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Abstract
A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale
mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides
an appealing robust alternative to the routine use of the normal distribution. Specific distributions
examined include the normal, student-t, slash and the variance gamma distributions. Using a
Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for
parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale
mixture representation can be used to identify outliers. The methods developed are applied to
analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as
out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN
distributions provide significant improvement in model fit as well as prediction to the S&P500
index data over the usual normal model.
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1. Introduction
The stochastic volatility (SV) model was introduced by Tauchen and Pitts (1983) and Taylor
(1982) as a way to describe the time-varying volatility of asset returns. It has emerged as an
alternative to generalized autoregressive conditional heteroscedasticity (GARCH) models of
Bollerslev (1986), because it is directly connected to the type of diffusion processes used in
asset-pricing theory in finance (Melino and Turnbull 1990) and captures the main empirical
properties often observed in daily series of financial returns (Carnero et al. 2004) in a more
appropriate way.

The SV model with a conditional normal distribution for the returns has been extensively
analyzed in the literature. From a Bayesian standpoint, several MCMC based algorithms
have been suggested for the estimation of the SV model. For example, Jacquier et al. (1994)
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use the single-move Gibbs sampling within the Metropolis-Hastings algorithm to sample
from the log volatilities. Kim et al. (1998) and Mahieu and Schotman (1998), among others,
approximate the distribution of log-squared returns with a discrete mixture of several normal
distributions, allowing jointly drawing on the components of the whole vector of log-
volatilities. Shephard and Pitt (1997) and Watanabe and Omori (2004) suggested the use of
random blocks containing some of the components of the log-volatilities in order to reduce
the autocorrelation effectively. However, in all of these, the normal distribution was
assumed as the basis for parameter inference.

Unfortunately, normality assumption is too restrictive and suffers from the lack of
robustness in the presence of outliers, which can have a significant effect on the model-
based inference. Thus, various generalizations of the standard SV model have emerged and
their model-fittings have been investigated. It has been specifically pointed out that asset
returns data have heavier tails than those of normal distribution. See for instance,
Mandelbrot (1963), Fama (1965), Liesenfeld and Jung (2000), Chib et al. (2002), Jacquier et
al. (2004) and Chen et al. (2008). In this context, the SV model with Student-t errors (SV–t)
is one of the most popular basic models to account for heavier tailed returns. In this paper,
we extend the SV model by assuming the flexible class of scale mixtures of normal (SMN)
distributions (Andrews and Mallows 1974; Lange and Sinsheimer 1993; Fernández and
Steel 2000; Chow and Chan 2008). Interestingly, this rich class contains as proper elements
the normal (SV–N), Student-t (SV–t), slash (SV-S) and variance gamma (SV–VG)
distributions. All these distributions have heavier tails than the normal one, and thus can be
used for robust inference in these type of models. We refer to this generalization as SV–
SMN models. Our work is motivated by the fact that the daily stock returns data on S&P500
index seems to exhibit significant heavy tail behavior as shown in Yu (2005). Inference in
the class of SV–SMN models is performed under a Bayesian paradigm via MCMC methods,
which permits to obtain the posterior distribution of parameters by simulation starting from
reasonable prior assumptions on the parameters. We simulate the log-volatilities and the
shape parameters by using the block sampler algorithm (Shephard and Pitt 1997; Watanabe
and Omori 2004) and the Metropolis-Hastings sampling, respectively.

The rest of the paper is structured as follows. Section 2 gives a brief description of SMN
distributions. Section 3 outlines the general class of the SV–SMN models as well as the
Bayesian estimation procedure using MCMC methods. Additionally, we discuss some
technical details about Bayesian model selection and out-of-sample forecasting of
aggregated squared returns. Section 4 is devoted to application and model comparison
among particular members of the SV–SMN models using the S&P500 index dataset. Some
concluding remarks as well as future developments are deferred to Section 5.

2. SMN distribution
Scale mixtures of normal distributions, which play a very important role in statistical
modeling, are derived by mixing a normally distributed random variable (Z) with a non-
negative scale random variable (λ), as follows

where μ is a location parameter, λ is a positive mixing random variable with probability
density function (pdf) h(λ|ν), independent of Z ~ (0,σ2), where ν is a scalar or parameter
vector indexing the distribution of λ and κ(.) is a positive weight function. As in Lange and
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Sinsheimer (1993) and Chow and Chan (2008), we restrict our attention to the case in that
κ(λ) = 1/λ in this paper. Thus, given λ, Y|λ ~ (μ, λ−1σ2) and the pdf of Y is given by

(1)

From a suitable choice of the mixing density h(.|ν), a rich class of continuous symmetric and
unimodal distribution can be described by the density given in (1) that can readily
accommodate a thicker-than-normal process. Note that when λ = 1 (a degenerate random
variable), we retrieve the normal distribution. Apart from the normal model, we explore 3
different types of heavy-tailed densities based on the choice of the mixing density h(.|ν).
These are as follows.

