities and vibrations generated by the conveying system. The 
visual defects are detected using a novel texture analysis solution where the greyscale (tonal 
characteristics) and texture information are embedded in a composite model. The developed 
inspection system was tested for robustness and experimental results are presented. 
 
Keywords: On-line inspection system, slate, visual defects, illumination set-up, industrial 
conveyor, texture analysis. 
 
 
1. Introduction 
 
Although slate manufacturing is a highly automated process, currently the slates are inspected 
manually by a human operator who grades them visually as they emerge via a conveyor from 
the paint process line. The human inspection is dull and monotonous work and this task offers 
only satisfactory results when applied to high-speed production lines [20]. Thus, our aim was 
to develop an automated vision-based inspection system (for a review of the system 
engineering issues in industrial inspection the reader can refer to Batchelor and Waltz [3] and 
Newman and Jain [13]) that is able to classify the slates for quality so that defective units may 
be rejected and to gather statistics on the efficiency of the production process.  
 
The authors found no prior relevant work on the automated inspection of painted slates 
although there is an abundance of references on the subject of ceramic tiles inspection 
[1,2,6,7,8,17,19]. Though the manufacturing process for ceramic slates and slates are 
significantly different [4,6], the ceramic tiles are not dissimilar to slates as both products have 
textured surfaces, have rectangular shapes and the conveying requirements are similar.  
 
All work in the field of ceramics inspection reviewed, used different imaging sub-systems and 
processing techniques to detect the visual defects present on the surface of the product. The 
literature review also indicated that of equal importance to the image processing procedure 
that is employed to quality grade the product, is the adoption of an opto-mechanical solution 
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that minimises spatial and temporal illumination variations.  The ceramic inspection systems 
examined use either diffuse [2,17] or collimated lighting techniques [1].  Line scan cameras 
are invariably used in an effort to reduce spatial image acquisition non-uniformities. This is 
motivated by the fact that it is easier to control the light intensity uniformity of a long narrow 
light stripe than that of a large two-dimensional area [3,13].   
 
The second major component of the vision-based inspection systems is represented by the 
image processing procedure that is applied in order to detect the visual defects on the surface 
of the inspected product. The inspection systems reviewed attempted to identify the defects by 
either applying morphological techniques [2,12,14,16,21] or inspection solutions based on 
texture analysis [1,9,10,11,17,19]. In this regard, Boukouvalas et al [2] used 1-D convolvers 
to identify the spot and line defects present on textured ceramic tiles. The convolution masks 
implemented using the 1-D convolvers can detect defects with widths within a factor of 1.5 of 
the feature for which the filter is designed. This solution is not applicable to slate inspection 
as the typical defects present on the slates surface have a large range of sizes. Later, 
Boukouvalas et al [1] implemented an inspection algorithm based on Wigner distributions that 
was successfully applied to the inspection of coloured and heavily textured ceramic tiles. This 
method is more applicable to inspection of highly textured surfaces with repetitive patterns, 
thus this method is not suitable for slate inspection. Peñarada et al [17] developed an 
inspection system that used local grey-level intensity histograms to discriminate between 
acceptable and defective image regions. Although this method appeared to be promising, it 
proved to be unreliable when applied to slate inspection. This was motivated by the fact that 
the local greyscale distributions vary widely across different regions of the slate and from 
slate-to-slate. 
 
Other related implementations include the application of the grey level difference [20], 
morphological methods [12,14] and texture-based methods [11,18].  These methods proved to 
be limited to their application as they were not able to produce effective discriminative 
features that are able to identify robustly the visual defects present on the slate surface.  
 
To devise a robust algorithm for slate inspection proved to be a very challenging task as the 
slate’s surface greyscale information has a heterogeneous distribution and varies from slate-
to-slate. To this end, we have devised a novel highly adaptive texture analysis algorithm that 
is able to accommodate the local variations in the greyscale distribution but at the same time 
robustly identify the visual defects. Key to its success was the tonal-texture image descriptor 
that can adaptively balance the tonal characteristics and the texture information.             
  
