
MPPhys – A many-particle simulation package for computational physics education

Thomas Müllera

a Visualisierungsinstitut der Universität Stuttgart (VISUS), Allmandring 19, 70569 Stuttgart, Germany

Abstract

In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the
gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is defered to graduate
courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-
school students in particular because of the use of particle systems in computer games. The missing link between the simple and
the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however,
by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple
particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and
visualization can be combined for interactive visual explorations.

PROGRAM SUMMARY
Program Title:
Catalogue identifier:
Licensing provisions:
Programming language: C++, OpenGL, GLSL, OpenCL
Computer: Linux and Windows platforms with OpenGL support
Operating system: Linux and Windows
RAM: XXX GBytes
Keywords: many-particles simulations
PACS: 01.50.H-, 07.05.Rm, 02.70.Ns, 07.05.Tp, 45.50.-j
Classification: XXX
External routines/libraries: OpenGL, OpenCL
Nature of problem: integrate n-body simulations, mass-spring models
Solution method: Numerical integration of n-body-simulations,
3D-Rendering via OpenGL.
Running time: Problem dependent

1. Introduction

Many-particle simulations that determine the motion of indi-
vidual particles under their mutual interactions play an impor-
tant role in numerous applications of chemistry, biology, ma-
terial sciences, physics, and even computer graphics. While
the simulation and the subsequent visualization of real systems
make great demands on software and hardware, the underlying
Newtonian dynamics, however, is easily comprehensible and
can be discussed already at high school level.

A step-by-step introduction on how to implement a gravita-
tional N-body code starting from high-school level can be found
in the online book by Hut and Makino [1]. Contrary to standard
textbooks, Hut and Makino present the introduction in narra-
tive form where three friends discuss the topic and derive the

Email address: Thomas.Mueller@vis.uni-stuttgart.de (Thomas
Müller)

necessary equations and programming codes. The “Molecular
Workbench” (MW) [2] is a Java-based learning platform for
molecular dynamics simulations, see also Tinker [3]. Besides
many existing simulations, there is a graphical user interface to
create new simulations and embed them into curriculum mate-
rials. A huge collection of diverse physics applications, also in
the context of many-particle systems, is provided by the “Open
Source Physics” (OSP) project [4].

The aim of the many-particle physics simulation package
MPPhys presented in this paper is in between the above men-
tioned approaches. In contrast to prefabricated closed applets,
the user has full access to the complete programming code
to obtain a deeper insight how particle simulations are imple-
mented. The object-oriented structure of MPPhys’ core func-
tionality facilitates the integration of the equations of motion as
well as the interactive visualization of the particles’ trajectories
for different particle models. Hardware accelerated integration
of the equations of motion is realized using the Open Compute
Language (OpenCL). Additionally, the graphical user interface
QtMPPhys is a platform for script-based modeling when the ac-
tual programming code is of minor interest. The focus of MP-
Phys, however, lies on the reproducibility of the simulations and
visualizations and not in the precision of the integrators or the
efficiency of the algorithms. Users concerned with the accuracy
of the solutions are encouraged to run the models with varying
timesteps as appropriate.

The structure of the paper is as follows. In Section 2 the core
functionality of MPPhys and the currently implemented parti-
cle models are discussed. The graphical user interface QtMP-
Phys is presented in Section 3. In Section 4, numerous example
models demonstrate the usability of MPPhys.

MPPhys is implemented in C++ and is freely available for
Linux and Windows. The source code and several examples can
be downloaded from go.visus.uni-stuttgart.de/mpphys.

Preprint submitted to Elsevier September 4, 2018

ar
X

iv
:1

40
3.

16
95

v1
 [

ph
ys

ic
s.

ed
-p

h]
 7

 M
ar

 2
01

4

go.visus.uni-stuttgart.de/mpphys

2. MPPhys

The implementation of MPPhys is split into two parts. On
the one hand, each particle simulation can be compiled as a
standalone program for those who are interested in the imple-
mentation itself and those who want direct access to the particle
data. Additionally, the particle trajectories can be visualized by
means of the Open Graphics Library OpenGL [5]. QtMPPhys
on the other hand is a graphical user interface that helps the
user to concentrate on the exploration of the different particle
systems. In this section, the details of MPPhys’ core function-
ality is highlighted. The graphical user interface is described in
Section 3.

2.1. MPPhys’ core functionality
MPPhys offers the possibility to explore several different par-

ticle systems in one simulation package with full control over
the simulation itself and its visualization. For that, the parti-
cle systems are implemented following an object-oriented ap-
proach, see Fig. 1, where each system inherits from the com-
mon base class ParticleSystem.

P.S.MassSpring

P.S.DirectNbody

P.S.HardSphere

ParticleSystem

in
h

e
ri
ts

ParticleSolver

Runge−Kutta

LeapFrog

OpenCL

GeomObj

Plane

Sphere

Box

Main program

QtMPPhys

GLUT main

main

in
h

e
ri
ts

im
p

le
m

e
n

te
d

 i
n

s
id

e

OpenGL only

Helper classes

Particle Spring Camera GLShader

Figure 1: Core structure of MPPhys. Any particle system inherits from the base
class ParticleSystem, and any solver inherits from ParticleSolver. How-
ever, integrating the particle system by means of OpenCL kernels is imple-
mented within the corresponding particle class. The main program can be either
the QtMPPhys user interface or a standalone executable for a particular system
with or without OpenGL support.

