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Abstract

Large dynamical changes in thermalizing glassy systems are triggered
by trajectories crossing record sized barriers, a behavior revealing the
presence of a hierarchical structure in configuration space. The ob-
servation is here turned into a novel local search optimization algo-
rithm dubbed Record Dynamics Optimization, or RDO. RDO uses
the Metropolis rule to accept or reject candidate solutions depending
on the value of a parameter akin to the temperature, and minimizes
the cost function of the problem at hand through cycles where its
‘temperature’ is raised and subsequently decreased in order to expedi-
ently generate record high (and low) values of the cost function. Below,
RDO is introduced and then tested by searching the ground state of the
Edwards-Anderson spin-glass model, in two and three spatial dimen-
sions. A popular and highly efficient optimization algorithm, Parallel
Tempering (PT) is applied to the same problem as a benchmark. RDO
and PT turn out to produce solution of similar quality for similar nu-
merical effort, but RDO is simpler to program and additionally yields
geometrical information on the system’s configuration space which is of
interest in many applications. In particular, the effectiveness of RDO
strongly indicates the presence of the above mentioned hierarchically
organized configuration space, with metastable regions indexed by the
cost (or energy) the transition states connecting them.

1 Introduction

Built on analogies with physical or biological processes, heuristic opti-
mization techniques are widely used in science[1, 2, 3, 4, 5, 6, 7]. Of
present interest is Simulated Annealing (SA), a well known local search
algorithm based on the Metropolis algorithm, which minimizes the cost
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of candidate solutions in a way similar to a physical system minimiz-
ing its free energy under cooling [8, 9]. In SA, a proposed solution
is first generated by locally modifying the current solution. Changes
lowering the cost are accepted and others are accepted with probabil-
ity exp(−∆E/T ), where ∆E > 0 is the additional cost incurred and
where the parameter T is conventionally called temperature. Ideally,
a cooling schedule gradually decreasing the temperature down to zero
should reach the ground state, i.e. the desired solution of the optimiza-
tion problem. However, in applications to hard combinatorial problems
SA invariably gets stuck in one of the many suboptimal or metastable
configurations which characterize these systems. Since available local
configurational changes mainly get rejected, a larger partial random-
ization is required to obtain further improvements.

Large changes leading a thermalizing complex system from a meta-
stable configuration to another are often triggered by thermal energy
fluctuations of record magnitude[10, 11, 12, 13]. It is then natural to
hypothesize that visiting configurations of record-high cost, or energy,
similarly helps a ‘thermal’ optimization algorithm of the SA type to
escape suboptimal solutions.

The configuration space, or energy landscape, of the Edward-Anderson
spin glass [14] was previously investigated using Extremal Optimiza-
tion [7], an optimization and exploration algorithm indifferent to en-
ergy barriers, and by the Waiting Time Method [15], a kinetic Monte
Carlo. algorithm with no rejections. The analysis led to the conclu-
sion that, in order to achieve a lower BSF value, which is desirable
in optimization, the barrier B(t) must previously reach a new high
record. Importantly, this property is not associated to the algorithms
used, but pertains to all energy landscapes which can be coarse-grained
into inverted binary trees where nodes represent metastable configu-
rations [16] and height represents the energy. Motivated by the above
considerations, the Record Dynamics Optimization (RDO) algorithm
introduced below dynamically generates a non-monotonic SA sched-
ule where heating and cooling phases alternate. Each heating phase
terminates once a record high ‘barrier’ (defined below) is encountered
and each cooling phase terminates once a state of record low cost is
found. Möbius et al.[17] earliere introduced a non monotonic annealing
schedule where temperature oscillations are controlled by a tunable pa-
rameter instead of being determined by intrinsic geometrical properties
of the landscape.

For demonstration purposes, RDO is used to search for the ground
state of a three dimensional Edwards-Anderson (EA) spin glass [14], a
standard NP hard optimization problem. For completeness, it is fur-
ther applied to the two dimensional EA model. RDO performance is
then compared to that of a carefully optimized version of Paralle Tem-
pering (PT). The numerical effort needed to obtain results of compa-
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rable quality is similar for the two methods. However, RDO has fewer
tunable parameters and is more easily implemented. Secondly, RDO
provides, at no extra cost, some information on configuration space
structure which might be of interest in landscape explorations.