• The student-t distribution, Y ~ (μ, σ2, ν)

The use of the student-t distribution as an alternative robust model to the normal
distribution has frequently been suggested in the literature (Little (1988) and Lange
et al. (1989)). For the student-t distribution with location μ, scale σ and degrees of
freedom ν, the pdf can be expressed in the following SMN form:

(2)

where ℊ(.|a, b) is the Gamma density function of the form

(3)

and Γ(a) is the gamma function with argument a > 0. That is, Y ~ (μ, σ2, ν) is
equivalent to the following hierarchical form:

(4)

• The slash distribution, Y ~ (μ, σ2, ν), ν > 0.

This distribution presents heavier tails than those of the normal distribution and it
includes the normal case when ν ↑ ∞. Its pdf is given by

(5)

where the density of λ is given by

(6)
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Thus, the slash distribution is equivalent to the following hierarchical form:

(7)

where ℬe(.,.) denotes the beta distribution. The slash distribution has been mainly
used in simulation studies because it represents some extreme situations depending
on the value of ν, see for example Andrews et al. (1972), Gross (1973),
Morgenthaler and Tukey (1991) and Wang and Genton (2006).

• The variance gamma distribution, Y ~ ℊ(μ, σ2, ν), ν > 0.

The symmetric variance gamma (VG) distribution was first proposed by Madan
and Seneta (1990) to model share market returns. The VG distribution is controlled
by the shape parameter ν > 0, presents heavier tails than those of the normal
distribution and has a similar SMN density representation to the student-t
distribution. It can be shown that the VG density can be expressed as

(8)

Thus, the VG distribution is equivalent to the following hierarchical form:

(9)

where ℐℊ(a, b) is the Inverse gamma distribution with pdf

When ν = 2, the VG distribution is the Laplace distribution.

3. The heavy-tailed stochastic volatility model
Among the variants of the SV models, Taylor (1982, 1986) formulated the discrete-time SV
model given by

(10a)

(10b)

where yt and ht are respectively the compounded return and the log-volatility at time t. The
innovations εt and ηt are assumed to be mutually independent and normally distributed with
mean zero and unit variance.
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In this article, we modify the basic specification (the SV-N model) in order to capture
heavy-tailed features in the marginal distribution of random errors, by replacing the
normality assumption of εt by the SMN class of distributions as follows:

(11)

εt and ηt assumed to be independent. We refer to this generalization as SV-SMN models. It
follows from (1) that the set up defined in (10a), (10b) and (11) can be written hierarchically
as

(12a)

(12b)

(12c)

As depicted in Section 2, this class of models includes the SV with student-t (SV-t), with
slash (SV-S) and with variance gamma distributions (SV-VG) as special cases. All these
distributions have heavier tails than the normal density and thus provide an appealing robust
alternative to the usual Gaussian process in SV models. The SV-t, SV-S and SV-VG models
arc obtained chosen the mixing density as: , λt ~ ℬe(ν, 1) and 
respectively, where ℊ (.,.), ℐℊ(.,.) and ℬe(.,.) denote the gamma, inverse gamma and beta
distributions respectively. Under a Bayesian paradigm, we use MCMC methods to conduct
the posterior analysis in the next subsection. Conditionally to λt, some derivations are
common to all members of the SV-SMN family (see Appendix for details).

3.1. Parameter estimation via MCMC
A Bayesian approach to parameter estimation in the SV-SMN class of models defined by
equations (12a), (12b) and (12c) relies on MCMC techniques. We propose to construct a
novel algorithm based on MCMC simulation methods to make the Bayesian analysis
feasible.

Let θ be the entire parameter vector of the entire class of SV-SMN models, h0:T = (h0, h1,
…, hT)′ be the vector of the log volatilities, λ1:T = (λ1, …, λT)′ the mixing variables and y1:T
= (y1, …, yT)′ is the information available up to time T. The Bayesian approach for
estimating the parameters in the SV-SMN models uses the data augmentation principle,
which considers h0:T and λ1:T as latent parameters. By using the Bayes’ theorem, the joint
posterior density of parameters and latent variables can be written as

(13)

where

Abanto-Valle et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(14)

(15)

(16)

where p(θ) is the prior distribution. For the common parameters of the SV–SMN class, the

prior distributions are set as: , and , where
(a,b)(.,.) denotes the truncated normal distribution in the interval (a, b).