Every derived particle class must implement the physics of
the particle system it describes and is responsible for rendering
the particles on screen using OpenGL if desired. It also has to
provide the OpenCL kernels if the integration of the equations

of motion can be hardware accelerated. Otherwise, the integra-
tion can be hand on to standard CPU solvers like Runge-Kutta
or Leap-Frog which themself are implemented in an object-
oriented structure with common base class ParticleSolver.
Particle properties like mass, charge, initial position or veloc-
ity, as well as spring properties are stored in the helper classes
Particle or Spring, respectively.

The initial configuration of the particle system can be loaded
from plain text files, where each particle is described by the
following parameters (see also listing below): initial position
(x,y,z), initial velocity (vx,vy,vz), mass m, charge c, radius
r, and color. The particle motion can be fixed to a specific
coordinate direction by setting 1 for free motion and 0 if the di-
rection is fixed (currently, this can be used only in MassSpring
and DirectNbody systems). System parameters like the gravi-
tational Gauss constant or the simulation time step can also be
defined.

filename: data.plist

#---- ID x y z m c r color (rgb)

pos 0 0.0 0.0 0.0 1.0 0.0 0.1 1.0 1.0 0.0

pos 1 1.0 0.0 0.0 3e-6 0.0 0.03 0.3 0.3 1.0

#---- ID vx vy vz

vel 0 0.0 0.0 0.0

vel 1 0.0 0.0172 0.0

#---- ID x y z // fixed=0, free=1

vfix 0 1 1 0

vfix 1 1 1 0

#---- gravitational Gauss constant

k2 2.9584e-4

#---- time step

dt 0.03

Algorithm 1 shows the minimum setup for an N-body simu-
lation of a planet orbiting a star in the xy-plane. Line (1) creates
an instance of the gravitational N-body particle system. The
particle data text file is read via line (2). In the setup step, line
(3), the particle data is mapped to data arrays that are easier and
faster to handle, in particular, when uploading to the graphics
board (GPU). The integrator for the particle system, here the
Leap-Frog integrator, is chosen in line (4). Now, the system
can be integrated step-by-step until a fixed maximum time is
reached. For later exploration of the particle trajectories, the
positions are stored to file.

Algorithm 1 Minimum setup.
1: ParticleSystem* ps = new ParticleSystemDirectNbody();

2: ps->ReadData("data.plist");

3: ps->Setup();

4: ps->InitSolver("LF");

5: while ps->GetCurrentTime()<50000 do

6: ps->TimeStep();

7: // output to file

8: end while

For a direct visual exploration of the particle simulation, an
OpenGL [5] rendering environment has to be established. The
necessary window management as well as mouse and keyboard
handling can be realized using the OpenGL Utility Toolkit
(GLUT) [6]. The minimal graphics pipeline to bring a rudi-
mentary particle visualization onto screen is shown in Fig. 2.
After uploading the particle positions (vertices) onto the GPU,
the vertex shader is responsible to transform the vertices from

2

world space coordinates to window coordinates. For that, it
makes use of the projection matrix that is delivered by the
pinhole camera model implemented within the Camera helper
class. Automatic primitive assembly and rasterization yields
pixel-sized fragments that can be modified by the fragment
shader whose output is shown on screen. Both shaders are
freely programmable with the C-like OpenGL Shading Lan-
guage (GLSL) [7]. Reading and compiling the shader code is
supported by the GLShader class.

����
����
����

����
����
����

geometry

processing
rasterization

per fragment
operations

a
p
p
lic

a
ti
o
n

fr
a
m

e
 b

u
ff
e
r

fragments pixelsvertices primitives

Vertex Shader Fragment Shader

Figure 2: Minimal graphics pipeline. The vertex shader processes the vertices
and maps them to window coordinates. After rasterization, the fragment shader
can manipulate/colorize the individual fragments.

2.2. Gravitational N-body simulations

The DirectNbody model simulates the gravitational interac-
tion between N particles. The orbital motion of each individual
particle follows from the forces exerted by all other particles.
A straightforward implementation has to calculate for each par-
ticle i the sum of N − 1 gravitational interactions ~Fi j between
particle i and particle j,

~Fi =

N∑
j=1, j,i

GMiM j
~r j − ~ri

|~r j − ~ri|
3 , i = {1, . . . ,N}, (1)

where G is Newton’s constant, Mi is the mass and ~ri is the cur-
rent position of particle i. Due to Newton’s third law, however,
the computational effort can be reduced to the half. Nonethe-
less, it is quadratic in N. Professional numerical N-body codes
reduce the computational effort by sophisticated algorithms, see
for example Aarseth [8]. But such methods are out of the scope
of this article.

For numerical calculations, Eq. (1) is rewritten as

~ai =
d2

dt2~ri =

N∑
j=1, j,i

k2m j
~r j − ~ri(

|~r j − ~ri|
2 + ε2

)3/2 , (2)

where ~Fi = Mid2~ri/dt2 and k2 = GM. Additionally, the masses
Mi = Mmi were replaced by fractions mi of a ‘standard mass’
M. Furthermore, a softening parameter ε was added to prevent
the denominator to diverge. If M equals the solar mass, M =

Msol, then k2 is Gauss’ gravitational constant, and times and
lengths are measured in days and astronomical units (AU). The
OpenCL implementation of the gravitational N-body system is
based on the NVidia GPU Computing SDK [9].

