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Abstract

The present article considers the problem of consistent estimation in measurement
error models. A linear relation with not necessarily normally distributed mea-
surement errors is considered. Three possible estimators which are constructed as
different combinations of the estimators arising from direct and inverse regression
are considered. The efficiency properties of these three estimators are derived
and analyzed. The effect of non-normally distributed measurement errors is ana-
lyzed. A Monte-Carlo experiment is conducted to study the performance of these
estimators in finite samples and the effect of a non-normal distribution of the

measurement errors.



1 Introduction:

In a linear measurement error model, the parameters can be estimated consistently
only when some additional information besides the data set is available. There
are various ways such additional information can be employed; e.g.; Cheng and
Van Ness (1999) and Fuller (1987). Among them, application of the knowledge of
all or one of the measurement error variances is the most prominent approach.

There are three basic consistent estimators of the slope parameter of the linear
model depending on what knowledge is used. If only one of the two error variances
is known and used, estimators can be constructed by adjusting either the direct (or
ordinary) least squares (LS) or the inverse least squares estimator for measurement
errors. A third, most prominent, estimator is orthogonal (or total) least squares
(TLS), which relies on the knowledge of the ratio of the error variances. For
normally distributed measurement errors, this latter estimator is the maximum
likelihood estimator. However the former two can be combined in various ways to
construct new estimators that can compete with the TLS estimator, in particular
in small samples and when the measurement errors are non-normal.

We have considered three such combinations of the direct and inverse adjusted
LS estimators. They are modelled after analogous combinations found in the
literature, where, however, they have been constructed from non-adjusted direct
and inverse LS estimators. Sokal and Rohalf (1981) considered the geometric
mean of these two estimators (which they call the technique of reduced major
axis) and Aaronson et al. (1986) work with the arithmetic mean. In addition,
the slope parameter may be estimated by the slope of the line that bisects the
angle between the direct and inverse regression lines; see, e.g., Pierce and Tully
(1988). While all these estimators are not consistent (although they possibly
reduce the bias inherent in their constituent direct and inverse LS estimators),
the present paper constructs consistent estimators by using error adjusted direct

and inverse LS rather then non-adjusted direct and inverse LS estimators. A



simple question then arises: which out of these suggested estimators is better
under what conditions. This question has been partly dealt with in Dorff and
Gurland (1969), but for a model with replicated observations and unknown error
variances.

It seems plausible that the reliability ratios associated with study and explana-
tory variables are often easily available or can be well estimated in measurement
error models, see, Gleser (1992, 1993) for more details on this aspect. An attempt
is made in this paper to express the efficiency properties of all the estimators
under consideration as a function of reliability ratios associated with study and
explanatory variables only. This helps in obtaining conditions for the superiority
of one estimator over the other in terms of reliability ratios only.

Further, most of the literature associated with measurement error models gen-
erally assumes the normal distribution for the measurement errors. In practice,
such an assumption may not always hold true. The distribution of measurement
errors essentially depends on the nature of experiment. The specification of nor-
mality may thus sometimes lead to invalid and erroneous statistical consequences.
The effect of departure from normality is another aspect of the study which is
attempted in this paper.

The finite sample properties of the proposed estimators under different types
of distributions of measurement errors are studied through a Monte-Carlo exper-
iment.

The plan of our presentation is as follows. In Section 2, we describe a linear
model with measurement errors and present the estimators of the slope parameter
when the error variances are known. Section 3 analyzes the asymptotic properties
of the estimators when the underlying error distributions are not necessarily nor-
mal. The details of the Monte-Carlo experiment and its outcomes are reported in
Section 4. Some concluding remarks are offered in Section 5. Lastly, the Appendix

outlines the derivation of the main results.



2 Model Specification And the Estimators :

Consider a linear measurement error model in which the variables are related by
the linear relation

Yi=a+p5X; (j=1,2,...,n) (2.1)

where Y; and X; denote the true but unobserved values of the variables, a is the
unknown intercept term and [ is the unknown slope parameter.

The observed values y; and x; are expressible as

Yy =Y+ uy (2.2)

ZL‘j =Xj+vj (23)

where u; and v; denote the associated measurement errors.

We assume that X, X,,..., X, are independently distributed random vari-
ables such that plim,..X =: px and plim, .+ > (X; — X)* =: 0% exist and
0% > 0. The measurement errors uj, us, . . ., U, are assumed to be independently
and identically distributed with mean 0, variance o2 third moment ~v;,02 and
fourth moment (o, + 3)ol. The quantities ;. and ~y,, represent the measures of
skewness and kurtosis of the respective distributions denoted in subscripts. Sim-

ilarly, the errors vy, vs,...,v, are assumed to be independently and identically

3

> and fourth moment

distributed with mean 0, variance ¢2 third moment 7,0
(720 + 3)oy. Further, the random variables (X, u;,v;) are assumed to be jointly
independent.

It may be noted that this model comprises the so-called ultrastructural model,
see Dolby (1976), which in turn contains the structural and the functional model
as special cases. In the structural model, the X;’s are i.i.d. random variables
with mean pux and variance o%. In the functional model, the X; are unknown
constants with the property that lim, ... X =: py and £ >~ (X; —X)? =: 0% exist.

Consistent estimation of the parameters a and 3 in the relationship (2.1) with

the help of given data (z;,y;),j = 1,...,n, is possible only when some additional
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information is available.
This additional information, let us suppose, specifies the error variances o2
and o2. We can then estimate the slope parameter 3 consistently by the method

of moments. This provides the following estimators of [3.

Szy 2
bi = ——— Swm >0, (2.4)
Spw — 02
2
Syy — O
b = HE—2 5, >0 (2.5)
Say

where

sm:%Z(m‘j—j)Q : jz%ij ;
1 1
Syy:EZ(yj_g)z ) Q:EZ%’ ;

Sy = =5 (15— ) (s — ).

o

When s,, < 02 in by or Syy < 02 in b;, then one possible solution is to disregard
the whole sample because the measurement errors are too high to spoil the whole
data set. Another alternative is to use the small sample modifications in the
estimators as suggested in Fuller (1987). Further discussion on this issue is out of
the purview of this paper.

The estimator b; can be regarded as the direct OLS estimator of the slope
parameter in the regression of y; on z instead of z;; see, e.g., Srivastava and

J

Shalabh (1997a) and Shalabh (1998), where

T=T+ (1— "3) (z; — 7). (2.6)

SZ'$
Similarly, if we write
o2
yi =0+ (1 - —“) (y; — ), (2.7)
Syy
the inverse estimator ; essentially arises from the regression of z; on y; instead



It may be observed that the estimators by and b; utilize the knowledge of only
one error variance at a time. An estimator using the knowledge of both the error

variances is given by

1
o2\ ? 1 o2
b, =1, + <t12, + F) S P (syy — gsm) i Say # 0 (2.8)
ry v

v

which is obtained by minimizing the sum of squares of the perpendicular distance
from the data points to the line in a scatter diagram, (i.e., orthogonal regression)
after the data z; and y; have been transformed to z;/0, and y,/o,, respectively.

In the technique of “reduced major axis”, the slope parameter (3 is estimated
by the geometric mean of the estimators arising from direct and inverse regression
estimators as

1
by = sign(ss,) [babil (2.9)

where sign(s,,) is the sign of s,, which can be either positive or negative.

Similarly, we may estimate 3 by

1

which is the arithmetic mean of estimators by and b;.
Another interesting estimator of (3 is

) bab; — 1
by =t 24+ 12 oty = =2
b b+ (6 +1)2 ;5 t byt by

(2.11)

which is the slope of the line that bisects the angle between the two regression
lines specified by by and b;.
It may be observed that all six estimators of 3 can be seen to have arisen from

the method of moments.

3 Asymptotic Properties:

The asymptotic variances of the estimator by, b; and b, under an ultrastructural

model and when errors are not necessarily normally distributed have been studied



by Shalabh, Gleser and Rosen (2004), see also, Srivastava and Shalabh (1997b),
Schneeweiss (1976) and Fuller (1987). For the sake of convenience to the reader,
we restate these results. In addition, we give an expression for the asymptotic
covariance of b; and b;, which will be used in the derivation of the asymptotic

variances of by, b,, and by,.

Proposition 1: The estimators by and b; are asymptotically jointly normally

distributed as

by — Oad  Odi
vn a =0 — N(0,%,) where X, = da o
b — 8 Odi O
with
o (1=
Odd = ﬁ )\2 [)‘a: + q + (1 - /\a:)(2 + ’721))] (31)
2 1-— >\m 2
5 (1 =X
osi = [0 2 Az +q(2X\; — 1)] (3.3)
where
N o= DX %%
TR Gt
N
Y (203 + o2
Az(1—Ay)

LD WSS
The proof of this Proposition is stated in the Appendix.
Notice that A\, and ), are the reliability ratios of the explanatory and study
variables in the model. Obviously, 0 < A, <1,0< )\, <1, and g > 0.