Since the posterior density p(h0:T, λ1:T, θ|y0:T) does not have closed form, we first sample
the parameters θ, followed by the latent variables λ1:T and h0:T using Gibbs sampling. The
sampling scheme is described by the following algorithm:

Algorithm 3.1
1. Set i = 0 and get starting values for the parameters θ(i), the states  and 

2. Draw 

3. Draw 

4. Draw 

5. Set i = i + 1 and return to 2 until convergence is achieved.

As described by algorithm 3.1, the Gibbs sampler requires to sample parameters and latent
variables from their full conditionals. Sampling the log-volatilities h0:T in Step 4 is the more
difficult task due to the non linear setup in the mean equation (12a). In order to avoid the
higher correlations due to the Markovian structure of the ht’s, we develop a multi-move
sampler (Shephard and Pitt 1997; Watanabe and Omori 2004; Omori and Watanabe 2008;
Abanto-Valle et al. 2009) in the next subsection to sample the h0:T by blocks. Multi-move
algorithms are computationally efficient and convergence is achieved much faster than using
a single move (Carter and Kohn, 1994; Frühwirth-Schnater, 1994; de Jong and Shephard,
1995). Details on the full conditionals of θ and the latent variable λ1:T are given in the
appendix, some of them are easy to simulate from.

3.2. Multi-move algorithm
In order to simulate h0:T, we consider a two-step process: first, we simulate h0 conditional
on h1:T, next h1:T conditional h0. In our block sampler, we divide h1:T into K + 1 blocks,
hki−1+1:ki−1 = (hki−1+1, …, hki−1)′ for i = 1, …, K+1, with k0 = 0 and kK+1 = T, where ki − 1
− ki − 1 ≥ 2 is the size of the i–th block. Following Shephard and Pitt (1997) and Omori and
Watanabe (2008), the K knots (k1, …, kK) are generated randomly using
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(17)

where the  are independent realizations of the uniform random variable on the interval (0,
1) and int[x] represents the floor of x. A suitable selection of K is important to obtain an
efficient sampler that can reduce the correlation imposed by the model in the sampling
process. If K is too large the sampler will be slow because of rejections; if K is too small it
will be correlated because of the structure of the model.

We sample the block of disturbances ηki−1+1:ki−1 = (ηki−1+1, …, ηki−1) instead of hki−1+1:ki−1
= (hki−1+1, …, hki−1) exploring the fact that the innovations ηt are i.i.d. with (0, 1)
distribution. Suppose that ki−1 = t and ki = t + k + 1 for the i–th block, such that t + k < T.
Then ηt+1:t+k = (ηt+1, …, ηt+k) are sampled at once from their full conditional distribution
f(ηt+1:t+k|ht, ht+k+1, yt+1:t+k, λt+1:t+k, θ), which is expressed in the log scale as

(18)

We denote the first and second derivatives of l(hr) = log p(yr|λr, hr) with respect to hr by l′
and l″. As f(ηt+1:t+k|ht, ht+k+1, yt+1:t+k, λt+1:t+k, θ) does not have a closed form, we use the
Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994; Chib, 1995). To obtain
the proposal density g, we propose to use an artificial Gaussian state space model for

simulating ηt+1:t+k. Applying a second order Taylor series expansion to  in
equation (18) around some preliminary estimate of ηt+1:t+k, denoted by η̂t+1:t+k, we thus
have

(19)

where ĥt+1:t+k is the estimate of ht+1:t+k corresponding to η̂t+1:t+k.

After some simple but tedious algebra, we have the resulting normal density as our proposal,
g, denned by:

(20)

From (20), we define auxiliary variables dr and ŷr for r = t + 1, …, t + k − 1 as follows:
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(21)

For r = t + k < T

(22)

and when r = t + k = T, we use (21) to define the auxiliary variables. From (12a), we have
that . It is easy to show that l(hr) is log-concave, so dr is always
positive.

The resulting normalized density in (20), defined as g, is a k-dimensional normal density,
which is the exact density of ηt+1:t+k conditional on ŷt+1:t+k in the linear Gaussian state space
model:

(23)

(24)

Applying the de Jong and Shephard’s simulation smoother (de Jong and Shephard, 1995) to
this model with the auxiliary ŷt+1:t+k defined above enables us to sample ηt+1:t+k from the
density g. Since f is not bounded by g, we use the Metropolis-Hastings acceptance-rejection
algorithm to sample from f as recommended by Chib (1995). In the SV-N case, we use the
same procedure with λt = 1 for t = 1, …, T.