2 The RDO algorithm

First some notation: A sweep in a MC run comprises a number of
elementary moves or queries, i.e. the generation and acceptance or
rejection of a candidate move, equal to the number of independent
variables of the problem. The number of sweeps carried out up to
a certain point is dubbed time and denoted by the symbol t. Each
query generates a putative solution or state, and the ordered sequence
of states sampled in [0, t] is called a trajectory. The cost associated
to a state is called its energy E. The Best So Far energy, BSF(t), is
the lowest energy sampled in a single trajectory in [0, t]. The barrier

B(t) associated to a state sampled at time t is B(t)
def
= E(t)−BSF(t).

Lower case symbols are used for quantities scaled by system size, i.e.
in the example considered b(t) is the barrier energy per spin. We stress
that the BSF and barrier functions are stochastic processes and that
inherent geometrical properties of the landscape can only be estimated
by averaging over a suitably large ensemble of independent trajectories.

The RDO algorithm comprises an initial phase followed by a suc-
cession of cooling and a heating phases controlled by record events.
Each of these phases involves decreasing or increasing the temperature
within a set of of 22 predefined and equidistant values in the temper-
ature range [TMIN , TMAX ]. Several preliminary simulations showed
that TMAX = 1.2, slightly above the critical temperature of the 3d
model is a good choice. Furthermore, TMIN = 0.3 was chosen as BSF
values are rarely, if at all, found below T = 0.3, We let the system cool
and heat ad libitum since each cooling or heating phase produces grad-
ually lower extremal values. Once the minimal temperature is reached,
and no further BSF is found, the algorithm stops.

1. Initialization of BSF and barrier values: Any short naive [9] op-
timization at a constant temperature typically slightly below the
critical temperature Tg will produce the first BSF value, BSF0.
The first high barrier value b0 > BSF0 is found by running
the algorithm at a slightly higher constant temperature. For
i = 1, 2 . . ., the ‘barrier’ B(t) = E(t) − BSFi is used to control
the algorithm. The highest barrier overcome in heating phase i
is called Bi.

2. Cooling: Let SB,i be the configuration corresponding toBi. Start-
ing from SB,i run SA with decreasing temperature until a lower
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BSF value is found. If no lower BSF is found, cooling stops after
Nstep = 50000 sweeps.

3. Running at constant T: the Metropolis algorithm at constant T
is used until either m new BSF values have been found or the
preset max time is exceeded. In practice m is a small integer, i.e.
m = 3 in the present simulations. This step ensures that once
the correct region of configuration space is identified, some time
is spent exploring it. BSFi+1 is the lowest BSF value identified
during this phase.

4. Heating: starting from Si+1, the configuration corresponding to
BSFi+1, heat the system until B(t) = E(t)− BSFi+1 > Bi. The
achieved record value of B(t) defines Bi+1.

5. Set i+ 1 → i, go to step 2 and repeat ad libitum.

3 Parallel tempering

Parallel Tempering (PT) avoids trapping by independently searching
a number NT of identical replicas of the problem at hand. The m’th
replica is explored by a conventional Metropolis algorithm run at a
temperature Tm. Additional configurational swaps between replicas,
also controlled by the Metropolis criterion in order to ensure detailed
balance, provide the sought escape route from suboptimality. A suc-
cessfull PT implementation requires consideration of the temperatures
at which the replicas are run and a compromise between the number of
attempted swaps and the number of standard queries within the repli-
cas. The reader is referred to [18, 19, 20] for a in-depth discussion of
PT. The brief summary provided below describes the implementation
presently used to benchmark RDO.

1. NT different copies of the system are updated in parallel at tem-
peratures Tm > Tm+1, m = 1...NT through one or more Monte
Carlo sweeps.

2. A proposed swap between configurationCm and Cm+1 is accepted
or rejected according to the Metropolis criterion. Defining βm =
1/Tm, and

∆S =

[

βm+1E(Cm) + βmE(Cm+1)

]

−
[

βmE(Cm) + βm+1E(Cm+1)

]

, (1)

the exchange is accepted with probability min(1, e−∆S).

3. Further exchanges between the configurations associated with
βm+1 and βm+2 are accepted or rejected in the same way, even-
tually exploring the whole set of temperatures.
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4. Go to step 1 and repeat ad libitum.

After a number of exploratory simulations, the highest temperature
was chosen as Tmax = 1.6, a value higher than the critical temperature
of the Edwards-Anderson spin glass i.e. Tc ≈ 0.95 [21]. The lowest
temperature is dynamically determined as discussed below. A suitable
number of temperatures for PT is generally estimated to be NT ≈
√

Nspin[19]. In the following, NT = 30, 50 and 90 are used for L =
30, 50 and 100 in the 2d simulations, while NT = 30, 40 and 80 are
used in the 3d case for L = 8, 14 and 20.