Proposition 2: The estimators b, is asymptotically normally distributed as

\/ﬁ(bp — ) — N(0,0y,)
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with asymptotic variance

1—A (1 —\,)
_ 2 T T
o= (55) Do

(")/Zu + 721)) . (34)

The proof of the Proposition 2 follows from Shalabh et al. (2004).
Proposition 3: Let BAI and 52 be two consistent, asymptotically jointly normal
estimators of 3. Any estimator B of B which is a differentiable and symmetric
function g(ﬁl, Bg) of B and (3, such that 8 = g(B, B) is consistent and asymptot-

ically normally distributed with an asymptotic variance given by

O'E = Z (0'11 + 20’12 +O'22),

where ¥ = (0y;), 4,7 = 1,2, is the asymptotic covariance matrix of (ﬁAl, BQ)
The proof of this Proposition is stated in the Appendix.
Thus, using Propositions 1 and 3, it is seen that the estimators by, b, and by

are all consistent and asymptotically normal with the same asymptotic variance

given by
o (1—X;)6
where
§=2[¢*(1 — Xo) + 14+ s +2¢0] + (1= X2) (V20 + @ 2u)- (3.6)

It is interesting to observe from (3.5) and (3.6) that the skewness of the dis-
tributions of measurement errors has no influence on the asymptotic variances of
the estimators. It is only the kurtosis that shows its effect. Further, it is seen
that the asymptotic variance for each estimator under normality of errors could
be quite different when the distributions depart from normality.

It is interesting to note that the estimators by, b,, and b, are equally efficient.
Comparing the asymptotic variances, we find that the estimator b, is more efficient

than by, b, or b, if, and only if,

2(¢° — 1) > (¢ — )[(1 4 3¢)720 — ¢*(q + 3)724] (3.7)



Condition (3.7) is clearly satisfied when both measurement errors have mesokur-
tic (e.g., normal) distributions. The condition also holds true when ¢ > 1 and
You = 0 and 7o, < 0.

When either of the measurement errors has a distribution with non-zero coef-
ficient of kurtosis, the inequality (3.7) may not always hold true. So the estimator
b, may not necessarily have minimum variance under non-normal distributions of
measurement, errors.

Next, we compare the asymptotic variances of by, b, or b, with b; and b;. We

find that by, b, or b, are better than b, if, and only if,

3990 — @2 > 2(q — 3) (g + 1) (3.8)

Condition (3.8) is always satisfied for mesokurtic (e.g., normal) distributions of u
and v when ¢ < 3.

Similarly, by, by, or by, are better than b; if, and only if,

Yoo — 3% V20 < 2(3¢ — 1)(q + 1). (3.9)

Condition (3.9) is always satisfied for mesokurtic (e.g., normal) distributions of u
and v when ¢ > %

From (3.8) and (3.9), it is clear that the use of two types of additional in-
formation to obtain a consistent estimator is not always a good idea, at least
asymptotically. Rather, it depends on the values of reliability ratios associated
with dependent and independent variables as well as on the degree of peakedness
of the distributions of measurement errors to decide which of the information can

give better asymptotic results.

4 Monte Carlo Simulation:

The asymptotic theory developed in the previous section gives an idea about the

behaviour of estimators for large samples only. We conducted a Monte-Carlo sim-



ulation to study the behaviour of the estimators in finite samples. The following
probability distributions of measurement errors are considered to have an idea of
the effect of departure from the normal distribution on the efficiency properties

of the estimators:

1. normal distribution,
2. t-distribution with 6 degrees of freedom,
3. beta distribution Beta(4,2), and

4. Weibull distribution with shape parameter 1 and scale parameter 2.

Two data sets of sample sizes n = 40 (treated as small sample) and n = 400
(treated as large sample) are considered, for which 0% = 0.08. The empirical bias
(EB) and empirical mean squared error (EMSE) of the estimators by, b;, by, by, by,
and b, are computed based on 10000 replications for both the sample sizes and for
different combinations of A\, = 0.1,0.3,0.5,0.7,0.9 and )\, = 0.1,0.3,0.5,0.7,0.9
under different distributions of measurement errors. The values of EB and EMSE
of these estimators are presented in Tables 1 to 8 and are plotted against A\, and
Ay in 3-dimensional surface plots in Fig. 1 to 8. It should be noted that the
figures employ different scalings on the Z-axis. So the behaviour and dependency
of EB and EMSE with respect to A, and A, is more clearly visible from the values
compiled in the Tables 1 to 8. On the other hand, the shape of the functions
EB();, A\y) and EMSE()A,, A,) comes out more clearly in the figures.

The following notations are used in figures 1 to 8: A\, = Ix, A, = ly, by = bd,
b; = bi, b, = bp, b, = bg, b,, = bm and b, = bb.

Now we analyze the behaviour of EB and EMSE of different estimators through
Fig. 1 to 8 under a given distribution of measurement errors. We are mainly
concerned in the pattern of the surfaces rather than the magnitude of values.

First we compare the properties of the various surface plots of EB in Fig. 1

to 4 under small and large samples. Generally speaking, the small sample plots
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(n = 40) show much more variability than the large sample plots (n = 400). This
is particularly true for small A, and A,. This variability reflects the extremely
high variances of the estimates for small A\, and A, (see below). Nevertheless, the
bias is statistically significant in most cases.

In the case of normal measurement errors (Fig. 1), the surface plots of EB of
bq and b; are similar under small and large samples, whereas the surface plots of b,
by, by, and b, differ between small and large samples. The The EB of b, changes
sign when going from small to large samples and when )\, and A\, are small. Under
the ¢ distribution of measurement errors, (see Fig. 2), only the EBs of b, and b,
are similar in their behaviour under small and large samples. The sign of EB of
by is partly positive and partly negative in small samples depending on the values
of A\; and A,, whereas it is always negative in large samples. Under the beta
distribution of measurement errors, (see Fig.3), only by has similar surface plots
in small and large samples, while the rest shows differences. In small samples, b;
and b, are negatively biased either for very low or very high values of A, and A,
whereas they are always positively biased in large samples. The EB of by and b,
have similar surface plots in small and large samples under Weibull distributed
measurement errors (see Fig. 4). Only b, is negatively biased, whereas the sign
of the bias of the other estimators depends on the values of A, and A,

Next, we analyze the dependence of the EMSE of the estimators from Fig. 5
to 8 on the sample size. In general, all EMSE values become small when A\, and
Ay are large, whereas for small A\, and/or \,, the EMSE often becomes extremely
large. Under normally distributed measurement errors (see Fig. 5), the surface
plots of b; are quite similar for small and large samples, whereas those for the
other estimators show marked differences in small and large samples especially
if A, and/ or A, are small. Under the ¢ distribution of measurement errors (see,
Fig. 6), no similarity can be seen between small and large samples. Only the

surface plots of EMSEs of b; and b; under the beta distributed measurement
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errors (see Fig. 7) are similar between small and large samples. More variation in
the corresponding EMSEs of all estimators under small and large samples is seen
in Weibull distributed measurement errors (see Fig. 8). None of the estimators
have similar surface plots in small and large samples.

Now we compare the different surface plots of EB (Fig. 2 to 4) with those of
the normal distribution (Fig. 1) thereby studying the effect of deviations from
normality on the EB of the various estimators. Comparing the surface plots of EB
of different corresponding estimators under normal and ¢-distributed measurement
errors (Fig.1 and 2), we find that all are different except b,. The difference is more
pronounced in the EBs of corresponding estimators in small samples than in large
samples. Such a difference may be seen as the contribution of peakedness of the
distribution on EB. The surface patterns of all estimators under normal and beta
distributions of measurement errors are remarkably similar (Fig. 1 and 3). The
reason being that the coefficients of skewness and kurtosis of the distributions
under consideration have very small values. The surface plots of each of the
corresponding estimators under normal and Weibull distributions of measurement
errors (Fig. 1 and 4) are different except for b, in large samples. This clearly
indicates that the departure from normality do affect the EB of these estimators.

Now we compare the surface plots of the empirical mean squared error (EMSE)
of different estimators under different distributions of measurement errors (Fig. 6
to 8) to those under normally distributed measurement errors (Fig. 5). Firstly,
we compare the surface plots under normal and t¢-distributions of measurement
errors (Fig. 5 and 6). We observe that the surface plots of EMSEs of only b; and
b, are similar in large samples only and all others are different. This indicates
that the kurtosis of the distribution of measurement errors affects the EMSEs
of the estimators significantly. Comparison of the surface plots of EMSEs under
beta with those under normal distributions of measurement errors (Fig. 8 and

9) reveals that most of the surface plots of estimators are similar because of low
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values of coefficient of skewness and kurtosis of the beta distribution (Fig. 5 and
7). Similarly, comparing the surface plots of EMSEs under Weibull distribution
and normal distribution reveals that only b;, by and b,,, have similar behaviour with
respect to A, and A, in small samples, but the corresponding large sample plots
are different. It is worth noting that b, has similar whereas b,, has different surface
plots in large samples in respective distributions. We note that the asymptotic
theory indicates that g4, b,, and b, should have similar surface plots. So it is clear
that the departure from normality of the distribution of measurement errors play
an important role in determining the EMSE of the estimators. However, this is
only true for small A, and A,.

Now we look at the behaviour of EB and EMSE with respect to A, and A,
under different distributions from Tables 1 to 8. It is observed that the values
of EB and EMSE under n = 400 are closer to the true values of the parameters
than under n = 40 for all distributions, which confirms the consistency of the
estimators.