This paper is organised as follows. Section 2 describes the typical slate defects. Section 3 
details the development of the prototype inspection system. Section 4 describes the 
development of the texture analysis inspection algorithm. Section 5 discusses the 
experimental results and Section 6 concludes this paper. 
 
 
 
2. Description of slate defects 
 
The slates are roofing materials that are painted on a high-speed paint line and are manually 
inspected when they emerge from a paint line via an industrial conveyor. The human 
inspector removes the slates that do not meet the inspection criteria.  
 



The slates have a rectangular shape and their top surface is painted in dark grey with a high 
gloss finish. The defects present on the slate surface can be roughly classed into substrate and 
paint defects. Paint defects include no paint, insufficient paint, paint droplets, efflorescence 
paint debris and orange peel. Substrate defects include incomplete slate formation, lumps, 
depressions and template marks.  
 
 

Defect type Defect Size Description 
Insufficient paint 20mm to all area Reduced gloss level 

Missing paint 2mm to all area Paint missing from some areas 
Droplet 2mm to 15mm Excess dried and cracked paint 

Effloresence 5mm to all area Contaminant preventing correct adherence 
of paint 

Paint dust 2mm to 50 mm Dried dust on surface 
Burn mark 20 mm to all area Reduce gloss due to overheating 

Barring 20mm to all area Shade variation caused by uneven heating 
Spots 1mm to 5mm Localised shade variation 

Shade variation 20mm to all area Incorrect pre-heating of slate 
Template marks 20mm to all area Substrate defects due to incorrect slate 

formation/drying 
Lumps and 
depressions 

5mm to 100 mm Substrate defects  

 
Table 1. Description of paint and substrate defects. Note that the size of defects is measured 

with respect to the cross and moving direction of travel for slate. 
 
 
The substrate and paint defects may have arbitrary shapes and their size range from one 
square mm to hundreds of square millimetres (see Table 1). A number of representative paint 
and substrate defects are illustrated in Figure 1.  
 
 

 
Figure 1. Representative defects found on the slate surface. (a) Defect free slate section. (b-l) 

Defective slate section. 
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3 Overview of the developed inspection system 
 
The devised inspection system was built to replicate the factory conditions. Its main 
components are the opto-mechanical component and the PC which is the host of the 
inspection software. The opto-mechanical component comprises a two metre long industrial 
conveyor [Noreside Conveyors and Elevators (Ireland)] and the optical and sensing 
equipment.  The conveyor is able to transport the slate to the inspection line at speeds in the 
range of 15 to 50 m/min. The sensing equipment consists of a Basler 2k-pixel line–scan 
camera which is fitted with a 28 mm machine vision lens. The line-scan camera was mounted 
on a 3 degree of freedom micro-positioner in order to facilitate fine adjustments of camera 
view line. A Euresys frame grabber assures the interface between the digital line-scan camera 
and PC. In order to prevent slate rotations when the slate is transported to the inspection line, 
the slate is aligned by a guide placed on one side of the conveyor and an optical proximity 
sensor triggers the image capture prior to the arrival of the slate at the inspection line. The 
prototype inspection system is illustrated in Figure 2.  
  

   
 

Figure 2. The prototype slate inspection system. 
 
3.1 Illumination set-up 
 
The illumination-set employed relies on the strong reflecting properties of the slate’s surface. 
The light incident on the slate and the light reflected by the slate surface are equal if the 
quality of the slate surface is acceptable. In this regard, paint and substrate defect have 
reduced gloss level (except paint droplets that may have a higher gloss level than the surfaces 
of acceptable quality) or altered surface angles caused by lumps and depressions. This 
translates to a reduction in the light level arriving at the sensing device.  
 