To accept an exchange between copies with probability ≈ 0.5, a
value considered to be optimal [20], the Tm values are treated as dy-
namical variables using the recursive method described in Ref.[19].
Initially, the inverse temperatures βm are set to

βm = β1 + (βM − β1)
m− 1

M − 1
(2)

with M = NT . The updated set { β′

m} is obtained using the sampled
exchange rates pm between configurations at inverse temperatures βm

and βm−1:
β′

1 = β1

β′

m = β′

m−1 + (βm − βm−1)
pm
c

with m = 2, ...,M

.

c =
1

M − 1

M
∑

m=2

pm (3)

While in Ref.[19] temperatures are only updated initially to reach the
constant values used in the simulation, we found it more convenient to
update them during the simulation itself, at at logarithmically equidis-
tant times 2n × 100 MC sweeps, with n = 1, 2, ..N .

Two different benchmarks for RDO are provided. The first, our
‘fast’ PT, has N = 10 and Nstep = 102400 sweeps per replica. Adding
the computational effort for all replicas, PT is eight time faster than
RDO but produces results of somewhat lesser quality. The second
version, ‘slow’ PT, has N = 13 and Nstep = 819200, with the total
number of sweeps approximately corresponding to that used in our
RDO implementation. Both versions of the PT algorithm include a
final quench to T = 0, a step omitted in RDO. Importantly, the PT
versions implemented are carefully optimized and based on the recent
literature on the subject.
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4 Results

The model

The EA model[14] with Gaussian interactions deals with a set of spins
σi = ±1 which are placed on a d-dimensional discrete grid with linear
size L and periodic boundary conditions. The spins interact via a
coupling matrix J which is symmetric, has diagonal elements all equal
zero and off-diagonal elements Jij likewise equal zero, unless spins i
and j reside on neighboring grid points. In this case, and for i < j,
their values are independently drawn from a Gaussian distribution with
zero average and unit variance. The energy of a configuration α is then
given by

Eα =
1

2

∑

i,j

Jijσ
α
i σ

α
j . (4)

Determining the energy of the ground state of the 3d Edwards-Anderson
spin glass problem in its different guises is an NP hard combinatorial
problem which has been attacked using a variety of techniques. For
future reference we note that Pal [22] combined a genetic alghorithm
with local search and found that the ground state energy per spin is
egs = −1.699926 + 2.1373L−3, where the first term is the thermo-
dynamic limit and the second term describes finite size corrections.
More recently, Romá et al. [23] used Parallel Tempering and consid-
ered three different finite size corrections to the thermodynamic limit,
one of which is egs = −1.7000 + 2.01L−2.94. The same authors find
egs = −1.3149 + 1.3L−2.28 for the 2d system.

In this work, the EA model is used to test how RDO works and to
benchmark it against PT. As there is no ambition to improve on ex-
isting estimates of the model’s ground state energy, we limit ourselves
to three different system sizes in both 2d and in 3d, and offer no anal-
ysis of finite size corrections. Most results are averages over Nsample

of independent realizations of J and, unless otherwise specified, the
combination Nsample = 200, 50 and 10 is either used for 2d systems of
linear size L = 30, 50 and 100 or for 3d systems of linear size L = 8, 14
and 20. Since the RDO algorithm produces trajectories with varying
number of steps and with BSF(t) values obtained at different times,
coarse-graining each trajectory is required to average different trajec-
tories. Accordingly, within each trajectory, the measured values were
averaged every 750000 steps, as long as possible. This choice fits the
worst case encountered for every size studied, i.e. provides a partition
of the trajectory with the slowest decay of the BSF energy. Faster tra-
jectories were padded with the last BSF energy value achieved. In this
way, the computational time used by the RDO algorithm to achieve a
certain averaged BSF energy value is slightly overestimated.
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Temperature, barriers and energies in RDO

Since alternating heating and cooling phases are characteristic features
of the algorithm, the time dependence of the temperature and the
related time dependence of the record barriers which control the switch
from heating to cooling are discussed first. Second, we discuss the time
dependence of the BSF energy per spin, which, at each stage of the
calculation, provides the RDO estimate of the ground state energy.
Finally, the randomizing effect of a temperature cycle is discussed in
terms of Hamming distances.