We observe that under the normal distribution of measurement errors (Table
1 and 2) that as either of the values of A, or A, increases, the EB and EMSE of all
the estimators decreases. But the magnitude of EB and EMSE of every estimator
is different. The EB of b, has smallest magnitude among other estimators in
small samples when A, and A\, are low, say, less than 0.3, otherwise b, has lowest
magnitude of EB. An interesting finding is that when A\, and A, are very low,
the performance of b, is best among other estimators with respect to EMSE. This
dominance is stronger in small samples over a wider range of values of A, and
Ay. In fact, both b, and b, have smaller variability than b, when A, and A, are
low. The estimator b, outperforms other estimators only when A, and A, are
not very low. We know from large sample theory that by, b, and b, have the
same asymptotic variance. We may therefore expect a similar variability for these

estimators in large samples. This however holds true only when A, and A, are
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high. In small samples and with lower values of A, and ),, this is no more true.
The performance of b, is adversely affected when A, is low in comparison to when
Az is low. For higher values of A, and A, the performance of all the estimators
stabilizes. It can also be seen from Fig. 1 and 6 that for low values of A\, and
Ay, say less than 0.5, the surface plots are changing, whereas when A, and A, are
grater than 0.5, the plots are smooth. The behaviour of different estimators for
different values of A, and A,, in particular when they are small, varies differently
in different distributions.

For the t-distribution of measurement errors (Tables 3 and 4), b, and by, have
smaller magnitude of EB than other estimators in small samples. The estimator
by is always negatively biased, whereas the direction of bias of other estimators
depends on the values of A, and \,. Comparing the EMSEs, b, dominates all other
estimators when )\, and ), are low. The dominating range of A\, and )\, is wider in
small samples than in large samples for both the EB and EMSE. The estimator b,
is adversely affected by the lower values of A, than A, in small samples. Overall,
by emerges as a good choice when A, is small. When both are high, then b, is a
better choice.

Under the beta distribution of measurement errors (Tables 5 and 6), The
magnitude of EB of b, and b, is smaller than of other estimators in small samples
but in large samples, b, has smaller magnitude of EB. Comparing the EMSEs, we
find that bg has very high EMSE when A\, < 0.3, whereas b;, b, and b,, have high
EMSE for A, < 0.3 or A\, < 0.3. The estimator b, and b, have relatively much
lower EMSE than other estimators in small samples. This remains true in large
samples only when ), is very low, say, 0.1. Among all estimators, b, has smalle
EMSE for lower values of A\, and A,. The estimator b, outperforms b, and b, only
when A, and )\, are high in small samples and that over a wide range of values of
Az and \,. In large sample, this remains true over a narrower range of values of

Az and \,. Again, b, is severely affected by the lower values of A, in small sample.
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As ), and ), increase, the performance of all the estimators stabilize. In large
samples, this stabilization comes much faster than in small samples.

Now we consider Tables 7 and 8. The values of the magnitude of EBs and
EMSESs of all the estimators are higher under Weibull distributed measurement
errors than the corresponding values under the other distributions. This effect is
essentially due to the presence of extreme values in the sample and the shape of the
Weibull distribution considered here, which is a J-shaped curve. In spite of this,
b, shows its clear dominance with respect to the magnitude of EB and EMSE over
b, and b, in small sample when A, < 0.9 and A\, < 0.3. In case of large samples,
this dominance is still present, but the ranges of A\, and A, shrink. Under similar
conditions, b, emerges as the second best choice of estimator. The performance
of b; and b, is more severely affected by the lower values of A, than by the lower
values of A\,. The difference in the values of magnitude of EBs and EMSEs under
small and large samples is higher under Weibull distributed measurement errors
than under other distributions considered earlier. It can be noticed here that the
performance of b, under this case is worst among other cases considered earlier.

Still b, and by turns out to be more robust than b,, and b, emerges as winner.

5 Conclusions :

We considered six estimators by, b;, by, by, bm, and by for the slope parameter 3
when the error variances o2 and o2 are known in a linear ultrastructural model.
These estimators can be regarded as arising from the method of moments. All
these estimators are found to be consistent and asymptotically normally distrib-
uted.

When the distributions of errors depart from normality, it is interesting to ob-
serve that the asymptotic variances of the estimators are influence by the peaked-

ness, and not the asymmetry, of the error distributions. Further it is seen that
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the superiority of an estimator over another under the popular specification of
normality may not necessarily carry over when the distributions depart from nor-
mality. For example, the uniform superiority of the estimator b, over by, b,,, and by
is perturbed when the distributions are not normal and in particular platykurtic.

A study from a Monte Carlo simulation experiment gives an insight into the
finite sample properties of the estimators and the effect of departure from nor-
mality on the efficiency properties of the estimators. It is clear from the study
that the efficiency properties of the estimators are affected by non-normality of
the distribution of measurement errors. In particular, the effect of peakedness is
clearly seen, which is more pronounced in small samples than in large samples.
For large samples, most of the estimators show a behaviour that corresponds to
the asymptotic theory, at least for higher values of reliability ratios. As a rule of
thumb, the reliability ratios can be said to be large when A\, > 0.5 and A, > 0.5.
In particular, when n, A;, and A, are large, then b, is best. Also, in this case b,
b, and b, are almost similar, which is in accordance with the asymptotic theory.
For lower values of the reliability ratios, there is no unique dominance of any of
the estimators. The uniform superiority of b, is questionable when the values of
the reliability ratios are very low under not necessarily normally distributed mea-
surement errors. In most of the cases, b, emerges as a better choice than b, when
A, and A, are low (although otherwise b, dominates). If A\, and )\, are small,
very large samples are needed to produce results similar to asymptotic theory;
n = 400 is not large enough. It is revealed from the simulation study that the
choice of a good estimator depends on the values of the reliability ratios as well

as the distribution of measurement errors under consideration.

16



6 Appendix

Using the fundamental relations of the model (2.1)-(2.3), we find with some alge-

bra

Vit~ ) =

x v

Zd7
where
Zd = SXu + Suwv — ﬁSX’U - ﬁ(S?] - 012;)

Denoting the centralised variable X by X* = X — ux, we obtain
1 - * k
VnZ, = N > [Xuy 4 uju; — BX v — Bv] — o2)] + 0,(1).
j=1

Similarly,

with
1 & . .
\/HZ,L = % Z [ﬁXjuj — ﬁ’U/j’Uj — ﬁszUj + U? - O',ﬂ + Op(1)~
j=1

By the central limit theorem,

02,24 0Z,7;

Z
ol 7Y = N0,%,), where ¥, =

Zi 0242, 02,7,
with
Oz42, = 0x04+ 0.0, + Poxor + FH(E(") — o))
0z, = Foxol+ oo+ floxo’ + BE(ut) — 03
0z,z = BUXU — ﬁauav + B3UXJ

As plimy, oo (82 — 02) = 0% and plimy, oSz = B0o%, we finally obtain

1
ou = — [ou(ok +00) + Bkl + 82 (a0 + 2)0
X
1 2/ 2 2 1 2
oi = —f o2(0% + 02) + BPoxol + = 5 (You + )o,
1
Ogi = T[Ui(agf )+52‘7XU}
Ox
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Using the definitions of A, and ¢, one can see the equivalence of these expres-

sions to the corresponding ones in Proposition 1.

Proof of Proposition 3:

Denote the partial derivatives of g with respect to the first and second argu-

ment of g by g; and gs, respectively. Then by the symmetry of g, the equation
B =g(83,3) implies

1= g1(8,8) + 92(8, 8) = 20:(8, B) = 292(8, B),

ie, q1(06,0) = g2(5,8) = % We then can evaluate 0[29 by the delta-method as

1
2 !
05 = —4(1, 1)%(1,1)

which is the statement of Proposition 3.
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Figure 1: Empirical bias of estimators when measurement errors follow normal

distribution
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Figure 2: Empirical bias of estimators when measurement errors follow ¢ - distri-

bution
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Figure 3: Empirical bias of estimators when measurement errors follow beta dis-

tribution
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distribution
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Figure 6: Empirical mean squared error of estimators when measurement errors

follow ¢ - distribution
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Figure 7: Empirical mean squared error of estimators when measurement errors

follow beta distribution




EM(bd) with Weibuil distrbution (n = 40)

EM(bdl) with Weibul distribution (n = 400)

emibd)
EMibi) with Weibull distribution (n = 40) EMbi) with Webul distribution (n = 400)
00000
conono
00000
Emgei) % Em(i)
oo 100000
a o
0 000
EM(bp) with Weibul distrbution (n = 40) EM(bp ) with Weibul distrbution (n = 400)
2000000
Enbe) 10000000
°
o0n
EM(bg) with Webul dstrbution (n = 40) EM(bg) with Weibul distribution {n = 400)
EMiba) emba)
EM(brn) with Weibul distribution (n = 40) EM(brn) with WelbUl distribution (n = 400)
150000 0000
ey 100000 ey
sano z00
" o
0 o0
EM(bb) with Webul dstrbution (n = 40) EM(bb) with Weibul dstrbution (n = 400)
10
ey 05