2.3. Mass-spring simulations
The basis of the MassSpring model is the free, damped har-

monic oscillator equation. In one dimension this equation reads

m
d2q
dt2 + c

dq
dt

+ Dq = 0 (3)

with spring constant D > 0 and velocity-dependent damping
factor (frictional coefficient) c ≥ 0. The coordinate q represents
the displacement of the spring from its rest length, see Fig. 3.

m

c

D

q

Figure 3: The most simple mass-spring model consists of a mass m that is
connected to a wall by a spring with spring constant D and damping factor c.

If the damping factor c = 0, the solution of Eq. (3) is given
by q(t) = a cos(ω0t +ϕ0) with maximum displacement a, phase
angle ϕ0, angular frequency ω2

0 = D/m, and period T = 2π/ω0.
If the frictional coefficient is non-vanishing, the solution of (3)
depends on the relation between γ = c/(2m) and ω0. In the
weak damping (underdamped) regime, γ2 < ω2

0, the angular
frequency reduces to ω2 = ω2

0−γ
2, and the amplitude decreases

exponentially. If the system is overdamped, γ2 > ω2
0, there

is no oscillation but an aperiodic creeping. γ2 = ω2
0 is called

aperiodic limit case, see e.g. Kuypers [10].
In the general situation, there are several masses mi con-

nected by different springs (Di j, ci j) for each individual con-
nection between particle i and particle j. Then, the equation of
motion reads

mi
d2~xi

dt2 +
∑
j∈Bi

[
Di j

~x j − ~xi

|~x j − ~ri|

(
|~x j − ~xi| − li j

)
+ ci j

(
d~x j

dt
−

d~xi

dt

)]
= 0,

(4)
where li j is the rest length of the corresponding spring, and ~xi is
the actual position of particle i. The sum is over all connections
between particle i and particles j being part of the index set Bi.

2.4. Discrete elements with hard spheres
A first step to the discrete element method is to use hard

spheres of fixed size and mass which move freely until they
interact via elastic collisions, see Fig. 4. The interaction hap-
pens instantaneously in consideration of energy and momentum
conservation,

~p1 + ~p2 = ~p′1 + ~p′2,
m1

2
v2

1 +
m2

2
v2

2 =
m1

2
v1
′2 +

m2

2
v2
′2, (5)

with ~pi = mi~vi being the momentum of particle i. Unprimed
(primed) coordinates represent velocities and momenta before
(after) the collision.

To actually calculate the momenta after the collision, it is
necessary to switch to the center-of-mass (CM) system,

~xCM =
m1~x1 + m2~x2

m1 + m2
, ~vCM =

m1~v1 + m2~v2

m1 + m2
. (6)

3

x

y S collision plane

~x1

~x2

δ

~c

~p1
~p2

~n12

Figure 4: Colliding spheres with masses m1,m2 and radii r1,r2. The position
vectors ~x1,~x2 and the momenta ~p1,~p2 are given with respect to the laboratory
system S . The distance between the spheres’ centers is denoted by δ = r1 + r2,
and the point of collision is given by ~c = ~x1 + r1(~x2 − ~x1)/|~x2 − ~x1 | = ~x1 + r1~n12.

The velocities of both spheres in the CM system, ~wi = ~vi−~vCM ,
are parallel, ~w1||~w2, and the corresponding momenta read ~q1 =

µ
(
~v1 − ~v2

)
and ~q2 = −µ

(
~v1 − ~v2

)
with the reduced mass factor

µ = m1m2/(m1 + m2). Then, energy and momentum conserva-
tion in the CM system yields

~q′1 = −~q′2, |~q1| = ±|~q′1|, |~q2| = ±|~q′2|, (7)

which fixes the momenta up to a collision angle θ. In the sphere-
sphere collision, this angle is naturally fixed requiring that the
incident angle equals the emergent angle with respect to the
collision plane, see Fig. 4. Thus,

~q′1 = ~q1 − 2
〈
~n12, ~q1

〉
~n12, ~q′2 = ~q2 − 2

〈
~n12, ~q2

〉
~n12. (8)

Now, switching back to the laboratory system delivers the ve-
locities after the collision,

~v′1 = ~v1 − 2
〈
~n12,

m2
(
~v1 − ~v2

)
m1 + m2

〉
~n12, (9a)

~v′2 = ~v2 − 2
〈
~n12,

m1
(
~v2 − ~v1

)
m1 + m2

〉
~n12, (9b)

In the special case of equal masses, m1 = m2, zero initial veloc-
ity of sphere 2, ~v2 = ~0, and head-on collision, ~n12 = ~v1/|~v1|, the
initially moving sphere transfers its total energy and momentum
to the resting sphere: ~v′1 = ~0 and ~v′2 = ~v1.