The inspection system described in this paper uses a collimated light source. In our 
experiments we have also tried an illumination set-up using a diffuse light source but the level 
of light reflected back to the sensing device was to low to image the slate at high resolution. A 
low resolution acquisition was not desirable as small defects cannot be imaged in the slate 
moving direction. The light level offered by the collimated light source was sufficient to 
image the slate at high resolution (exposure time 400μs) and for this implementation this type 
of illumination has been adopted. But one of the problems we encountered was the variation 
in depth profile across the slate due to a slight but acceptable bowing that the nominal slates 



may present. The depth profile variations range from negligible to 5 mm over the slate length 
and up to 2 mm along the slate width. Although this does not impair slate functionality in any 
way, the depth profile variation raises and lowers the absolute position of the band of light 
relative to the camera viewing position. As a mechanical solution to force the slate into a flat 
position is not feasible, it was decided to widen the light stripe projected at the inspection 
point by defocusing the lens of the collimated light. Nonetheless, this caused a reduction in 
light intensity that has been compensated by using the spare capacity in the lamp controller. 
The width of the light stripe has been calculated using a simple trigonometric calculation and 
the lens was defocused such that the resulting light stripe was made equal to 25mm. This 
width of the light stripe made the system insensitive to depth profile uniformities of the 
inspected slate.  The illumination light source consists of a Fostec 30” fiber optic light fitted 
with an adjustable cylindrical lens and two Fostec DCR III 150 W lamp controllers. It is 
worth noting that the solution to use collimated light has the advantage that the ambient light 
has negligible influence on the level of light reflected by the slate surface back to the sensing 
device. We had tested the inspection system under various ambient light conditions and the 
system proved to be insensitive to changes in the ambient lighting.     
 
 
4. The inspection algorithm  
 
The inspection algorithm comprises of a few steps. The first step involves the identification of 
the slate from image data to verify the presence of the nail holes. The second step involves 
analysing the image data in order to detect the visual defects present on the surface of the 
inspected slate. In the remainder of this section the steps required by the image processing 
procedure are detailed.   
 
4.1 Segmentation of slate image from background and nail checking 
 
As mentioned earlier the first step of the image processing procedure that is applied to verify 
if the inspected slate is defective involves the identification of slate boundaries in the image 
data. Slate edge detection was facilitated by cutting slots in the conveyor base and ensuring 
the belt width is less than that of the slate. This resulted in no light arriving back at the camera 
when the slate is not imaged and a sharp rise in the signal when the slate arrives at the 
inspection line. Thus, a simple threshold operation was sufficient to robustly identify the slate 
edges. Corners of the slate are located by tracking the horizontal and vertical lines to their end 
positions.  
 
Once the corners of the slates are identified the next operation verifies the presence of the nail 
holes and if they are correctly positioned with respect to the slate boundaries. As the optical 
signal associated with the nail hole is significantly lower when compared to the slate surface, 
a threshold operation is sufficient to robustly identify them in the slate image data. The 
algorithm starts with identifying the nail hole placed on the left hand side of the slate. Then 
knowing the slate boundary (i.e. slate rotation) the algorithm verifies the presence of the 
remaining two nail holes situated on the right hand side of the slate. If the nail checking 
procedure fails the slate is classed as defective. If the nail holes are correctly positioned the 
algorithm fills them with pixel information adjacent to the nail hole as not to trigger visual 
defects when the slate is subjected to the inspection algorithm described in the next section. A 
graphical example illustrating the nail hole checking procedure is depicted in Figure 3. 
 



   
 

Figure 3. Nail hole checking procedure. (a) Image before nail hole inspection.  
(b) Resulting image after nail hole inspection. 