We select the expansion block ĥt+1:t+k as follows. Once an initial expansion block ĥt+1:t+k is
selected, we can calculate the auxiliary ŷt+1:t+k by using equations (21) and (22). In the
MCMC implementation, the previous sample of ht+1:t+k may be taken as an initial value of
the ĥt+1:t+k. Then, applying the Kalman filter and a disturbance smoother to the linear
Gaussian state space model consisting of equations (23) and (24) with the artificial ŷt+1:t+k
yields the mean of ht+1:t+k conditional on ĥt+1:t+k in the linear Gaussian state space model,
which is used as the next ŷt+1:t+k. By repeating the procedure until the smoothed estimates
converge, we obtain the posterior mode of ht+1:t+k. This is equivalent to the method of
scoring to maximize the logarithm of the conditional posterior density. Although, we have
just noted that iterating the procedure achieves the mode, this will slow our simulation
algorithm if we have to iterate this procedure until full convergence. Instead we suggest to
use only five iterations of this procedure to provide reasonably good sequence ĥt+1:t+k
instead of an optimal one.

3.3. Bayesian model selection
In this section, we describe two Bayesian model selection criteria: the deviance information
criterion (Spiegelhalter et al. 2002; Berg et al. 2004; Celeux et al. 2006) and the Bayesian
predictive information criterion (Ando, 2006, 2007).
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3.3.1. Deviance information criterion—Spiegelhalter et al. (2002) introduced the
deviance information criterion (DIC), defined as:

(25)

The second term in (25) measures the complexity of the model by the effective number of
parameters, pD, defined as the difference between the posterior mean of the deviance and the
deviance evaluated at the posterior mean of the parameters:

(26)

To calculate the DIC in the context of SV-SMN models, the conditional likelihood L(y1:T|α,

φ, , ν, λ1:T, h0:T), defined in (14), is used in equation (25), where θ encompasses (α, φ, ,
ν)′, λ1:T and h0:T.

As pointed by Stone (2002), Robert and Titterington (2002), Celeux et al. (2006) and Ando
(2007), the DIC suffers from some theoretical aspects. First, in the derivation of DIC,
Spiegelhalter et al. (2002, p. 604) assumed that the specified parametric family of
probability distributions that generate future observations encompasses the true model. This
assumption may not always hold true. Secondly, the observed data are used both to construct
the posterior distribution and to compute the posterior mean of the expected log likelihood.
Thus, the bias in the estimate of DIC tends to underestimate the true bias considerably. To
overcome these theoretical problems in DIC, recently Ando (2007) has proposed the
Bayesian predictive information criterion (BPIC) as an improved alternative of the DIC.

3.3.2. Bayesian predictive information criterion—Let us consider z1:T = (z1, z2, …,
zT)′ to be a new set of observations generated by the same mechanism as that of the observed
data y1:T drawn from the true model s(z1:T). To evaluate the relative fit of the Bayesian
model to the true model s(z1:T), Ando (2007) considered the maximization of the posterior
mean of the expected log-likelihood

It is obvious that η depends on the model fitted, and on the unknown true model s(z1:T). A
natural estimator of η is the posterior mean of the log-likelihood,

where . As pointed by Ando (2006, 2007) the quantity η ̂ is generally a
positively biased estimator of η, because the same data y1:T are used both to construct the
posterior distribution and to evaluate the posterior mean of the log-likelihood. Therefore,
bias correction should be considered, where the bias b is defined as: b = ∫(η ̂ −
η)s(z1:T)dy1:T. Ando (2007) evaluated the asymptotic bias as

Abanto-Valle et al. Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(27)

Here q is the dimension of θ, Eθ|y1:T[.] denotes the expectation with respect to the posterior
distribution, θ ̂ is the posterior mode, and

with ηT(yt, θ) = log p(yt|y1:t−1, θ) + log p(θ)/T. Thus, correcting the asymptotic bias of the
posterior mean of the log-likelihood, the Bayesian predictive information criterion (BPIC;
Ando, 2006, 2007) can be written as

(28)

The best model is chosen as the one that has the minimum BPIC. To calculate the BPIC, in
the context of SV-SMN models, we use the log-likelihood function log{L(y1:T|θ)} as

defined in equation (28), where  and .
Because p(yt|y1:t−1, θ) does not have closed form, it can be evaluated numerically by using
the auxiliary particle filter method (see Kim et al., 1998; Pitt and Shephard, 1999; Club et
al., 2002), which is described next.