Figure 8: Empirical mean squared error of

follow Weibull distribution

estimators when measurement errors



€800°0 £800°0 €800°0 £€500°0 L500°0 0900°0 9200°0 | 6200°0 | 92000 | 92000 | 1T00°0- | 8.00°0 | 60 | 6°0
6910°0 89T0°0 0LT0°0 GST0°0 8200 89T0°0 | 8500°0- | 8€00°0- | 6900°0- | Lg000 | €LT0°0- | L6000 | L0 | 60
20900 165070 0990°0 9070°0 TeET'0 62700 | ¥PE0'0- | 6020°0- | 68€0°0- | 8FO00 | LPSO'0- | 0E£T00 | G0 | 60
¥L01°0 L121°0 €921°0 6690°0 006€°0 0£L0'0 | TE00'0- | TSE0'0 | LZT0'0- | 6EO'0 | €E€0°0 | 8THO0 | €0 | 60
69€2°0 £789°8 PITE0 | LTS6'68EED 80TT'EE 9g61°0 0Z8T'0 | 682F0 | S¥8T'0 | 88906 | €0TL0 | GLFT'O | 10 | 60
97100 w100 97100 6210°0 V€100 22e0'0 9910°0 | 8100 | 19T0°0 | 68000 | TPOO'O | ZZ€O'0 | 60 | 20
90£0°0 €0€0°0 0T£0°0 0620°0 ¥8£0°0 1870°0 ¥0T0°0 | 0910°0 | 90T0°0 | ¥600°0 | 1800°0- | TOF0'0 | 20 | 2°0
8890°0 2690°0 792070 8650°0 POVT0 TPS0'0 | LL00°0- | €2T0°0 | S0TO0- | LSTO'O | TLZ0'0- | 91900 | S0 | 20
VOET'0 LT62°0T L18T°0 0SVTTE P80 TF 89TT°0 $€CO'0 | ZEIT'0 | OSTO0 | LGLT'0 | TI6€T°0 | ©L800 | €0 | L0
6080 | 600°TEC | TIEF'0 | 9L0T'ELIEE |  LS00°€E6 92820 9%2c’0 | L16S0 | 2SgE’0 | OTOF'9 | LgbO'T | LOFT'O | 10 | 20
9090°0 1601°0 TrL0'0 01€0°0 60£0°0 899€°0 6£90°0 | ST800 | ¥890°0 | @¥g00 | 96100 | I¥FFI'O | 60 | €0
g98T'0 | O0EOV'EZT | 09001 9952°0 1L€€°0 686L°G67 | TOTT'0 | 2SS0 | TOST'O | LSS0°0 | S8€0°0 | 6IE0°T | L0 | SO
9660°0 7€89°C 8ELT'0 8980°0 00710 €212°0T | 01700 | 0L0T'0 | T0S00 | LEEO'O | €100°0- | €972°0 | S0 | €0
7210 T0£S°C 9710 L9LL°0 L9€S°6 L062°0 66T0°0 | S9L0°0 | 9¥TO0 | 8¥90°0 | 09TO0 | 69€T0 | €0 | G0
€€9€°0 | LggLOFL | 7S990 | 688L'6TIE | V99T T96C 1689°0 PSVC'0 | €860 | 9STE0 | €0T€'E | 96€C’T | 0860 | 1O | 90
01220 | VeLVevl | STOV'T 7€40°0 8L0'0 G006'FLS | TEST'0 | TTEL0 | SE€ST'0 | 2OVO'0 | SLE00 | 9VEF'T | 60 | €0
98620 | 9296°CET | 89L9'T 26020 £78€°0 182€°66S | €TI0 | 9%88°0 | 6L92°0 | I¥PS0'0 | @9%0°0 | 6T2L’T | L0 | €0
9952°0 968E 6% 9gqTT'1 iias 1189 €CFI'E6T | 0L21°0 | 2IF9°0 | 8LIZ0 | 610T°0 | L5L000 | 9901 | S0 | €0
T8Te0 | FOLOTPT | PEIGT €880 67G6'ST T9EG TGS | 860T°0 | 66140 | T8LT'0 | L6ST'0 | PEFT'0 | ¥962T | €0 | €0
9L¥6'T | OTG0°LG0€ | 0692°CT | TS0£'660L | €TLE0866 | COVO'ISTE | €08S°0 | €2S9'T | TL6T'0 | 0S26'C | SEELv'0 | 80.8C | 10 | €0
6072°0 | 60VF'SSL | OLL8'T | 62eh 0T 90L8'0FE | 999£°928¢ | 0660°0- | €£9T'T | €FPO0- | €209°0 | TLTIZ'0 | G60T'C | 60 | T°0
909z2°0 | S9G9°GIET | 9681°C YOVT'G6 09.2'8L9% | 6L0S708Z | ©800°0- | €6€8°0 | €660°0 | STOV'0 | 8.89°0- | ¥99¢C | L0 | 10
L08C°0 | TOVI'OLEG | LLLG'T 00£0°€6 €8GG'L9GE | €9LG'€E6S | 6LTT0- | S6LS0 | 6922°0- | 6¥19°0 | 06190~ | 0SLL'T | G0 | T'0
$G99°0 | T898°0.86C | 8SE€8'C | TSLT'T90CY | ¢cg0'0GITIT | €STT'CLES | 2gg0'0- | S988°C | 890€°0- | 6SI18°C | L6ISC | €€96'C | €0 | 10
6520'T | TSVP'86ET | €1LT'9 | L689°60L9 | 9T96F9ITL | LPEE'SEET | SL6T°0 | WLEC'T | SIST'O- | LES6'T | 0L60°0 | 8LLET | 10 | 10
(Qmwa | (“gwa | (Powa (“Q)INA (*fq)nd Powa | (9gda | (“gga | Bega | (‘9gaua | (9ga | (Pega | ix | 2x

0F = U )M UOTINLIISIP [RULION JOPUN SIOJRUII}Sd JO I0LI porenbs urow reorriduo pue seiq [eourduwy T o[qR],

29



90000 | 90000 | 90000 | 90000 10000 L000°0 60000 | S000°0 | 0000 | 0000 | TO0O'O- | TTO00 | 60 | 60
$1000 | FI000 | FI00°0 | €T00°0 02000 ¥100°0 | £000°0- | 2000°0- | €000°0- | £000°0 | €I00°0- | 80000 | L0 | 60
L€00°0 | L£00°0 | L£00°0 | 82000 €000 82000 | 9€00°0- | 6200°0- | 9€00°0- | L000°0- | 4S00°0- | T000'0- | €0 | 60
GI10°0 | ¥I100 | LIT00 | 9000 06200 €900'0 | 9900°0- | S£00°0- | 8900°0- | 0T00'0 | S800°0- | ST000 | €0 | 60
G¥80°0 | ¥6600 | TSOT'0 | 85200 £95£°0 1920°0 9%00'0 | 9¥¥0°0 | ¢PO0'0- | 9ET0°0 | 6GL0°0 | TETO0 | 10 | 670
¥100°0 | %1000 | %1000 | €000 ¥100°0 0200°0 €100°0 | ¥T00°0 | €100°0 | ¥000°0 | T000°0- | 62000 | 60 | L0
€200°0 | €000 | €000 | €z00°0 0£00°0 T£00°0 €100°0 | LT00°0 | €100°0 | €100°0 | 6000°0- | €F000 | 20 | L0
LFP00'0 | LP000 | LV00'0 | F00°0 8800°0 6700°0 | 9T00°0- | €000°0- | 9T00'0- | S000°0 | 8£00°0- | 82000 | €0 | L0
PSTO0 | €ST0°0 | SST0°0 | S600°0 01700 €0T0°0 | €800°0- | €€00°0- | 9800°0- | L0000 | S600°0- | 0€000 | €0 | L0
8€60°0 | 8¢ZT'0 | SLITO | S9£0°0 £857°0 ¥8£0°0 g9T0°0 | 96900 | ¥600°0 | TST00 | €TI0 | 09100 | 10 | L0
15000 | 69000 | 8000 | 6£00°0 07000 LT10°0 68000 | @OTO'0 | 06000 | 0E00'0 | ©Z0O'0 | ISTO0 | 60 | G0
09000 | T900°0 | 09000 | 9000 1900°0 92100 12000 | 88000 | 1,000 | 9€00°0 | STO0'0 | 09100 | 20 | S0
06000 | 6000 | 06000 | 68000 98100 8ST0°0 0£00°0 | ©900°0 | 0€00°0 | TE00'0 | T0000- | SZT10°0 | €0 | 90
9810°0 | 68100 | 06100 | 99100 68700 9120°0 | 6£00°0- | TPOO'O | TFOO'0- | €££00°0 | €600°0- | STTO0 | €0 | 90
04800 | TPIT'O | 920T°0 | G900 STEP0 L£S0°0 96000 | €¥90°0 | 2000 | €100 | ¥SOT'0 | 20200 | T0 | €0
€9T0°'0 | L8100 | 69100 | 69000 0.00°0 ££50°0 8€20°0 | 6200 | ¥¥T0'0 | 99000 | 09000 | VTG00 | 60 | €0
68100 | ©¢z0'0 | 86100 | 00100 L0100 6290°0 9%20'0 | 0ZE0'0 | ¥SG0'0 | 8000 | ¥900°0 | SL50°0 | L0 | €0
€220°0 | ¥.200 | 9€20°0 | 99100 92200 88.0°0 11200 | 61€0°0 | 12200 | 00100 | TL00'0 | 9900 | €0 | €0
1S60°0 | P800 | T8€00 | 9E€€00 €100 8601°0 8GT0°0 | S9€0°0 | 89T0°0 | TSTO0 | 18000 | 8¥90°0 | €0 | €0
¥I0T'0 | 06V20 | 99210 | #9020 GL96°0 99710 0810°0 | 6€0T°0 | LITO0 | 6VF00 | TILPT'O | L0900 | 10 | €0
LTOT'0 | €EET'IIT | 60V0'T | 0200 7.20°0 €E8CTPY | SZOT'0 | 19990 | €00Z°0 | 68T0°0 | SPIO0 | 9STET | 60 | T'O
8LL1°0 | 60£0°90¢ | FESS'T | €920°0 G800 | LG6L°€T0T | SVPIT'O | €6V6°0 | S0€20 | ¥6I0°0 | TT600 | SLLST | L0 | TO
GLST'0 | €68T°€L | 00VET | 80900 L2L0°0 6£09°26C | SL0T'0 | 0908°0 | OT€Z'0 | 09200 | ¥ELO'0 | 98.8°T | S0 | 10
G20%'0 | T0gI'S6T | 92I€T | SECT'8 6£08°0T | STCL'T8L | SEOT'0 | 1¥88°0 | 99120 | 9280°0 | TSIT0 | TES9'T | €0 | T0
1SEE°0 | TO6ETI9 | L8SH'T | 8GGLLTT | ST6G'8807 | GSGT'Z9E | SSOT'0 | 8S6T'T | 00LT0 | SPOF'0 | 2S98°0 | €92S'T | 10 | 10
(Qmd | (“9mwda | owd | (‘9w (fe)na Pomwa | (9ga | (“gga | Bega | (‘9aa | (}9ga | (Pega | v | °x