For a continuously progressing simulation, that is inevitable
for a smooth visualization, and to be consistent with the other
particle systems, the HardSpheres model is integrated also in
between the collision events. After every time step, all spheres
are tested for mutual intersections, |~xi − ~x j| < ri + r j. If an
intersection is detected, the velocities are changed following
Eq. (9) and the positions are adapted to correct for the overlap
δ = r1 + r2 − |~x1 − ~x2|. Hence,

~x′n = ~xn + ∆tn
(
−~vn + ~v′n

)
, n = {1, 2}, (10)

with ∆tn = rnδ/(r1+r2)/
〈
~n12,~vn

〉
being the time between the ac-

tual contact of the two spheres and the end of the time step due

to integration. From the actual contact position ~xn − ∆tn~vn, the
sphere is shifted along the new direction by ∆tn~v′n. However,
this procedure is numerically unstable because the

〈
~n12,~vn

〉
term in ∆tn can become very small. Hence, the position is
adapted only approximately by ~x′n = ~xn − rnδ/(r1 + r2)~n12.
Furthermore, highly symmetric situations like the first shot in
pool billards cannot be simulated exactly because, on the one
hand, the HardSpheres model takes only two-body interac-
tions/collisions into account, and on the other hand, the mutual
particle interaction algorithm is asymmetric by construction.

3. The graphical user interface QtMPPhys

The graphical user interface (GUI) of QtMPPhys in standard
configuration is composed of the OpenGL window, the script
editor, and the animation control widget, see Fig. 5.

Figure 5: Screenshot of QtMPPhys with the main OpenGL window, the script
editor, and the system widget with animation control.

QtMPPhys starts in the empty mode. A particle system can
be selected, for example, via “System/Set System” from the
menu bar, where at the same time the integrator has to be cho-
sen. “System/Load particle data” from the same menu bar loads
the data as described in Section 2.1. Pressing the “play” button
in the system widget integrates the particle system and shows
the animation in the OpenGL window.

3.1. Script engine

The particle system selection as well as the definition of the
initial conditions and viewing parameters can be all set at once
by means of the Qt script engine which is based on the EC-
MAScript [11] standard. The general procedure, however, is
the same. First, the particle system and the integrator has to be
chosen, and afterwards, the particle data is handed over as a text
string. The script engine can also be used to manipulate system
parameters while the simulation is running. For example, the
gravitational field or the frictional constant of the springs can
be changed to study the influence on the particle system. An
example script is printed in Appendix A.

4

3.2. Particle inspector

Several particle properties can be investigated visually during
the simulation by means of the particle inspector, see Fig. 6,
where two properties can be shown in relation to each other.
The most expedient relation is, for example, a property with
respect to the simulation time. In particular, the energy conser-
vation of the complete system can be checked (if implemented
in the particle class).

Figure 6: The particle inspector shows particle properties in relation to each
other. Here, the z-coordinate (ordinate) of particle #30 is related to the simula-
tion time (abscissa).

4. Examples

In the following, several examples are presented for the cur-
rently implemented particle models. The accompanying scripts
can be found in the jscripts folder.

4.1. Sun-Earth system

The most simple gravitational N-body system consists of
only two bodies: a massive central star and an orbiting planet of
negligible mass. Such a two-body problem can be cast into an
effective one-body problem as is done in every book to classi-
cal mechanics. The Sun-Earth system can be realized by means
of the DirectNbody model where M = Msol, m1 = 1 (Sun) and
m2 = 1/330000 (Earth). In the simplified situation where the
Earth moves on a circular orbit, its initial velocity at distance
r = 1 (AU = astronomical unit) follows from v2 = k2/r with
Gauss’ constant k = 0.0172 AU3/2/day. Then, the period for
one orbit is T = 2π/v ≈ 365.3 days.

Now, you could add the other planets of the solar system and
watch the influence of their mutual gravitational interactions.
As long as the masses of the planets are used, the solar mass
dominates the orbital motion and the gravitational disturbances
are observable only in a detailed inspection of the logged data.
The simulation becomes more interesting if some of the masses,
for example the mass of Jupiter, will be increased.

4.2. Circumbinary planetary system

Until recently, the existence of a planet around a binary star
system was only a topic of science fiction. But despite such
systems might be counterintuitive, they are realized in nature,
see e.g. Doyle et al. [12] or Orosz et al. [13].

Because the mass of the planet mP is much less than the mass
of the two stars, mA and mB, the motion of both can be de-
scribed as two-body problem which itself can be cast into an

effective one-body problem by separating the center of mass
motion. With

~rcm =
mA~rA + mB~rB

mA + mB
, mA~̈rA = ~FBA, mB~̈rB = ~FAB, (11)

~FAB = − ~FBA = −k2mAmB~rAB/r3
AB, and ~rAB = ~rB − ~rA it fol-

lows that ~̈rcm = ~0. Hence, the center of mass uniformly follows
a straight-path. Without loss of generality, ~rcm = ~0, and the
effective one-body motion reads

~̈rAB = −
k2(mA + mB)

r3
AB

~rAB. (12)

The resulting orbital motion is well-known and is given by
rAB(ϕ) = aAB(1 − e2

AB)/(1 + eAB cosϕ) with major axis aAB, ec-
centricity eAB, and true anomaly ϕ.

x

y

mA

mB

mP

x

y

R d01

ψ01

Figure 7: Left: Planet P orbiting a binary system (A, B). Right: Particles of
equal mass M that are uniformly distributed on a circle of radius R keep on this
orbit due to their mutual gravitational attraction.