3.4. The Auxiliary Particle Filter
In this subsection, we revised the auxiliary particle filtering (APF) method of Pitt and
Shephard (1999), which allows us to draw samples from the filtering distribution p(ht|θ, y1:t)
by numerical approximation. The method is generically described as follows:

Let us consider  where the probability density
function, p(ht−1|θ, y1:t−1), of the continuous random variable, ht−1, is approximated by a
discrete variable with random support. It then follows that the one-step ahead predictive
distribution p(ht|θ, y1:t−1) can be approximated as:

(29)

where  is a sample from p(ht−1|θ, y1:t−1) with weight . The one-step ahead density,
p(yt|θ, y1:t−1), is then estimated by Monte Carlo averaging of p(yt|θ, ht) over the draws of

 from equation (12b) as follows:

(30)
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This recursive procedure needs to draw ht sequentially from the filtered distribution, p(ht|θ,
y1:t), which is updated as described in Algorithm 3.2.

Algorithm 3.2
1. Posterior at t − 1:

2. For i = 1, …, N, calculate 

3. Sampling (k, ht):

For i = 1, …, N

Indicator: ki such that 

Evolution:

Weights: compute  as follows

4. Posterior at t:

Next, we give some technical details related to the out-of-sample forecasting of aggregated
squared returns in SV-SMN models. We refer to the reader to see Tauchen and Pitts (1983)
for more details.

3.5. Out-of-sample forecasting of aggregated returns
We have that K–step ahead prediction density can be calculated using the composition
method through the following recursive procedure:

Evaluation of the last integrals is straightforward, by using Monte Carlo approximation. To

initialize a recursion, we use N draws { } and {θ(1), …, θ(N)} from the MCMC

sample. Then given these N draws, sample N draws { } from
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 and { } from p(λT+k|θ(1)), …, p(λT+k|
θ(N)), for k = 1, …, K, by using equations (12b) and (12c), respectively. Finally, with this N

draws { }, sample N draws { } from

, for k = 1, …, N. With draws from hT+k and yT+k, the
aggregated daily squared return (a common model-free indicator of volatility) can be

calculated as  and the aggregated volatility as, , for i = 1, …,
N, respectively.

4. Empirical Application
This section analyzes the daily closing prices for the S&P500 stock market index. The
S&P500 index contains the stocks of 500 Large-Cap corporations. Although a majority of
those corporations are US based, it also include other companies having their common
stocks within the index. The data set was obtained from the Yahoo finance web site
available to download at http://finance.yahoo.com. The period of analysis is January 5,
1999–September 05, 2008 which yields 2432 observations. Throughout, we will work with
the mean corrected returns computed as

where Pt is the closing price on day t.

Table 1 summarize descriptive statistics for the corrected compounded returns with the time
series plot in Figure 1. For the returns series, the basic statistics viz. the mean, standard
deviation, skewness and kurtosis are calculated to be 0.00, 1.13, 0.06 and 5.04, respectively.
Note that the kurtosis of the returns is > 3, so that daily S&P500 returns likely shows a
departure from the underlying normality assumption. Thus, we reanalyze this data with the
aim of providing robust inference by using the SMN class of distributions. In our analysis,
we compare between the SV-N, SV-t, SV-S and SV-VG distributions from the SMN class of
models. All the calculations were performed running stand alone code developed by the
authors using an open source C++ library for statistical computation, the Scythe statistical
library (Pemstein et al., 2007), which is available for free download at
http://scythe.wustl.edu.

In all cases, we simulated the ht’s in a multi-move fashion with stochastic knots based on the
method described in Section 3.1. We set the prior distributions of the common parameters

as: α ~ (0.0, 100.0), φ ~  (0.95, 100.0), . The prior distributions on
the shape parameters were chosen as: ν ~ ℊ(12.0, 0.8), ν ~ ℊ(0.2, 0.05) and ν ~ ℊ(2.0, 0.25)
for the SV-t model, the SV-S model and the SV-VG model, respectively. The initial values
of the parameters are randomly generated from the prior distributions. We set all the log-
volatilities, ht, to be zero. Finally the initial λ1:T are generated from the prior p(λt | ν).