The left panel of Fig. 1 depicts the average barrier value per spin,
b(t), with the initial value subtracted. The trend is in all cases log-
arithmic, but the slope is lesser in 3d than in 2d. The data collapse
obtained for sufficiently large sizes shows that barriers are extensive, in
contrast to barriers reached in an isothermal relaxation process, which
are sub-extensive[24]. Hence, heating the system up is a far more ef-
ficient way to partial configurational randomization than isothermal
relaxation.

In the right panel of Fig. 1, the algorithm’s temperature T is plotted
vs. time for a single 2d system with L = 100. Similar behavior is
observed for all other systems considered. In the curve, each local
minimum corresponds to the temperature Tmin(t) for which a new BSF
energy value is found at stage 3 of the RDO algorithm, while each local
maximum corresponds to a temperature Tmax(t) reached at stage 4,
for which a new record sized barrier is found. The upper and lower
envelopes of the curves are least square fits of the form Tmin(t) =
T (t0)−amin

√
t and Tmax(t) = T (t0)−amax log (t), where amin and amax

are numerical constants. We first note that even though the barrier
values increase in time, the (un-shifted) energy of the corresponding
barrier states decreases, i.e. the RDO algorithm explores regions of
configuration space of gradually lower energy. The decreasing trend of
Tmax(t) matches the logarithmic decrease of the energy of the different
barrier states, see Fig. 2. The square root term in Tmin(t) indicates that
the BSF energy minima belonging to different regions of the landscape
decrease in a roughly linear fashion from one region to the next and
are reached via the diffusion-like process associated to the constant
temperature search in the third phase of the RDO algorithm.

All curves show a logarithmic dependence on time. The common
asymptotic limit of the curves, which corresponds to the predicted
ground state energy value is, as expected, nearly independent of sys-
tem size and in agreement with current numerical estimates [23]. In
contrast, the plot of the local energy maxima along trajectories which
is depicted Fig. 3 shows that emax(t) = e(t)+ b(t) retains a system size
dependence throughout the simulation. A glance to Fig.1 shows that
the latter mainly stems from the system size dependence of the initial
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Figure 1: (Color online) Left: the average barrier per spin b(t) with the
initial value subtracted and for all the systems considered, is plotted versus
time on a logarithmic horizontal scale. Right: the temperature T (t) vs. time
for a single trajectory of a 2d system of linear size L = 100. The lower and
upper lines show fits to the local minima and maxima Tmin(t) and Tmax(t),
respectively.
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Figure 3: (Color online) The disorder averaged local energy maxima emax(t)
encountered in trajectories are plotted vs. time for the 2d (left) and 3d
systems using a logarithmic horizontal scale.

barrier value. We stress that both emax and e(t) decrease logarithmi-
cally in time while the barrier b(t) correspondingly increases.

The Hamming distance between configurations α and β isH(α, β) =

1 − 1
Nspin

∑

i σ
α
i σ

β
i . In the left panel of Fig. 4, α denotes the config-

uration corresponding to the ‘current’ BSF energy value, and β is its
immediate predecessor along a trajectory. In the right panel of the
same figure, α is the initial configuration and β the current one. In
other words, the left panel describes the configurational change oc-
curring in a single thermal cycle, while the right panel describes the
change accumulated from the beginning of the evolution of the sys-
tem. All data are disorder averaged as earlier explained. In the 3d
systems, Hc, the Hamming distance between consecutive minima, has
a clear decreasing trend, interspersed by some oscillations. Hence the
randomizing effect of crossing a record-sized barrier gradually tapers
off, which is a desirable property in an optimization setting. The 2d
case has much more pronounced oscillations, some of which correspond
to system size configurational changes.

The right panel shows that, as expected, the Hamming distance of
the current minimum to the initial configuration nearly remains con-
stant in time. This constant is near one in the 2d case, implying that
low energy configurations successively identified are all nearly orthog-
onal to the initial configuration. In the 3d case the constant is much
smaller, indicating a higher degree of persistent correlation and a lin-
gering memory of the past. In Fig. 2 the disorder averaged BSF energy
per spin, e, is plotted vs. time on a logarithmic horizontal scale for 2d
(left panel) and 3d systems.
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plotted vs. time. Right: The same but for the distance between the initial
configuration and that corresponding to the current minimum. All data are
disorder averaged as explained in the main text.

4.1 Comparing RDO and PT

The RDO and PT algorithms are compared in terms of the disorder
averaged BSF energy per spin, respectively average energy per spin
as a function of temperature obtained using the two methods. To
simplify the notation, the same symbol e is used for both quantities,
both converging for large times to the desired ground state energy, the
target of the search.