In case of circular motion, the velocities of the two stars fol-
low from the balance between gravitational attraction and cen-
trifugal force. Thus,

v2
A =

k2m2
B

(mA + mB)rAB
, v2

B =
k2m2

A

(mA + mB)rAB
. (13)

Similar, the velocity of the planet can be approximated by v2
P =

k2(mA + mB)/rP orbiting the center of mass of A and B. As an
example, the parameters from Doyle et al. [12] could be used
for the circular motion:

rAB = aAB = 0.2243, mA = 0.6897, mB = 0.2026. (14)

The planet is described by mP = 0.333 MJup/Msol = 0.318·10−3

and rP = 0.7048.
The question that now could arise is: what happens if the

distance rP to the center of mass is reduced? When will the
planet be ejected from the planetary system?

4.3. Gravitational choreography

A system of N particles of the same mass M following the
same closed trajectory due to their mutual gravitational attrac-
tion is called a gravitational choreograph. In case of a circular

5

trajectory of radius R, the necessary Keplerian circular velocity
of each particle can be determined in the following way.

The gravitational force ~Fi on particle i exerted by all the other
particles is given by

~Fi =

N−1∑
j=0, j,i

GM2

d2
i j

~ri j

|~ri j|
, i = {0, . . . ,N − 1}, (15)

where~ri j = ~r j−~ri, |~ri j| = di j = 2R2(1−cosψi j), ψi j = 2π(j−i)/N,
and ~ri = R cos(2πi/N). Without loss of generality, it suffices to
consider ~F1. Because ~F1 must balance the centrifugal force, the
Keplerian circular velocity v then follows from

v2 =
k2

23/2R

N−1∑
j=1

1√
1 − cos(2π j/N)

. (16)

Table 1 lists the first few (scaled) absolute values of velocity of
the particles depending on their number N. As can be seen, the
velocity is higher the more particles are considered. Numeri-
cally, the particles follow the circle only for a limited number
of orbits because of the instability of this configuration.

Table 1: Scaled absolute values of the velocities depending on the number of
planets N.

N v2 · R · 23/2/k2 N v2 · R · 23/2/k2

2 0.707107 6 5.168527
3 1.632993 7 6.518859
4 2.707107 8 7.933369
5 3.892996 9 9.404033

Further examples of even more complicated choreographies,
also on different trajectories, can be found, for example, in
Montgomery [14], Simo [15], Vanderbei [16], or Šuvakov and
Dmitrašinović [17].

4.4. Planetary ring

A planetary ring, like the one around Saturn, consists of a
huge amount of individual particles of different size and dif-
ferent mass. Through their gravitational interactions clumpy
structures might arise. More massive objects like moons can
also cause wavy structures due to resonance phenomena as dis-
covered by the Cassini-Huygens mission [18].

The straightforward numerical simulation of the planetary
ring can be done by means of the DirectNbody model. To deter-
mine the initial velocities of the particles, not only the gravita-
tional potential φcm of the central mass M but also the potential
of the ring φring has to be taken into account. Thus, at position
~r′, the total gravitational potential reads

φ = φcm + φring = −
GM
|~r′|
−

∫∫
ring

G dm
|~r′ − ~r|

, (17)

where dm = ρrdrdϕ and ρ = Mring/[π(R2
2 − R2

1)] is the con-
stant surface density. (Details can be found in Appendix B.)
In case of Saturn, for example, the relation between the ring

mass and the mass of Saturn is about MS ring/MS at ≈ 52.8 ·10−9.
Hence, the ring potential can be neglected in general. Nonethe-
less, it would be interesting to play with different fractions of
ring masses. Neglecting the ring potential, a particle’s tangen-
tial velocity for a circular orbit equals the Keplerian circular
velocity: v2 = k2/r with k2 = GM.

x

y

R1

R2

dm

~r′

~r

M

Figure 8: A ring of particles with inner and outer radii, R1 and R2, and surface
density ρ around a planet of mass M.

As an example, consider a planet of unit mass, M = 1, and
N = 3072 particles with each having m ≈ 10−8M. Then, the
particles orbit the planet on nearly circular orbits and the mutual
gravitational attractions lead only to small perturbations. But,
if the masses of the particles are increased by a factor of 500,
the perturbations become very strong. Increasing the masses by
an additional factor 2 yields to some first clumpy structures of
ring particles.

Because of the high number of particles, CPU integration of
the particles’ trajectories becomes extremely slow which makes
it necessary to switch to OpenCL-based integration.

4.5. Double pendulum

The double pendulum in this example consists of a fixed par-
ticle with mass m0 at the ceiling (x = 0, z = l), and two particles
with masses m1 and m2 which are initially at rest at positions
~x1 = (0, 0) and ~x2 = (0,−l). The spring connecting ‘0’ and ‘1’
has spring constant D1 and the one connecting ‘1’ and ‘2’ has
spring constant D2. Both springs have rest length l.

At the beginning of the simulation, particles ‘1’ and ‘2’ are
displaced as shown by the dashed arrows in Fig. 9 with dis-
tances |~x1′ − ~x0| = |~x2′ − ~x1′ | = l,

~x1′ =

(
l sinϕ1

l − l cosϕ1

)
, ~x2′ =

(
l sinϕ1 + l sinϕ2

l − l cosϕ1 − l cosϕ2

)
(18)

The initial velocities are set to zero, and the driving force is
gravitation in the negative z-direction.