We set K, the number of blocks to be 40 in a such way that each block contained 60  on
average. For all the models, we conducted the MCMC simulation for 60000 iterations. The
first 20000 draws were discarded as a burn-in period. In order to reduce the autocorrelation
between successive values of the simulated chain, only every 10th values of the chain are
stored. With the resulting 4000 values, we calculated the posterior means, the 95% credible
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intervals, the Monte Carlo error of the posterior means and the convergence diagnostic (CD)
statistics (Geweke, 1992). Table 2 summarizes these results. According to the CD values,
the null hypothesis that the sequence of 4000 draws is stationary is accepted at 5% level for
all the parameters and in all the models considered here. Figure 2 shows the sampling results
for the SV-S model on the S&P500 return series. As expected, we observe a rapid decay of
autocorrelations for all the parameters.

The estimate of the volatility parameters (α, φ, σ2} are consistent with the results found in
the previous literature (e.g. Chib et al., 2002; Omori et al., 2007). The posterior mean of φ is
close to one, which indicates a well-known high persistence of volatility asset returns. The
posterior mean of φ for the SV-N model is lower than the other models and the estimates of
σ2 for the SV-t, SV-S and SV-VG models are slightly lower than the SV-N model. Thus, the
models allowing heavy-tail errors seem to explain the excess of returns as a realization of
the disturbance εt, which decreases the variance of the volatility process.

The magnitude of the tail-fatness is measured by the shape parameter ν in the SV-t, SV-S
and SV-VG models. The posterior mean of ν in the SV-t model is 20.1527, which is in
accordance with the literature (Nakajima and Omori, 2008). In the SV-S model, the
posterior mean of ν is 2.2618, and in the SV-VG model the posterior mean of ν is 17.7880.
These results seem to indicate that the measurement error of the stock returns are better
explained by heavy-tailed distributions.

To illustrate the tail behavior, we plot the normal ( (0,1)) density, student’s-t ( (0,1, ν))
density with ν degrees of freedom, the slash ( (0,1, ν)) density with shape parameter ν and
the variance gamma ( ℊ(0,1, ν)) density with shape parameter ν. We set ν as the posterior
mean of the respective SV model (see Table 2). Figure 3 depicts the four density curves (the
student-t, slash and variance gamma have been rescaled to be comparable, see Wang and
Genton, 2006). The density of the variance gamma emphasizes on the sharpness around the
mean rather than the tails fatness, so that the student-t and slash distributions have fatter tails
than the standard normal and variance gamma distributions. Note that the slash distribution
has fatter tail than the other distributions that we have considered. Therefore, the SV-S and
SV-t models attributes a relatively larger proportion of extreme return values to εt instead of
ηt than those of SV-N and SV-VG models, making the volatility of the SV-S and SV-t
models less variable.

The magnitudes of the mixing parameter λt are associated with extremeness of the
corresponding observations. In the Bayesian paradigm, the posterior mean of the mixing
parameter can be used to identify a possible outlier (see, for instance Rosa et al., 2003). The
heavy-tailed SV-SMN models can accommodate an outlier by inflating the variance
component for that observation in the conditional normal distribution with smaller λt value.
This fact is shown in Figure 4 where we depicted the posterior mean of the mixing variable
λt for the SV-t (left panel), SV-S (middle panel) and the SV-VG (right panel) models.

In Figures 5a to 5d, we plot the smoothed mean of  jointly with the absolute returns for
the SV-N, SV-t, SV-S and SV-VG models. It can be seen from Figures 5a, 5b and 5d that
the SV-N, SV-t and SV-VG models produce similar estimates to . However, the SV-S
model in Figure 5c exhibits smoother movements than the other competing SV models.
Clearly, extreme returns make a clear difference. The models with heavy tails accommodate

possible outliers in a somewhat different way by inflating the variance  by . This
can have a substantial impact, for instance, in the valuation of derivative instruments and
several strategic or tactical asset allocation topics.

Abanto-Valle et al. Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Next, we use the deviance information criterion (DIC) and the Bayesian predictive
information criterion (BPIC) to compare between all the competing models. In both cases,
the best model has the smallest DIC (BPIC). From Table 3, the BPIC criterion indicates that
the SV-SMN models with heavy tails present better fit than the basic SV-N model, with the
SV-S model relatively better among all the considered models, suggesting that the SP&500
data demonstrate sufficient departure from underlying normality assumptions. As expected,
the DIC also selects the SV-S model as the best model.