 
 

4.2. Texture analysis inspection   
 
The aim of the inspection algorithm is the classification of inspected slates into two 
categories: defective slates and slates with acceptable quality. As mentioned in the 
introductory part of this paper, a number of potential algorithms can be applied to identify the 
visual defects present on the slate surface. Among many possible solutions the morphological 
and texture analysis methods look most promising. The morphological approaches appear to 
be more appealing to use due to their simplicity and real-time operation [4,14]. However there 
are a few aspects that are worth noting. The first is a relative high greyscale variation between 
various imaged areas of the slate. In our experiments we also found out that the mean grey 
level for successive slates can vary substantially (up to 20 grey levels where the average mean 
grey level is 167). These variations are not generated by the optical and sensing equipment 
but rather due to acceptable variation in slate surface color. Hence, the potential algorithm has 
to be able to accommodate these greyscale non-uniformities. Also it has been observed that 
the vast majority of defects are negligibly small relative to the whole slate image. Hence, the 
inspection algorithm should analyse the image data in small image sub-sections as the relative 
impact of the defect on the overall grey-level statistics of the section is increased [7,10]. By 
experimentation it has been determined that the slate image should be divided into sections of 
128 ×128 pixels and the inspection algorithm should analyse them separately.  The second 
problem is to decide which segmentation method is better suited to identify the visual defects 
on the slate surface. In our previous paper [4] we have advanced a multi-component 
morphological algorithm, where each component has been designed to be defect specific. 
Although the method proved to be very robust its main disadvantage is the fact that it relied 
on a relatively large number of threshold parameters that were experimentally determined a 
fact that made the algorithm difficult to be retrained if the production process would be 
changed.  
 
Thus, in this paper our aim is to propose a new algorithm that is able to identify areas in the 
image that have similar tonal/texture characteristics. To this end it has become clear that an 
inspection algorithm based on texture analysis offers a higher flexibility than the 
morphological-based inspection algorithms. The devised inspection algorithm uses two types 
of distributions, namely tonal (greyscale) and texture distributions that are used as input 
features in a highly adaptive split and merge architecture [15]. For our implementation, Local 



Binary Pattern (LBP) distributions [18] are used as texture feature while the tonal information 
is extracted by a self-initialising unsupervised K-means algorithm [5].   
 
 
4.3 LBP texture feature distributions 
 
The LBP concept developed by Ojala et al [18] attempts to decompose the texture into small 
texture units. A texture unit is represented in a 3×3 neighbourhood which generates 28 
possible standard texture units. In this regard, the LBP texture unit is simply obtained by 
applying a simple threshold operation using the following rule: 
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where V0 is the central pixel of the 3×3 mask.  The LBP is determined as follows: 
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As the LBP does not take into consideration the contrast of the texture which is a measure of 
local greyscale variation, often the LBP is used in conjunction with a contrast measure. Here, 
the contrast measure is the normalised difference between the greylevel of the pixels with a 
LBP value of 1 and the pixels with a greylevel 0 contained in the texture unit.  
 
 

  
 

   
 

Figure 4. LBP image. (Top row) LBP image of a defect free image section. 
 (Bottom row) LBP image for a defective image section. 

 



The distribution of the LBP/C of the image represents the texture spectrum. The LBP/C 
distribution is a 2D histogram of size 256 × b where b is the number of bins for contrast 
measure. As suggested by Ojala et al [18] we have used 8 bins for contrast measure (our 
experiments confirmed that best segmentation has been achieved when 8 bins have been used 
to sample the contrast measure). This 2D histogram is used as a texture discriminating feature 
in our implementation. In Figure 4 is depicted the LBP image for a defect free and a defective 
image section. 

 
 

4.4 Extraction of tonal features 
 
Although the LBP/C distribution offers a good discrimination between the image areas with 
different characteristics, the small defects such as paint droplets, shallow shade variation and 
small template marks do not have a significant impact on the overall LBP/C histogram. 
Fortunately these defects have similar greyscale characteristics and this motivates us to use 
the tonal (greyscale) information as the second discriminating feature (see Figure 5). 
 

    
 

                                   (a)                                    (b)                                   (c) 
 

Figure 5. (a) Input image revealing shallow shade variation. (b) LBP data. (c) Clustered 
(tonal) data. 