We considered two types of comparison: in the first, we use a ‘fast’
PT, where minimizing the execution time is a priority, but where the
results are in some case of lesser quality than those obtained by RDO.
In the second, we use a ‘slow’ version of PT algorithm, with parameters
tuned to obtain better, i.e. lower, energy values. As mentioned, slow
PT requires the same computational effort as RDO, while fast PT is 8
time faster than RDO. All our results lie, as expected, slightly above
the thermodynamic limit of the model’s ground state energy, see the
previous model discussion and the original references [22, 23].

In the left panel of Fig. 5, the average BSF energy per spin e of the
2D system is plotted as a function of the temperature T . As explained
in the figure text, the RDO and fast PT results are plotted for different
system sizes. Interestingly, the average energy calculated by the RDO
is consistently lower than its PT counterpart.

Also note that BSF energy obtained in the RDO at T = 0.3. is
comparable or, in the case of the larger systems, even lower than the
average energy obtained in PT at a lower temperature. On the right
panel we compare RDO with our slow PT. Here PT finds lower energies
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Figure 5: (Color online) Left: the BSF energy, respectively average energy
per spin e vs. temperature T for all 2d systems considered. Data obtained
using RDO and fast PT, respectively. Right: the same RDO results com-
pared with those of slow PT.

than RDO, but the difference is hardly significant.
Figure 6 is the 3-d analog Fig. 5 and similar observations apply

to the trends and minima. Furthermore, the BSF energy given by
RDO are almost coincident with the ground states at T = 0 given
by slow PT. Table 1 summarizes the estimated ground state enenrgy

RDO Fast PT Slow PT

L=30 -1.30824±0.00167 -1.31306±0.00166 -1.31501±0.00166

L=50 -1.30380±0.00202 -1.30632±0.00200 -1.30981±0.00202

L=100 -1.30403±0.00214 -1.30441±0.00212 -1.30815±0.00217

L=8 -1.69472 ±0.00236 -1.69728±0.00236 -1.69733±0.00276

L=14 -1.69114±0.00194 -1.69416±0.00191 -1.69597±0.00188

L=20 -1.69549±0.00194 -1.69426±0.00214 -1.69793±0.00215

Table 1: Ground-state energy estimates (energy per spin) obtained using
RDO and the fast and slow PT algorithm. The first three rows pertain to
2d systems, and the last three to 3d systems. The errors are given as ±σ,
where σ is the estimated standard error on the computed averages.

values obtained for all the systems considered using RDO and our
fast and slow PT algorithm. The values quated are ensable averages
and their standard (1σ) errors. The two methods very nearly produce
results with overlapping error bars. The fast PT algorithm results for
the largest systems are marginally inferior to the corresponding RDO
results, while the slow PT results are marginally superior.
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Figure 6: (Color online) Left: the BSF energy, respectively average energy
per spin e for all 3d systems considered. Data obtained using RDO and fast
PT, respectively. Right: the same RDO results compared with those of slow
PT.

5 Discussion

Similarly to Simulated Annealing (SA), Record Dynamics Optimiza-
tion is a ‘thermal’ optimization heuristics based on local search and on
the Metropolis acceptance rule. Unlike SA, it features an alternation
of heating and cooling phases, each delimited by the achievement of
a record high ‘barrier energy’, and a lower Best So Far (BSF) energy,
respectively. The current BSF energy provides an estimate of the so-
lution of the optimization problem at hand. The physical idea behind
RDO is that the configuration space of hard optimization problems
explored by local searches can be coarse-grained into a hierarchy of
nested sets. Starting from a poor solution, configurations of decreas-
ing cost can only be accessed by scaling increasingly large barriers.
Hence, quickly generating record high barriers provides a effective way
to achieve better solutions. For a given application, the validity of a
hierachical description is buttressed whenever RDO works efficiently.
In this way, which makes RDO into a landscape optimization tool.

RDO has a modicum of adjustable parameters. Most important
are the cooling/heating rate, and the number of BSF energy values
found when (briefly) searching at constant temperature following a
cooling phase. The programming effort in RDO is similar to standard
SA and considerably smaller than in PT. On our test problem, RDO
seems to deliver marginally higher energy values than the slow PT
algorithm on the largest systems considered. However, PT is a highly
optimized algorithm with a long history of successes, while RDO is a
new algorithm, which, we surmise, still has considerable potential for
further improvements.
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