Forecasting asset price volatility has become an important area in empirical finance
research, because volatility plays a significant role in asset pricing models, portfolio
management and trading strategies. Using the particle filter algorithm (see Section 3.4), we
have calculated the predictive distribution of p(ht | y1:t−1, θ ̂), for t = 1, …, T, where θ ̂ is the
mode of the posterior distribution (sec Section 3.4 for details). Figure 6 depicted the mean of

{ , θ ̂} with the absolute returns to the SP&500 index. Note that the SV-S and SV-t
models exhibit smoother movements than those from the SV-N and SV-VG models. Once
again, difference in extreme returns is clearly manifested once the associated volatility
values jump up more under the SV-N and SV-VG models than the SV-S and SV-t models.

We evaluate the SV-SMN models by using the out-of-sample forecasting of the squared
returns aggregated over certain period of time. Based on the 2432 observations of returns
used previously, we calculate the forecast over the following 1, 2, …, 10 days as described
in Section 3.5.

Figure 7 plots the posterior means and 95% posterior credibility interval of the aggregated
squared returns together with the realized values. The 95% posterior interval of the
aggregated volatility, eht, are also plotted. For all models (a)–(d), the 95% intervals of the
aggregated squared returns are much wider that those for the aggregated volatility. The 95%
posterior credibility interval of the aggregated squared returns for the SV-S model include
the realized values for days from 1 to 7. The SV-t model shows similar forecasts except the
day 6. The SV-VG only include realized values of the aggregated squared returns for days
from 1 to 5. The SV-N shows the worst behavior, it include only the realized values for days
1, 4 and 5.

The robustness aspects of the SV-SMN models can be studied through the influence of
outliers on the posterior distribution of the parameters. We consider only the SV-t and the
SV-S models for illustrative purposes. We study the influence of three contaminated
observations on the posterior estimates of mean and 95% credible interval of model
parameters. The observations in t = 1566, 1582 and 1599, which corresponds to March 5,
2005, April 20, 2005 and May 16, 2005, respectively, are contaminated by kyt, where k
varies from −6 and 6 with increments of 0.5 units. In Figures 8 and 9, we plot the posterior

mean and 95% credible interval of φ and , respectively, for the SV-N, the SV-t and the
SV-S models. Clearly, the SV-S and the SV-t models are less affected by variations of k
than the SV-N model, meaning substantial robustness of the estimates over the usual normal
process in presence of outlying observations.

5. Conclusions
This article discusses a Bayesian implementation of some robust alternatives to stochastic
volatility models via MCMC methods. The Gaussian assumption of the mean innovation
was replaced by univariate thick-tailed processes, known as scale mixtures of normal
distributions. We study three specific sub-classes, viz. the Student-t, the slash and the
variance gamma distributions and compare parameter estimates and model fit with the
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default normal model. Under a Bayesian perspective, we constructed an algorithm based on
Markov Chain Monte Carlo (MCMC) simulation methods to estimate all the parameters and
latent quantities in our proposed SV-SMN class of models. As a by product of the MCMC
algorithm, we were able to produce an estimate of the latent information process which can
be used in financial modeling. The use of mixing variable, λ1:T for normal scale mixture
distributions not only simplifies the full conditional distributions required for the Gibbs
sampling algorithm, but also provides a mean for outlier diagnostics. We illustrate our
methods through an empirical application of the S&P500 index return series, which shows
that the SV-S model provide better model fitting than the SV-N model in terms of parameter
estimates, interpretation, robustness aspects and out-of-sample forecast of the aggregated
squared returns.

In future, we plan to extend our research in several directions with the aim of exploring the
robustness aspect of the parameter estimates. For instance, in this paper the estimated
volatility of financial asset return changes does not accommodate sudden structural breaks.
Recently, the SV model with jumps (Barndorff-Nielsen and Shephard, 2001; Chib et al.,
2002) and the regime switching models (So et al., 1998; Shibata and Watanabe, 2005;
Abanto-Valle et al., 2009) have received considerable attention. The volatility of daily stock
index returns has been estimated with SV models but usually results have relied on
extensive pre-modeling of these series, thus avoiding the problem of simultaneous
estimation of the mean and variance. The SV in mean (SVM) (Koopman and Uspensky,
2002) model deal with this problem and incorporates the un-observed volatility as
explanatory variable in the mean equation of the returns. Indeed, the flexibility of the SVM
with SMN distributions could fit time varying features in the mean of the returns and heavy-
tails simultaneously. The estimation of such intricate models is not straightforward since
volatility now appears in both the mean and the variance equation. This requires
modifications of the multi-move algorithm to sampling the log-volatilies. We plan to explore
our methods along those lines. Furthermore, our SV-SMN models has shown considerable
flexibility to accommodate outliers, however its robustness aspects could be seriously
affected by presence of skewness. Lachos et al. (2009) have recently proposed a remedy to
incorporate skewness and heavy-tailedness simultaneously using scale mixtures of skew-
normal (SMSN) distributions. We conjecture that the methodology presented in this paper
can be undertaken under univariate and multivariate setting of SMSN distributions and
should yield satisfactory results in situations where data exhibit non-normal behavior,
although at the expense of additional complexity in its implementation. Nevertheless, a
deeper investigation of those modifications is beyond the scope of the present paper, but
provides stimulating topics for further research.
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Appendix: The Full conditionals
In this appendix, we describe the full conditional distributions for the parameters and the
mixing latent variables λ1:T of the SV-SMN class of models.