 
 
 In order to extract the tonal information we have to identify the image areas with similar 
greyscale properties. For this purpose we have employed an unsupervised K-means clustering 
technique [5].  
 
One problem with the standard clustering algorithms is the difficulty to input the number of 
clusters in the image. Also the initialisation for the K-means procedure is troublesome, as we 
do not know the information about the seeds located in the greyscale space a priori. To 
circumvent this problem we propose to identify the greyscale seeds based on a histogram 
analysis. To this end, the histogram has been divided uniformly into 20 regions with respect 
to the greyscale values and for each region the bins with the largest number of elements are 
identified and selected as seeds for the K-means procedure. As the image sections are 
relatively small (128 ×128) many bins of the histograms have very few elements and do not 
generate any seeds for the clustering algorithm. Thus if the image section is defect free, it will 
generate only 1-3 seeds whereas a defective regions will generate significantly more seeds for 
K-means clustering algorithm. Figure 6 depicts the images resulting after clustering for a 
defect free image section and for a defective image section.  
  
 



 
 

  
 

  
 

Figure 6. Clustering results. (Top row) Defect free image section. 
(Bottom row) Defective (lump) image section. 

 
 
4.5 Split and merge segmentation method 
 
The segmentation method devised for the inspection algorithm is based on a split and merge 
computational model [15]. The first step involves recursively splitting of the image 
hierarchically into four sub-blocks using only the LBP/C data. In this regard, the similarity 
measure between the resulting 4 sub-blocks is evaluated using the Modified Kolmogorov-
Smirnov (MKS) metric (see Appendix A). The uniformity of the region is evaluated by a 
decision factor as follows: 
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where MKSmax and MKSmin are the highest and lowest MKS values resulting after calculating 
the pairwise MKS values of the 4 sub-blocks and X is a split threshold value. The splitting 
process continues until the stopping rule is satisfied or the block size is smaller than a 
predefined value (for this implementation the minimum size for has been set to 16×16).  
During the splitting procedure for each block two distributions are computed, the LBP/C 
distribution and the distribution of labels contained in the clustered data. The splitting process 
is illustrated in Figure 7. Note that the splitting decision evaluates only the LBP/C MKS 
values. 
 
      



 
 

Figure 7. The splitting process. 
 
 
The second step applies an agglomerative merging procedure on the image resulting after 
splitting in order to join the adjacent regions that have similar characteristics. This procedure 
calculates the merging importance (MI) between any adjacent regions in the split image and 
the adjacent regions with the smallest MI value are merged. The MI value between two 
adjacent regions is calculated as follows: 
  

2211 ** MKSwMKSwMI +=                                                  (4) 
 
where the w1 and w2 represent the corresponding weights for LBP/C histogram and tonal 
histogram respectively and the MKS1 and MKS2 are the MKS statistics for texture (LBP/C) 
and tonal histograms in the two adjacent regions. These adjacent regions are also referred to 
as the sample and model regions. In this way, the MKS similarity measures for tonal and 
texture distributions (histograms) implement a compound texture/greyscale image descriptor. 
In order to be robust this texture descriptor should be able to adapt automatically the 
importance of texture and greyscale (tonal) characteristics and this is assured by the values of 
the weights w1 and w2. Thus, we devise an elegant solution to determine the weights 
automatically by analysing a uniformity factor that is defined as the ratio between the bin with 
the highest number of elements in the clustered histogram and the number of pixels contained 
in the whole distribution. This uniformity factor is evaluated for the two adjacent regions 
under consideration as follows:  
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where Clust defines the tonal histogram of the region j, i is the bin index and Np represents the 
number of pixels in the region j that is evaluated. 