007 = U YIM UOIINQLIISIP [RULIOU IOPUIN SIOJRUWIIISO JO 0110 palenbs weow [eounduwe pue serq [esudws :g d9[qe],

30



LTT00 1210°0 8TT0°0 GET0'0 z120°0 ¥S10°0 TE00°0 | T800°0 | TS00'0 | 8900°0 | @6S0°0 | OEF0'0- | 60 | 60
zLE00 0870°0 76€0°0 95£0°0 GeST'0 9T£0°0 87900 | 0980°0 | 0.90°0 | 06000 | SSTZ'0 | SSFO'0- | L0 | 60
18L0°0 €191°0 £680°0 £250°0 1909°0 vS70°0 08I0 | ZE€ST'0 | 69€T°0 | SEI00 | SLBE0 | OTE00- | S0 | 60
1251°0 L8290 8L6T'0 18400 6075°C L0200 GIT¢'0 | ST9E0 | 98€E°0 | SET00 | €EFL0 | 20200~ | €0 | 60
1128°0 | OP6T'8L9T | 0090'T | LGGL'OTHSST | SLEE'CTLI GL0T'0 €0T9°0 | 9088°'T | ¥899°0 | 61S8'T¢ | LgGl'€ | S8000 | T'0 | 60
8L10°0 8L10°0 0810°0 70200 £€820°0 LEE0'0 | 0£20°0- | ¥LI0°0- | €€¢0°0- | 9¥10°0 | S6V0°0 | L¥80°0- | 6°0 | L0
gPE0°0 2090°0 09£0°0 78600 8861°0 9¥S0°0 9210°0 | F¥E00 | ZETO0 | 90200 | 199T°0 | ¥.60°0- | L0 | L0
1870°0 129070 zsT0'0 £€50°0 S¥TZ0 9G70°0 €650°0 | 1880°0 | ©Z90'0 | €LT0°0 | €9¥T0 | 6890°0- | S0 | L0
GeFI0 76£9°6 €161°0 0662°GV 0ST9'8E £001°0 LVLT0 | 09€£°0 | 80020 | LZFT'0 | @LPL'0 | TSL00- | €0 | 2°0
T6VL°0 | GELLVOLL | 90VE'T | T9ET'LTTI00S | 9S¥9°OTS0E | 8L9¥°0 €185°0 | 08LE'T | 920L°0 | ¥68S'€E | 1088'C | 1¥90°0- | T0 | L0
8850°0 ¥901°0 0690°0 ££90°0 96£T°0 0£92°0 | 0LG0°0- | S680°0- | €850°0- | TEFO0 | ¥.80°0 | ¥9¥I°0- | 60 | S0
0280°0 90€8°0 80VT'0 P2EL0 1€65°0 911L'Z | T910°0- | S2S0°0 | 9€T0°0- | 18900 | 99220 | LIgI'0- | 20 | 0
0v60°0 | TEIL'ET | QITTO €6LL°C 1242798 69610 grP0'0 | 16020 | 9800 | ZFEI'0 | 6S99°0 | 9LFT°0- | €0 | G0
PETT'0 | SP06'S9 | FEFT0 eLeLLe 6£T8'€97 £07T°0 L00T°0 | €030 | @STT'0 | 66ST°0 | 9.99°0 | L92T0- | €0 | 90
6VCC'0 | TSEVEVTL | 6€9C°T | SIST'ZTES | 8099°0L68C | 06970 0SFP'0 | 6809°0 | ©OSV'O | TISG'L | €PIET | G90T°0- | T0 | G0
€860°0 | 9200CT | €¥PTO 9295°0 PIVLO TEVTLY | GVL00- | 2200 | €690°0- | €0.0°0 | S960°0 | €IS0°0- | 60 | €0
0EFT°0 ¥6£0°L GLIF0 zvs86°0 68L8°C T8LE'9T | T¥S0°0- | LEIT'O | 6%F0°0- | 19210 | SL62°0 | TOE00- | L0 | €0
909T°0 | LgSG'€E | €850 0621 6879°9¢ €292°L6 | 8100°0- | S¥Z'0 | 88000 | 09810 | ¥6EF0 | 96000 | €0 | €0
€€20°0 | T80T'68S | GPSS0 £172°029 9166'81C | 9LL8'LT | 8€L0°0 | TT9€0 | 6FL0°0 | 060L°0 | ¥ESLO | 0190°0- | €0 | €0
6€0C'T | 6C8€ 716 | €888'€ | ¥CSO'IEOTT | 0L60°69¥9E | 6960°9c | 61€P°0 | ¥PPI9T | 19520 | 0€8SL | 920T€ | €920°0 | T°0 | €0
902Z'0 | TPE8'9S | 6EFLO 8£00'79 LEE6 VT TTLG08 | 8LFPE0- | €760°0 | 86T£°0- | 06690 | ¥062°0 | LTOT0- | 60 | T'0
66020 | TE09'S9 | SPELO V6TV 0T 7600°G6T 8VLL°L9 | ©SST'0- | ¥8€T'0 | 922T0- | 8299°0 | 62IS0 | T9E0°0- | L0 | T'O
0T€¢'0 | T8LT'LIS | 029L°0 | 6£09°G0TT | 6L00°€00Z | OSEF'99 | €SFT'0- | 8LSE'O | 2S00~ | LESO'T | €EVL0 | LL80°0- | €0 | TO
19670 | €¥89°2909 | FESV'T | FCI0L68L | 121G¥90VE | ST96°CGST | 1890°0- | LZ0S0- | G8€F0- | €8SL°C | 98¥8°0- | 89ST°0- | €0 | 10
L9VE'T | 9TSEPTFS | 6EVETT | 09E0°GOEZT | TGET'SPLLT | 16TF'ST6E | 6V0C0 | ¥POT'0- | 6995°0- | €966'F | 6809°0- | 000¥'0 | 10 | T°0
(Qmda | (“9wa | (P9nd (“9)Na (fe)nd Pomwa | (9ga | (“ega | Bga | (Y9gaa | (\9ga | (Pogd | ¢ | =

0F = u )M UOIINLIISIP-7 IOPUN SIOJRUWIISO JO 0110 palenbs weow [eoundwo pue serq [eoudwsy ¢ o[qe],