As an example, D1 = 5 · 103, D2 = 5, l = 1, ϕ1 = ϕ2 = 0.6,
and the gravitational force is only in the negative z-direction,
g = −1.8. Because of the stiffness of the problem, the step

6

x

z

b
0

b
1

b 1
′

ϕ1 D1

b
2

b
2′

ϕ2

D2

~d1

~d2

Figure 9: The double pendulum consists of three particles: ‘0’ is fixed, whereas
‘1’ and ‘2’ can move in the xz-plane.

size of the simulation should be small, e.g. ∆t ≈ 10−3. If
the step size is too high, the simulation crashes and must be
restarted. Please note that there is no step size control imple-
mented in the integrators, because this would make the visual-
ization bumpy. And smoothing the particle motion for irregular
time steps would be quite expensive.

4.6. 2D membrane

The eigenmodes of a vibrating rectangular membrane can be
determined by solving the two-dimensional wave equation

1
c2

∂2ψ

∂t2 −
∂2ψ

∂x2 −
∂2ψ

∂y2 = 0, ψ ∈ R ×Ω, Ω ⊂ R2. (19)

The product ansatz ψ(t, x, y) = v(t) ·u(x, y) yields the two differ-
ential equations ∂2

t v + λc2v = 0 and ∆u + λu = 0 with a positive
constant λ and ∆ = ∂2

x + ∂2
y being the Laplacian operator in

two dimensions. If the membrane is fixed at its boundaries,
ψ(t, 0, y) = ψ(t, a, y) = ψ(t, x, 0) = ψ(t, x, b) with x ∈ [0, a] and
y ∈ [0, b], the ansatz function has the form

ψ(t, x, y) = α cos(ωt + ϕ) sin(kx) sin(k̂y) (20)

with k = rπ/a, k̂ = sπ/b, for r, s = {1, 2, . . .}, and some con-
stants α and ϕ.

The rectangular membrane can be approximated by a grid
of particles that are connected by springs as shown in Fig. 10.
While the boundary particles are fixed, the motion of the inte-
rior particles can be restricted along the z-direction or can be
unrestricted. From the standard configuration, where all parti-
cles are located at z = 0 and the springs are at their rest lengths,
the interior particles are displaced according to the eigenmodes
of Eq. (20) in the z-direction. However, by means of this naïve
approach the eigenmodes cannot be reproduced to an accept-
able extend, and the grid starts to bounce irregularly already
after a few oscillations.

Instead of displacing the particles manually, one could also
set a gravitational force to each individual particle and let them

Figure 10: A 2D rectangular membrane with the boundary points being fixed.
The interior points, however, can move in all three directions or can be restricted
to move only along the z-axis, for example.

move under strong artificial friction until they reach their max-
imum displacement. Then, friction and force can be set to zero
again and the membrane particles oscillate only due to their
mutual spring-connections.

4.7. Cantilever – 2D beam

Similar to a 2D membrane, a 2D cantilever can be con-
structed out of point particles and massless connecting springs.
Besides the masses and the spring constants, the influence of the
spring lengths dx and dy, or the way the masses are connected
(with or without cross-connections) can be studied in detail for
a varying gravitational force pointing downwards. Figure 11
shows a cantilever that is fixed at the wall only with the left
most particles ‘0’ and ‘6’. At the beginning of the simulation,
the springs have their rest length li j = |~xi − ~x j|.

0 1 2 3 4 5

6 7 8 9 10 11

dx

dy
m

g

Figure 11: 2D cantilever at beginning of the simulation (upper image) and at
the lower “turning” point (lower image).

4.8. Newton cradle

The Newton cradle consists of five balls of equal masses,
mi = 1, i = {1, . . . , 5}, where ball ‘1’ is pulled away and is
let to fall. When it strikes ball ‘2’, the total energy and mo-
mentum of ‘1’ is transported nearly instantaneously to ball ‘5’
that swings away and the procedure starts from the beginning
in the reverse direction. In the experiment, however, there is
some energy dissipation and the balls come to rest after a few
iterations.

7

In MPPhys, the Newton cradle can be simulated by means of
the HardSpheres model as shown in Fig. 12. At the beginning,
ball ‘1’ has initial velocity ~v1 and the other balls are at rest. The
pendulum effect which let the outer balls return is realized by
reflecting walls.

x

y

m2 m3 m4 m5

~v1

m1

Figure 12: Newton cradle simulation with five balls/spheres.

As in the real experiment, the number of balls that are ini-
tially pulled away can be changed easily. It is also possible to
do a symmetric simulation like, for example, ‘1’ and ‘5’ hav-
ing velocities ~v5 = −~v1 and having the same distances to their
first-hit balls: |~x1 − ~x2| = |~x4 − ~x5|.

An even more interesting simulation is to use different
masses, for example, doubling the mass of particle ‘1’ where
the physical explanation becomes non-trivial. See e.g. Ker-
win [19] for a possible explanation.

4.9. Maxwell-Boltzmann distribution in 2D

The HardSpheres model is also very well suited to simulate
an ideal gas. Starting with a random particle distribution where
all of the particles have the same velocity magnitude but dif-
ferent directions, the velocity distribution approaches the two-
dimensional Maxwell-Boltzmann distribution,

f (v) =
2v
b2 exp

(
−

v2

b2

)
, b2 =

2kBT
m

, (21)

already after a few collisions per particle, see Fig. 13. Here,
the Boltzmann constant kB, the temperature T , and the particle
mass m are chosen such that b = 1; and the velocity v has the
same dimension as b.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.5 1 1.5 2 2.5v

f
(v
)
d
v

Figure 13: Velocity distribution simulated by the HardSpheres model (black
dots) at some instance of time during the simulation compared to the Maxwell-
Boltzmann distribution in 2D (dashed curve). Here, b = 1, and the simulation
consists of N = 250 particles with radii r = 0.1 and initial velocity v = 1 in a
box of size 7.5 × 5.0.