   
The uniformity factor is calculated for sample and model regions (k1 and k2). If the difference 
between k1 and k2 is less than 0.1 then we can assume that the sample and model regions have 
a similar uniformity factor and the tonal information should have a higher importance. Thus, 
the weight values are assigned as follows: w2 = (k1 + k2)/2  (tonal) and w1 = 1 - w2  (texture). If 
the difference between k1 and k2 is high this indicates that the regions are not uniform and the 
algorithm gives similar weights for texture and tonal statistic, i.e. w1 = w2 = 0.5.  
 
 
 

 
 

Figure 8. The merging process. 
 
 
The agglomerative merging procedure is repeated iteratively until the minimal merging 
importance (MI) value between all adjacent regions is higher than a threshold value, i.e. 
Min(MI) > Y.  The merging process operations are illustrated in Figure 8 and a graphical 
example is illustrated in Figure 9. 
 
 

     
 

                            (a)                                         (b)                                           (c) 
 

Figure 9. Image segmentation process. (a) Input defective section. (b) Image resulting after 
splitting. (c) Image resulting after merging. 

 
 
 
 



 
Once the merging process is complete the resulting regions contained in the segmented image 
(see Figure 8c) are analysed in order to verify if they belong to a defective area. For this 
purpose we have devised a simple test routine. If the segmented data has only one region the 
inspection algorithm verifies if the slate section is painted. This involves a very simplistic test 
by verifying if the greylevel mean is above 100. If the greylevel mean of the image section is 
lower than 100 the image section is defective, otherwise it is classed as acceptable.  
 
If the segmented data has more than one segmented region then several tests are performed in 
order to verify if the section is defective or not. The visual defects can be roughly classed in 
template marks and shade variations. The paint defects (efflorescence and shade variation) 
can be identified by checking the variation in the greyscale values whereas the template marks 
(lumps and bad slate formation) presence is verified by a simple count of the edge pixels 
contained in the segmented region under evaluation (for computational purposes we have 
used for this task the Sobel edge detector [21]). The first test (check for the presence of paint 
defects) verifies if the greylevel means of the segmented regions are above 100 (slate painted) 
and the inter-region variation is smaller than 20 grey levels. If the difference of the mean 
greylevel of two segmented regions is higher than 20 grey levels or the mean greylevel of any 
region is smaller than 100 the section is classed defective. If this test is passed the regions are 
tested in order to verify if substrate defects are present. For this purpose the edge data 
returned by the Sobel edge detector is evaluated and the number of edge pixels in each 
segmented region is counted. If the number of edge pixels is higher than 10% of the total 
number of pixels in the region then a substrate defect is present and the image section is 
classed as defective. Otherwise the image is classed as acceptable.  
 
These tests were necessary, as small scratches and mild shade variations are often present on 
slates that are considered to have an acceptable surface finish (see Figure 3b-all slate image 
and Figure 10-slate subsections). The aim of these tests was to eliminate the false positive 
decisions caused by under segmentation.  
 
 

     
 
Figure 10. Image sections with acceptable finish but presenting a small but acceptable shade 

variation. 
 
 
 



 
 

Figure 11. The operations required by the inspection algorithm. 
 
 
 
5. Experiments and results 
 
The conveyor speed was set to 38m/min and the camera exposure was set to 400μs giving a 
scan frequency of 2.5KHz. For this scan frequency the cross direction resolution is 0.221mm 
and the moving direction resolution is 0.244mm. The variability of the conveyor speed has 
been measured by imaging the same slate several times and this process is repeated for 16 test 
slates with known image dimensions. The measurements for a test slate that is repeatedly 
imaged for 10 times ranged from 298.3 to 300.7, while the measurements for 16 slates ranged 
from 295.9 to 300.7 mm (a small variation (less than 1mm) in size from slate-to-slate was 
observed). The conveyor speed variations slightly effects the actual image resolution in the 
moving direction but the resolution change is very small (approx. 0.8%) and does not have 
any negative effect on the inspection results. 
  