31



9000°0 | 90000 | 90000 | L0000 2200°0 0200°0 | 00000 | 2000°0 | 00000 | 00000 | 08€0°0 | S9€0°0- | 6°0 | 670
9000 | 9%00°0 | TFO00 | LT000 £720°0 T€00°0 | 8LFO'0 | €290°0 | 08PO'0 | €000°0 | €EFT'0 | L8SEO0- | L0 | 60
€200 | T6T00 | TE€TO0 | 9£00°0 09€T°0 8%000 | LZET'0 | STST'0 | ©SET'0 | €£000°0 | PSPEO | 86£0°0- | S0 | 670
0.80°0 | 8SPT'0 | €860°0 | 69000 8629°0 1000 | €4L2°0 | T9SE£°0 | €620 | L0000 | 68¥L0 | 89€0°0- | €0 | 670
€L97°0 | ©€20C | ¥P0SO | 0€20°0 9.5€'8 9220°0 | 2€99°0 | OLEE'T | €£98°0 | ST00°0- | 660.°C | 8G€0°0- | 10 | 670
1€00°0 | €£00°0 | L£00°0 | 81000 6£00°0 8810°0 | €9¥0°0- | ¥TF0'0- | S9¥0°0- | 0T00°0 | LEPOO | ¥82T0- | 6°0 | L0
¢z00'0 | 8000 | 92000 | ¥E00°0 £€920°0 1810°0 | #1000 | OTT00 | ¥100°0 | ST000 | S¥PFI'0 | 62810~ | L0 | 20
9TTO0 | 98T0°0 | €2I00 | 79000 08ET°0 20Z0'0 | 8080°0 | ZOIT'O | TE80°0 | 92000 | 0SPE0 | 9FET0- | S0 | L0
61900 | ¥8TT'0 | ¥2L00 | 9T100 16190 6Zz0'0 | 69CC’0 | 89Z€0 | 9€FE0 | SPO0'0 | PELLO | LBITO- | €0 | L0
989€°0 | F9L8'T | L899°0 | €0£0°0 02ST'S 9%€0°0 | 9989°0 | TLLZT | 9LLL°0 | 9€00°0 | %099z | T90T0- | 10 | L0
€810°0 | TST0°0 | T610°0 | 6000 19000 98.0°0 | ¥P2T0- | 6011°0- | L92T°0- | Lg00'0 | T6V00 | OTLZ'0- | 6°0 | 90
6800°0 | LPPO'0 | L0100 | TSST0 998T°0 1690°0 | ¥890°0- | 29¥0°0- | L690°0- | 26000 | 9IST°0 | OFPZ0- | L0 | 90
15000 | €600°0 | 9000 | TIT00 ¥8TT'0 2€90°0 | ¥200'0 | €PPO0 | 92000 | 6V00°0 | 69CE0 | €LET0O- | SO | 90
G600 | 9¥60°0 | L9L0'0 | £3Z00 7889°0 6900 | 69€T°0 | 09920 | ggST'0 | 00T0°0 | ¥89L'0 | ¥8€T0- | €0 | €0
6£9C°0 | €968'T | 60050 | TG00 GQL8'8 TPL0°0 | TSLF'0 | €192°T | 2699°0 | APT0°0 | SOVLZ | €8TZ0- | 10 | S0
PG00 | STFO'0 | 96500 | 8.00°0 10100 6L61°0 | 6£22°0- | €V61°0- | GVEC'0- | €500°0 | 64¥0°0 | S9EF°0- | 60 | €0
17€0°0 | 8200 | 1800 | ZITO0 LEE0°0 TPL1°0 | PILT°0- | LZET'0- | SOST'0- | 06000 | €2FI'0 | 9.07°0- | L0 | €0
70200 | €100 | SPZ00 | 9¥200 L191°0 6V61°0 | ¥9TT°0- | TLE00- | LLTT°0- | €I10°0 | S9GE0 | 00EF0- | S0 | €0
6010°0 | G€L0°0 | 0100 | S2S0°0 Tves o €G6T°0 | €S00°0 | 09610 | 22000 | T€LO'0 | 64180 | 692F0- | €0 | €0
TSIT'0 | L96€C | 0L92°0 | L0VE0 | SVE6'IT | T6LT'O | TSOE0 | TOST'T | €L97°0 | S8¥O0 | €4V8'C | 0L8€0- | T0 | €0
689T°0 | TBIT'0 | LTIET0 | SEL0°0 T070°0 ePFe0 | 90F'0- | 0£€€°0- | LGLVO- | 8920°0 | 8490°0 | S€£L0- | 60 | T'0
ZPET'0 | 9980°0 | 998T'0 | 89200 7290°0 €667°0 | T09€'0- | LPLE'0- | 9€2V0- | €6T0°0 | SGST'O | STOL0- | L0 | T'O
gL0T'0 | T6S0°0 | ¥LOT'O | L5800 0820 Y0ES'0 | G81€0- | Lgl1°0- | ¥66£°0- | S8¥0°0 | 9LLE0 | 622L0- | 0 | 10
0850°0 | L92¥'€¢ | OEET'0 | G699F | 6666 | E€709°0 | S12T0- | 69610 | Gghe'0- | 6LLT°0 | 6F9T'T | TTLLO- | €0 | T'0
G0T0°0 | SGLT°9ZE | TSIT'0 | S69€Sy | PFEV60ST | 02990 | 8S00°0 | 69CE'T | L120°0- | ¥SL9°0 | L6EV'E | 646L0- | T0 | T'0
(Qma | (“9wda | Cona | Gowa | Cowa | Powa | (Y9gd | (“9ad | Pega | (‘9ga | (f9aa | (Poga | v | “x

007 = U UM UOIINLIISIP-7 IOPUN SIOJRUII}SO JO I0110 parenbs weow [eourduwe pue seiq eotndwsy :f o[qR],

32



gr00°0 €700°0 Zr00°0 Zr00°0 G700°0 9%00°0 9200°0 | 87000 | 92000 | 92000 | €100°0- | 89000 | 60 | 60
L210°0 121070 L2T0°0 8TT0°0 £L70°0 ¥210°0 6700°0- | 8£00°0- | 6¥00°0- | 0Z000 | €FT0°0- | L9000 | 20 | 670
VL10°0 €L10°0 9.10°0 8VT0°0 0.20°0 zST0°0 9800°0- | 8900°0- | 8800°0- | ZF0O0'0 | L0ZO'0- | 1.000 | S0 | 60
L160°0 L¥60°0 L90T°0 0290°0 06720 67900 g810°0- | €600°0 | 6.30°0- | GIE0'0 | SLT0°0- | 09€0°0 | €0 | 60
z0TT 0 8£88'99 0982°0 | 7ES8'S0ETES | 9987°L9T PLST'0 TELT'0 | SE0E0 | T19L1°0 | €6%9'¢a | 6067°0 | 09110 | 10 | 60
L920°0 98200 TL20'0 8020°0 ¥120°0 11600 ¥620°0 | TEE00 | 86800 | LEIO0 | L9000 | ¥6S0°0 | 60 | L0
V€200 6£20°0 9€20°0 €220°0 9820°0 6£€0°0 GET0°0 | TLT00 | 9€T0°0 | OETO0 | €£00°0- | SLE0°0 | L0 | L0
9920°0 6T80°0 8280°0 8190°0 LFST'0 ZOTT'0 6000°0- | ©Zg0'0 | 9£00°0- | SFZO0 | FFZO0- | 88900 | S0 | L0
91210 1102°0 6E71°0 192G°€T T079°0 86CT°0 10200 | LT80°0 | 60T0°0 | ZOIT'O | 14900 | £9600 | €0 | L0
$90€°0 SVT8'9G g8SF'0 | 0999°003TT | ST6L9CT £85£°0 8LFC'0 | SLEVO | 20£Z’0 | 1860°S | TL0L0 | 64910 | 10 | L0
LTF0°0 96500 0L%0°0 88200 6520°0 0LFT'0 69%0°0 | 89G0°0 | LSOO | SLT00 | SETO0 | 18600 | 60 | €0
6260°0 g159°0 GSST'0 2€90°0 0vL0°0 869€°C €220°0 | S0ZT'0 | 9€80°0 | 8.£0°0 | 16100 | ¥2gz'0 | L0 | €0
Trs8T'0 809€'8 62650 7S0E0 9VST0 €0VLTE grL0°0 | TTre0 | L860°0 | 9.90°0 | 0SF0'0 | €6€¥°0 | S0 | €0
T6LT°0 9T6S'9Z g18€0 LTTIT0T LOTT'G9 0$68°07 L6V00 | TGET0 | G200 | @OST'0 | 69ST'0 | SETE0 | €0 | S0
TL0S°0 | 9989°96% | 9S20'T | FVEE'E96LT | 6989°0SET |  €90T'GS 997€°0 | SVLS0 | ©SLE0 | TLEOL | SPELO | LPIFO | TO | S0
¥9L2°0 | ¥Peeviz | 1SIS'T 6SET'0 SOFT°0 0Z16'960T | €0ST°0 | 0860 | ©0ST'0 | 99%0°0 | ZFPO0 | STIST | 60 | €0
GvET0 Tr19°0S PLIOT z1eT0 G6£T°0 ¥8FL'10C | 96510 | 8¥69°0 | ©8¢g0 | ¥LPOO | LLEOO | SIST'T | L0 | €0
9920 £090° 1L £POT'1 7669°0 199T1°9 YOVCLLE | TLIT0 | TPIL0 | 061270 | 61800 | 86¥0°0 | €8LE'T | 90 | €0
G08V'0 | LZ6T0T6 | €9EET L019'8T¢ | €6S9°F90€ | 69%9FLS | ¥SPT'0 | L€86°0 | 9€8T'0 | 90€8°0 | $OVO'0- | 8.00C | €0 | €0
8G2T'T | TE8T'L0TE | 89€L°9 | LOTS'S6S9 | PWEI'EESL | 6SI6PSTS | €EEV0 | T048°0 | €6LT0 | SIST'G | SOET'T- | L048C | 10 | €0
TP8Z0 | 09LL°6TF | 6896'T £6LZ°9TT GE6T'8CT | PO TEFT | $L90°0- | SSG0°'T | 92100 | STPS'0 | €L6e0 | SE€88°T | 60 | 10
6692°0 | €T9T'€E6E | LLILT 9992°0T VE6V'GT | €80T'STLST | 2800°0- | 0LEL'T | @SIT'0 | S6€2°0 | S9PT0 | TLE€€ | L0 | 10
98620 | TSYP9ZOT | 96551 8E0V'FIT | GLOLFISE | 6V96LEC | S¥60°0- | LZOT'0- | GLLT'O- | 00080 | LFP9¥'T- | ¥6ET'T | G0 | T'0
€125°0 | T6VZOVLY | SSEET | 8GLTLLLT | 0906068 | FEZE0900T | ¢1€0°0- | FSO'T | SIFT'0- | SIFO'T | ¥IF9°0- | L608°C | €0 | T'0
08£6'0 | O6TSTPIET | 96L9'S | €S6V'9ELY | LE00'TLTS | 616EVOLIV | ¥89T'0 | SIIE'E | 6LSE0- | 696L°C | PLST'T | $992°¢ | 10 | 10
(Qmwa | (“gwa | (“owa (“Q)Na (*fq)nd (PO)INE (9gaa | (“9gua | Pega | (‘“9ga | (Yq)gd | (Pogd | x | °x
0F = u q3Im UOTINLIISIP ©I9¢ IOPUN SIOJRUIISO JO I0LIo polenbs ueow [eotriduwo pue seiq resrrdwy :G o[qe],