The same setup can also be used, for example, to study Brow-
nian motion of a massive particle within a ‘bath’ of small parti-
cles.

5. Outlook

So far, only a simple gravitational N-body simulation, a
mass-spring model, and a Discrete Element method based on
hard spheres interactions are implemented. But already with
these simple simulations, a large number of different particle
simulations can be realized as shown in Section 4.

In a future version, several other particle models based
on smoothed particle hydrodynamics (SPH), the discrete ele-
ment method (DEM), molecular dynamics (MD), or the Lattice
Boltzmann (LB) method shall be implemented.

Acknowledgements

This work was funded by Deutsche Forschungsgemeinschaft
(DFG) as part of the Collaborative Research Centre SFB 716.

Appendix A. QtMPPhys script engine example

The oscillating membrane shown in Fig. 5 can be generated
by the following QtMPPhys script. In the first line the parti-
cle system and the integrator is set. Then, several parameters
are defined for later use. The complete particle data is not set
immediately but is stored in the text string pl which is handed-
over to the system at the end of the script.

// membrane_small.js

System.Set("MassSpring","LF");

var nx = 8;

var ny = 8;

var xStart = -1.0;

var xEnd = 1.0;

var yStart = -1.0;

var yEnd = 1.0;

var mass = 1.0;

var radius = 0.01;

var color = [1.0,1.0,0.0];

var dx = (xEnd-xStart)/(nx-1);

var dy = (yEnd-yStart)/(ny-1);

var pl = new String();

... (see below)

System.SetData(pl);

In the next step, the initial positions as well as the masses,
charges, radii, and colors of all particles have to be defined.
The ID of a particle is used below to set even further parameters.
Please note that the ID must be in ascending, consecutive order
starting from zero! In the MassSpring model, the initial position
represents the state where the springs have their rest length.

// pos ID x y z m c r color(r,g,b)

for(var yy=0; yy<ny; yy++) {

var y = yStart + yy*dy

for(var xx=0; xx<nx; xx++) {

var x = xStart + xx*dx

pl += sprintf("pos %4d %12.8f %12.8f %12.8f

8

%5.3f %5.3f %4.2f %5.2f %5.2f %5.2f\n",

(yy*nx+xx), x,y,0, mass,0,radius,

color[0],color[1],color[2]);

}

}

The initial velocity of a particle is zero by default. Here, the
velocity is set explicitly for demonstration purpose only.

// vel ID vx vy vz

for(var yy=0; yy<ny; yy++) {

for(var xx=0; xx<nx; xx++) {

pl += "vel " + (yy*nx+xx) + " 0.0 0.0 0.0\n";

}

}

In the MassSpring model, it is necessary that some particles
can be fixed such that they can move only in a particular di-
rection or that they are completely static. In this example, the
boundary particles are all static and the inner particles can move
freely in all directions.

// vfix ID fx fy fz

for(var yy=0; yy<ny; yy++) {

for(var xx=0; xx<nx; xx++) {

if (xx==0 || yy==0 || xx==nx-1 || yy==ny-1) {

pl += "vfix " + (yy*nx+xx) + " 0 0 0\n";

}

else {

pl += "vfix " + (yy*nx+xx) + " 1 1 1\n";

}

}

}

The springs connecting the particles have all the same spring
constant, frictional coefficient, and color. Hence, only one type
of spring is defined.

// s ID D c color(r,g,b)

pl += "s 0 50.0 0.003 0.4 0.4 1.0\n\n";

for(var yy=0; yy<ny; yy++) {

for(var xx=0; xx<nx-1; xx++) {

pl += "sl " + (yy*nx+xx) + " " + (yy*nx+xx+1) + " 0\n";

}

}

for(var xx=0; xx<nx; xx++) {

for(var yy=0; yy<ny-1; yy++) {

pl += "sl " + (yy*nx+xx) + " " + ((yy+1)*nx+xx) + " 0\n";

}

}

The displacements from the initial positions defined above
can be used to excite the system from its standard configuration.

// dis ID dx dy dz

for(var xx=0; xx<nx; xx++) {

var x = xx/(nx-1.0)*Math.PI;

for(var yy=0; yy<ny; yy++) {

var y = yy/(ny-1.0)*Math.PI*1.0;

var disl = 0.1*Math.pow(Math.sin(x)*Math.sin(y),1.0);

pl += "dis " + (yy*nx+xx) + " 0 0 " + disl.toFixed(5) + "\n";

}

}

Finally, some global parameters like a gravitational force, an
overall damping constant, or the integration time step dt can be
defined.

pl += "grav 0.0 0.0 0.0\n";

pl += "damp 0.0\n";

pl += "dt 1e-2";

Appendix B. Ring velocities

In polar coordinates, the ring potential φring, Eq. (17), evalu-
ated at position (r′, ϕ′) reads

φring = −GMσ

∫ 2π

ϕ=0

∫ R2

r=R1

rdrdϕ√
r2 + r′2 − 2rr′(cosϕ − cosϕ′)