The inspection algorithm has been designed to have as few threshold parameters as possible 
and currently only two parameters for split and merge algorithm had to be set experimentally. 
The threshold parameter for splitting has been set to 1.1 in order to achieve a slight over- 
splitting in order to prevent the situations when a small defect is divided by two adjacent 
regions (remember that the splitting process evaluates only the LBP/C (texture) data). The 
threshold parameter for merging has been set to 0.75 and it has been trained on best defect- 
free slates in order to obtain a single segmented region resulting from the merging process. 



For other slates (reference or defective) the segmented data resulting from the merging 
process will have more than one region and each image section is evaluated for visual defects 
using the procedure illustrated in Figure 11.  
 
The inspection system has been tested on 235 slates (112 reference-defect free slates and 123 
defective slates) and the success rate for correct identification of acceptable slate was 98.12 % 
for defect free slates and 99.18% for defective slates. The classification of defective slates and 
defect-free slates was performed by an experienced operator based on a visual examination. A 
detailed performance characterisation of the inspection system is depicted in Table 2.  
 

Slate type Quantity Fail Pass Accuracy 
Reference 112 2 110 98.21 % 
Defective 123 123 0 100 % 

Total 235   99.14 % 
 
 

  
 
                                    (a)                                                                        (b) 
 

  
 
                                    (c)                                                                       (d) 
 

Figure 12. Visual defects identification on representative slates (defective image sections 
marked with a white box). (a and b) Paint defects. (c and d) Substrate defects  

 



The defective slates used in our experiments contained a large range of paint and substrate 
defects and the efficiency of the system with respect to rejecting defective slates is 100%. The 
reference slates were classified as slates of acceptable quality with an accuracy of 98.21 %. 
Two slates were classified as defective slates. These slates were classed as defective due to 
the detection of the wax marks. The wax mark contamination may be produced during 
handling and transportation and may not be present when the slates are inspected on the 
production line. These results give an overall inspection accuracy of 99.14% with respect to 
correct classification for reference and defective slates. Figure 12 illustrates the identification 
of visual defects (paint and substrate) on several representative defective slates. 
 
 
6. Conclusions 
 
The experimental data indicates that automating the inspection of painted slates can be 
achieved and the installation in a factory is a realistic target. The devised inspection prototype 
has been tested in a factory-style environment and these tests were an important part of the 
development process. The development of a robust slate inspection system was challenging, 
as we have to provide adequate solutions for each part of the system including the 
illumination and image acquisition set-up, conveying requirements and equally important the 
image processing inspection algorithm. In this regard, we proposed an illumination set-up that 
is able to minimise the negative effects generated by the slate depth variation and the 
mechanical vibrations caused by the conveying system. The major part of the system was the 
development of a robust inspection algorithm that is able to identify the visual faults on the 
slate surface. To address this issue, in this paper we proposed an adaptive texture analysis 
scheme that was able to accommodate the acceptable local variation in the slate image data 
but at the same time the inspection algorithm is able to robustly identify the visual defects 
present on the slates surface. The overall performance of the slate inspection system indicates 
that the proposed integrated solution presented in this paper can be considered as a 
replacement for the manual inspection system that is currently employed to grade the quality 
of slates.  
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Appendix A - Modified Kolmogorov-Smirnov statistic 
 
The Modified Kolmogorov-Smirnov (MKS) statistic is a non-parametric test that is used to 
compare two independent distributions. The MKS similarity measure is defined as the sum of 
the absolute value of the discrepancies between the normalised cumulative sample 
distributions (i.e. the number of pixels contained in each bin is divided by the total number of 
pixels contained in the distribution). The MKS statistic is calculated as follows: 
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where n represents the number of bins of the sample and model distributions (histograms), ns 
and nm are the number of pixels of the sample and model distributions and Fs(i) and Fm(i) 
represent the number of pixels contained by the bin with index i of the sample and model 
distributions respectively. The MKS similarity measure is normalised, hence its result is 
bounded, and this is a significant advantage over other statistical measures such as G statistic 
or Chi square test especially when the similarity test is applied to sparsely populated 
distributions. 
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