33



90000 | 90000 | 9000°0 | 90000 | L0000 | L0000 | €000°0 | 0000 | €000°0 | €000°0 | £000°0- | OT000 | 60 | 60
9T00'0 | 91000 | 9T00°0 | STO0'0 | €2000 | 9T00°0 | L000°0- | S000°0- | L00D0- | €000°0 | 6T00°0- | 60000 | L0 | 60
Zroo'0 | Tro0'0 | TF00'0 | €£00°0 | €S000 | €£00°0 | €200°0- | ST00°0- | €200°0- | 9000°0 | ZF000- | ZIO00 | SO | 60
61100 | STIT00 | TEI00 | 99000 | ¥620°0 | L9000 | 1900°0- | 0£00°0- | €900°0- | 1000 | 9.00°0- | 91000 | €0 | 60
18400 | ¥980°0 | 99600 | 9200 | 96620 | 99200 | LL00°0- | 6500 | €L10°0- | €100 | ¥6£0°0 | €200 | 10 | 60
91000 | 91000 | 91000 | ST000 | 91000 | €2000 | 1000 | 90000 | €000 | ¥I00°0 | TT000 | 00000 | 60 | L0
12000 | 82000 | L8000 | Lgo0'0 | LE00'0 | LL000 | LTO00 | €000°0- | AT00°0 | LT00°0 | 9000°0- | 00000 | L0 | L0
07000 | TPOO'O | OF00'0 | SE£00°0 | 0000 | 9¥00°0 | Z0000- | €T00°0- | Z0000- | STOO'0 | 9%00°0- | 00000 | S0 | L0
ZSTO0 | ©ST0°0 | S9T0°0 | L0100 | LS00 | TETO0 | 1900°0- | 0OT00°0- | ¥900°0- | S£00°0 | T600°0- | TL000 | €0 | 20
$980°0 | STOT'0 | 8S0T'0 | ¥9£0°0 | SL9€'0 | L8E00 | ¥T000 | ¥SFO'O | $L00°0- | 9¥T0°0 | 99200 | @100 | T0 | L0
17000 | F000 | TF000 | €000 | €€00°0 | 0800°0 | €900°0 | TL00'0 | €900°0 | 92000 | 12000 | 0ZI00 | 60 | G0
0%00°0 | 09000 | 09000 | SPO0'0 | ¥S000 | €600°0 | $S00°0 | 0L00°0 | 8S00°0 | 8€00°0 | ¥T0O'0 | STT00 | L0 | G0
€000 | 9000 | SL000 | ¥.000 | €100 | 6gT00 | 92000 | 1S00°0 | 92000 | €200°0 | 0T00°0- | TTT00 | S0 | G0
28100 | ¥ST0°0 | 99100 | PET00 | 69€0°0 | @6I00 | SPO0'O- | LT000 | LFOO'O- | ¥T00°0 | £900°0- | TOTO0 | €0 | G0
66.00 | 92600 | SL60°0 | SSFO'0 | PO9EO | LES0°0 | 6£00°0 | €TS0°0 | ¥EOO0- | TOZO'O | €0S0°0 | 02Z00 | TO | 90
8ETO0 | ¥ST0°0 | TPI00 | 19000 | L9000 | SIFO0 | @6IO0 | GEZO0 | 9610°0 | 95000 | TSO0'0 | 6IFO0 | 60 | €0
9.10'0 | 60200 | S810°0 | ¥0T0°0 | €I100 | #8500 | TG00 | 98¢0°0 | 82200 | L800°0 | 69000 | @0S00 | L0 | €0
Z610°0 | ©120°0 | 86100 | €910°0 | 01200 | L4500 | 00G0'0 | 98200 | 90200 | 80T0°0 | ¥.000 | 86¥00 | S0 | €0
1,200 | 90€0°0 | @800 | 09200 | $SS0°0 | 60400 | LZT0°0 | €820°0 | IEI00 | TEI0°0 | L600°0 | 89%¥0°0 | €0 | €0
0060°0 | €000 | TOTT'O | €800 | ¥0OSL0 | GEET'0 | 61100 | L8800 | ¥S00°0 | OPE0'0 | POZI'O | 0LS00 | T0 | €0
L69T°0 | T6LS'L8 | TSET'T | €620°0 | 8600 | 9EV6'6FE | GLOT'O | 6969°0 | @STZ'0 | €PT0°0 | SPTIO0 | 06LE'T | 60 | T'O
9.9T°0 | €T68LS | 0SPO'T | L9S0°0 | 8800 | 0SZZ'IEC | 990T°0 | 0SS9°0 | 8L02°0 | €610°0 | 80200 | @6ST'T | L0 | T'0
9.9T°0 | 9650°¢L | 080T | GES0'0 | 9T90°0 | 988828 | 69TT'0 | 8S0L'0 | 0OLIZ0 | 9€€0°0 | SSE0°0 | T9LET | €0 | 10
69ST°0 | 8LE8'STT | L99T'T | L8LT°0 | SI69TT | SOFVE'E9Y | ©660°0 | PEILO | ©0O0ZO | 9850°0 | €0S0°0 | F9LET | €0 | 10
€8€2°0 | OTOE'6LT | ©0ZO'T | SPOL'OT | OF99FL | 0ZLT'EF9 | 8980°0 | ITI8°0 | OEPIO | ¥L02°0 | 10LZ'0 | 0ZSET | 10 | 10
(Qma | (“9wa | Cona | ‘‘ogwa | Cowa | Powa | (9ada | (“egda | (Pega | (“Qada | (f9aa | (Pogd | v | *¢

00F = ¥ YIM UOTINLIISIP BI_E IOPUN SIOJRUII)SS JO 10110 parenbs urowt [eorriduwe pue seiq reounduws] 9 a[qe],