,

(B.1)
where ρ = Mσ and σ being the ratio between the ring mass and
the central mass. Without loss of generality, ϕ′ = 0. Substitut-
ing x = cos(ϕ/2) yields a complete elliptic integral of the first
kind,

φring = −4GMσ

∫ R2

r=R1

∫ 1

x=0

rdrdx

a
√

1 − mx2
√

1 − x2
(B.2)

with m = 4rr′/a2 and a = r′ + r. Thus, the total gravitational
potential at r′ reads

φ(r′) = −
GM
r′
− 4GMσ

∫ R2

r=R1

r
r′ + r

K(m)dr. (B.3)

The initial velocity of a ring particle of mass dm then follows
from the balance between centrifugal and gravitational force,

dm v2

r′
= dm∇φ or v2 = r′

∂φ

∂r′
. (B.4)

As an example, consider a ring with R1 = 2, R2 = 2.5 and a
mass ratio σ with respect to the central mass M. Furthermore,
GM = k2 with k = 0.0172. Then, the initial velocity depending
on the distance r′ to the center is shown in Fig. B.14.

1 1.5 2 2.5 3 3.5

0.006

0.008

0.01

0.012

0.014

0.016

r′

v
e

lo
c
it
y

Figure B.14: Initial velocity of a particle for a ring with R1 = 2, R2 = 2.5,
k = 0.0172. solid line: σ = 0.02, dashed line: σ = 0.

Details about elliptic integrals can be found, for example, in
Lawden [20] or Armitage and Eberlein [21].

References

[1] P. Hut and J. Makino, The Maya Open Lab School Series – Vol 1: Mov-
ing Stars Around, http://www.artcompsci.org/kali/pub/msa/title.
html

9

http://www.artcompsci.org/kali/pub/msa/title.html
http://www.artcompsci.org/kali/pub/msa/title.html

[2] Molecular Workbench, http://mw.concord.org, see also http://mw.

concord.org/modeler/articles/mw.pdf.
[3] R. F. Tinker and Q. Xie, Comput. Sci. & Eng. 10, 24–27 (2008).
[4] The Open Source Physics project, http://www.opensourcephysics.org.
[5] The open graphics library (OpenGL), www.opengl.org.
[6] GLUT – The OpenGL Utility Toolkit, http://www.opengl.org/

resources/libraries/glut.
[7] GLSL – The OpenGL Shading Language, http://www.opengl.org/

documentation/glsl.
[8] S. J. Aarseth, Gravitational N-body Simulations: Tools and Algorithms

(Cambridge University Press, 2003).
[9] NVidia GPU Computing SDK, https://developer.nvidia.com/

gpu-computing-sdk.
[10] F. Kuypers, Klassische Mechanik (VCH, 1993, 4. edition, in german).
[11] ECMA-262 language specification: http://www.ecma-international.

org/publications/standards/Ecma-262.htm.
[12] Doyle et al., Science 333, 1602 (2011) [arXiv:1109.3432].
[13] Orosz et al., Science 337, 6101 (2012) [arXiv:1208.5489].
[14] R. Montgomery, Notices of the AMS 48, 471–481 (2001).
[15] C. Simó, The Resless Universe http://adsabs.harvard.edu/abs/

2001ruag.conf..265S.
[16] R. J. Vanderbei, Ann. New York Acad. Sci. 1017, 422–433 (2004).
[17] Šuvakov and Dmitrašinović, Phys. Rev. Lett. 110, 114301 (2013).
[18] Cassini-Huygens mission to Saturn, www.nasa.gov/cassini.
[19] J. D. Kerwin, Am. J. Phys. 40, 1152–1157 (1972).
[20] D. F. Lawden, Elliptic Functions and Applications (Springer, 1989).
[21] J. V. Armitage and W. F. Eberlein, Elliptic Functions (Cambridge Univer-

sity Press, 2006).

10

http://mw.concord.org
http://mw.concord.org/modeler/articles/mw.pdf
http://mw.concord.org/modeler/articles/mw.pdf
http://www.opensourcephysics.org
www.opengl.org
http://www.opengl.org/resources/libraries/glut
http://www.opengl.org/resources/libraries/glut
http://www.opengl.org/documentation/glsl
http://www.opengl.org/documentation/glsl
https://developer.nvidia.com/gpu-computing-sdk
https://developer.nvidia.com/gpu-computing-sdk
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://arxiv.org/abs/1109.3432
http://arxiv.org/abs/1208.5489
http://adsabs.harvard.edu/abs/2001ruag.conf..265S
http://adsabs.harvard.edu/abs/2001ruag.conf..265S
www.nasa.gov/cassini

	1 Introduction
	2 MPPhys
	2.1 MPPhys' core functionality
	2.2 Gravitational N-body simulations
	2.3 Mass-spring simulations
	2.4 Discrete elements with hard spheres

	3 The graphical user interface QtMPPhys
	3.1 Script engine
	3.2 Particle inspector

	4 Examples
	4.1 Sun-Earth system
	4.2 Circumbinary planetary system
	4.3 Gravitational choreography
	4.4 Planetary ring
	4.5 Double pendulum
	4.6 2D membrane
	4.7 Cantilever – 2D beam
	4.8 Newton cradle
	4.9 Maxwell-Boltzmann distribution in 2D

	5 Outlook
	Appendix A QtMPPhys script engine example
	Appendix B Ring velocities