34



L070°0 T110°0 80T0°0 ZET0'0 6920°0 6LT0'0 | €200°0 | 6.00°0 | €200°0 | TE00'0 | €T60°0 | 95.0°0- | 60 | 670
0L¥0°0 0620°0 81200 VLE0°0 G0TE0 6€€0°0 | 90TT'0 | SEST'O | LOTT'0 | SOTO'0 | LG8E€'0 | T8L0°0- | L0 | 670
9960°0 8TTZ°0 T9TT°0 €870°0 1888°0 0ZV0'0 | ©00Z'0 | 64620 | ©6IZ'0 | 06000 | ¥2S9°0 | 99%0°0- | S0 | 670
PPLE0 £6£8°26 €P1L0 9906°'92£S TeELTLE TSTr'0 | LOFP0 | TIETT | €86S°0 | LSVe'C | GIEST | $890°0- | €0 | 60
ZOOT'T | €E08°'G0ZIC | 6TOSH | 96CS'9898€9EC | ST6STESFS | O0LLE0 | €46L°0 | €L06'€ | SIPE’'T | LLLE'STT | 0SL8'L | G8S0°0- | 10 | 670
79200 28200 8L20°0 8V€0°0 €€50°0 TLL0°0 | 2¥90°0- | 2S¥0'0- | 9990°0- | €SO0 | 6S0T°0 | €661°0- | 60 | L0
9570°0 ¥860°0 €150°0 T01T°0 LELVO 0Z0T°0 | Z610°0 | 9¢60°0 | STZ00 | OEPO'0 | €66€0 | T#IZ0- | L0 | 20
Y0ZT'0 | €LVSEFET | TESTO LEOT'T £03S €L6V 8€GT'0 | eST'0 | S6PT0 | LOST'O | TLLT'O | TEES0 | PWET0- | S0 | 270
TV6E0 | STEY'E6VIT | 6LLET 878V 0VS8 6606'8L6CG8 | TTLE0 | ¥S9E0 | 669€C | GESV0 | €966'G | 60T0°G | TT6Z0- | €0 | L0
TIS6'0 | 9ET6ELLYV | L66VF | €899°CSTILY | L960°FS06LT | €S0 | ©099°0 | ¥SLE'0 | T968°0 | 89T¢'IE | 8SG6°0 | 0661°0- | 10 | L0
S760°0 5060 YPET0 YEVE0 2089°0 G6G0'T | 6ST'0- | $990°0- | TSLT'0- | S00T'0 | 00€Z0 | 629€0- | 60 | 0
11400 vET0'T 66800 9660 1061 ¥0SZ°0 | 0P90°0- | SS¥0'0 | €9L0°0- | 90010 | TTIEFO | TOPE0- | L0 | 0
TT1T°0 Tr8g el 6991°0 6LIETT L0267 TSEC'0 | LOVO'O | T99E'0 | 0TSO0 | PIEE0 | OV90°T | 6TEE0- | €0 | 90
oF9z'0 | SPIL'9TET | 9TOLO 005z 08 T720°L06 TLEG'0 | GLOZ'O | LFPOL'O | TSEZ0 | 68S0'E | SELST | Tepe0- | €0 | 90
TS68°0 | STGL'ET0Z9 | L66V'V | TLLETOLOOTE | 9L26'SS0SFC | 9€86°0 | @6IS0 | POOST | 9VeS'0 | STL6'GE | ¢IEe'€ | S0TE0- | 10 | G0
6IVT0 L168°86 982€°0 9822°G €GLG'6LE €eT8'CT | 9222°0- | ZLVT0- | €652°0- | 88€2’0 | ¥IS0°0 | 49¥€0- | 60 | €0
€65T°0 6L70°06€ ¥957°0 0¥19°068 60SS'TEST | F99¥°0E | SOPT'0- | 698%°0 | LL6T0- | L2960 | L9.E'T | 0E0E€0- | L0 | €0
L9L1°0 78690V L L0€8°0 292€ 007 T6L¥°LLLT | SOE0°98T | OFSO'0- | 0S6%°0 | 910T°0- | 12160 | 88¥C'T | 68G2°0- | S0 | €0
T6LE'0 | G806'8679 | TOLT'T 9VLT'G068 0807'1965C | PEOV'EE | PO60°0 | 98LE'0 | 8CT00- | 926V'E | 9880°'T | PIEE0- | €0 | €0
1896'T | 00VL'96LTLT | ©S10°6 | €96€TS61Cy | 9650°6T1L89 | T€9T'SH | @¥6€0 | Sehv'I- | 119¢°0- | ¥G0T6T | 609G~ | €9L€°0- | 10 | €0
11820 £££6°62T 078S°0 P1£9°6S8 T9£9'GTLT 7969'¢ | ¥8€€'0- | TOTP'O- | 6T09°0- | 98F0'T | L6ET0- | S069°0- | 60 | T'0
6992°0 T8€E'€89 9.0L°0 6€L€° 20T 6LET E€TLE 82TP'8 | T€ST0- | ©969°0- | 0.29°0- | €166'0 | VE69°0- | 6869°0- | L0 | T'0
€962°0 | 008€'9¥9C | SL96°0 167698 €289'FLS0T | EV16'6 | LLGT0- | SETPO- | ¥999°0- | L9GL°T | 190T°0- | 60,0~ | €0 | T'0
€6€0'T | €LOT'L96C | SFE6'T LFTST6CC G8GF6VSTT | T9L0'LT | 8820°0 | 0Vgg'0- | S8LIL0- | ¥¥eg'€ | 26820 | 1.£L0- | €0 | 10
TV60'T | TLLE'99LL | 0889 Raaddaci OVPe'GE0TE | 9229°GT | TPPI'0 | €0SGT | €V08°0- | 996L'% | LZI6'E | 2TI80- | T0 | 10
() Na ()N (o)W (Y9N (*Q) e (Powa | (Y9)gda | (“9aa | P9ga | (‘Qaa | (¢ad | (Pega | v | “x
0F = U [H3M UOTINLIISIP [[NQIOAN IOPUN SIOJRUIISd JO I0LI0 porenbs ueowr reorriduwe pue seiq [eourdwry :) o[qRl,

35



71000 ¢T00°0 71000 LT00°0 79T0°0 €2T0°'0 | 40000 | T00°0 | 0000 | 60000 | 6LIT'0 | LE0T'0- | 60 | 60
£100°0 $100°0 €100°0 L7000 LSTO0 02700 | €000°0 | 99000 | ¥000°0 | 0000 | SSIT'O | ¥2OT'0- | L0 | 60
LLT0°0 9920°0 L8T0°0 9£00°0 0291°0 L0100 | @8TT°0 | ¥AVT'0 | ¥IZT'0 | 11000 | TIVPSE0 | ¥680°0- | S0 | 60
8ZIT'0 50920 SOPT'0 1800°0 952 €L10°0 | T12€0 | ¢¥SFO | S99€°0 | 91000 | GELO'T | 6%0T°0- | €0 | 60
967€0 167G T 89650 12100 PEEL'9 9€20°0 | L9480 | TLST'T | L8WLO | 92000 | S9LF'C | €20T°0- | 1O | 60
Z1S6°0 1589°0C L089E €0S0°0 087778 €8%0°0 | TLV6'0 | 8¢IZy | OFSST | 09000 | TEIS'8 | 9980°0- | 60 | L0
19100 €110°0 12100 77000 0020°0 1860°0 | €9TT°0- | 82600~ | 861T°0- | S€00°0 | 91210 | TL0€0- | 20 | L0
G2£0°0 6EET°0 ZEVO'0 6020°0 G286°0 9980°0 | 8€ST'0 | PIEE0 | 99.T°0 | 60T0°0 | 9TF6'0 | 8820~ | G0 | L0
67510 €09T'T 6962°0 T170°0 T1€6°G €960°0 | OVLE'0 | S800'T | €PIS0 | ¥9T00 | ¥WOSZ | 6982°0- | €0 | L0
z6vS'0 996067 6526'C 1€25°86 YeeT 70T SPET'0 | GT0L'0 | ©L60°S | ¥S99°T | ¥L9T'0 | Lg6¥'0T | LL68°0- | TO | L0
92500 29€0°0 9650°0 €000 0020°0 ¥922°0 | Zee0- | OT81°0- | €9€¢°0- | €500°0 | 6L0T°0 | 669¥°0- | 60 | S0
0220°0 16000 z820°0 72200 1922°0 6V%C'0 | TOST'0- | 2S20°0- | GLPT'0- | €110°0 | SLEFP0 | 8L87°0- | L0 | S0
0800°0 7SL0°0 91100 ¥Zr00 8L16°0 9812'0 | SS00°0 | ©IgZ'0 | SL000 | €620°0 | 69680 | 9¥SP0- | S0 | S0
LL¥0°0 g65ET [tan) YOVT'0 1088°L 6¥92°0 | €88T°0 | ©6€0'T | 6T0€0 | 20900 | $8.8C | ¥009°0- | €0 | S0
19620 | TEPSERT | P99GT | €LESLVE GL99'78G 8152°0 | 9997°0 | 89997 | €06T'T | 6ZFS’0 | STISL'6 | €89%°0- | 10 | G0
91210 9080°0 T8ST'0 28100 8620°0 VEVV'O | ¥PPE0- | §GLZ°0- | €26€0- | 02100 | TITT'0 | 2299°0- | 60 | €0
TrL0'0 £€820°0 02110 6LE0°0 v6£2°0 QLSO | SP9T0- | S€gT'0- | ¥STe0- | ¢1200 | €92F0 | 2gl90- | L0 | €0
7620°0 ¥180°0 gs0'0 gz0T'0 1162 9z9%'0 | ¥EST0- | 9€9T°0 | TI112°0- | 86£0°0 | 0T0O'T | 6%.9°0- | S0 | €0
7.00°0 80878 €200 76970 0€9G"LE 816¥'0 | 2F00'0 | TPSO'T | €2T00 | OPPTO | 9108C | S€69°0- | €0 | €0
86L0°0 | SOTV'9T6% | 0£29'0 | 02S9TEST | TP69'6TL6T | SIFF0 | €€VE’0 | 8SI9F | 60890 | GIST'T | €9.8'6 | 8€¥9°0- | 10 | €0
07€Z°0 PLIT'0 idzaa) 997T°0 $902°0 L68L0 | €6LF°0- | 6SG€°0- | L6¥9°0- | 8F90°0 | TOLT'O | 6.88°0- | 60 | T'0
9991°0 88GT'T 078€°0 1890°T L9867 0v08'0 | 686€0- | PSET'0- | 2ST9°0- | €EPT'0 | 19290 | 8968°0- | L0 | 10
97010 £660°61 L1820 6G68°G 6199°LL §GLL°0 | TITE0- | 982T°0 | ¥0€S°0- | @LSTO | ¥92T'T | 26480~ | S0 | T0
91%0'0 | 199566 | T61°0 zEEE99 9969'20¢T | 61LL0 | $E8T'0- | TLL6'0 | 60TF0- | 68LG°0 | FOES'C | €9.8°0- | €0 | 10
2€00'0 | TS68°T6LSY | 8999°0 | OT99°'TPSST | €19L°68T€9% | 696L°0 | 81000 | L98L'S | SOFZ'O- | 09L0°9 | L6SV°El | ¥988°0- | 10 | T0
(Qmwa | (“gmwa | (Powa (“Q) A (o)A Pomnd | (“9ga | (“9ga | P9ga | (Y9aa | (*¢aa | (Pogd | ¥ | *¢

00 = U )M UOIINLIISIP [[NIOA\ IOPUN SIOJRUIIISO JO I0LI0 polenbs ueowr [eotriduo pue seiq [eotidwy :Q o[qe],

36