Full conditional distribution of α, φ and 
The prior distributions of the common parameters are set as:

. Together with (15), we have the following
full conditional for α:

(31)

which is the normal distribution with mean  and variance , where  and

. Similarly, by using (15), we have that the conditional posterior of
φ is given by

(32)

where 

and  is an indicator variable. As  in (32) does not have closed form, we

sample from using the Metropolis-Hastings algorithm with truncated  as the
proposal density.

From (15), the conditional posterior of  is , where T1 = T0 + T + 1 and

.

Full conditional of λt and ν

SV-t case
As , the full conditional of λt is given by

(33)

which is the gamma distribution, .

We assume the prior distribution of ν as ℊ(aν, bν) . Then, the full conditional of ν is
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(34)

We sample ν by the Metropolis-Hastings acceptance-rejection algorithm (Tierney, 1994;
Chib, 1995). Let ν* denote the mode (or approximate mode) of p(ν | λ1:T), and let ℓ(ν) = log
p(ν | λ1:T). As ℓ(ν) is concave, we use the proposal density , where μν = ν* − ℓ′
(ν*)/ℓ″(ν*) and . ℓ′(ν*) and ℓ″ (ν*) are the first and second derivatives of ℓ(ν)
evaluated at ν = ν*. To prove the concavity of ℓ(ν), we use the result of Abramowitz and
Stegun (1970), in which the log Γ(ν) could be approximated as

(35)

Taking the second derivative of ℓ(ν) from (34) and using (35), we have that

SV-S case
Using the fact that λt ~ ℬe(ν, 1), we have the full conditional of λt given as

(36)

that is , the right truncated gamma distribution. Assuming that a
prior distribution of ν ~ ℊ (aν,bν), the full conditional distribution of ν is given by

(37)

Then, the full conditional of ν is , i.e. the left truncated gamma
distribution. We simulate from the right and left truncated gamma distributions using the
algorithm proposed by Philippe (1997).

SV-VG case
As , the full conditional of λt is given by

(38)
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which is the generalized inverse gaussian distribution, .

We assume the prior distribution of ν as ℊ(aν, bν) 0<ν≤40. Then, the full conditional of ν is

(39)

which is log-concave. Thus, we sample ν by the Metropolis-Hastings acceptance-rejection
algorithm as in the case of the SV-t model with proposal density .
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Figure 1.
S&P500 corrected compounded returns with sample period from January 5, 1999 to
September 05, 2008. The left panel shows the plot of the raw series and the right panel plots
the histogram of returns.
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Figure 2.
Estimation results for the S&P500 daily index returns (SV-S model). The top row shows
plots of sample autocorrelations and the bottom row shows posterior histograms and
overlayed density estimates.
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Figure 3.
S&P500 index. Density curves of the univariate normal, student-t, slash and variance
gamma using the estimated tail-fatness parameter from the respective SV model.
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Figure 4.
Comparison of the estimated mixing variables λt for the SP&500 index data
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Figure 5.
Posterior smoothed mean (solid line) of  for (a) SV-N, (b) SV-t, (c) SV-S and (d) SV-VG
models. The dashed line indicates the absolute returns of the S&P500 index data.
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Figure 6.

Posterior mean (solid line) of , y1:t-1, for (a) SV-N, (b) SV-t, (c) SV-S and (d) SV-VG
models. The dashed line indicates the absolute returns of the S&P500 index data.
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Figure 7.
Out-of-sample forecast of the aggregated squared returns for (a) SV-N, (b) SV-t, (c) SV-S
and (d) SV-VG models.
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Figure 8.
Posterior mean (dashed line) and 95% credible interval (solid line) for φ of fitting the SV-N,
SV-t and SV-S models for the S&P500 index data.
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Figure 9.
Posterior mean (dashed line) and 95% credible interval (solid line) for σ2 of fitting the SV-
N, SV-t and SV-S models for the S&P500 index.
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Table 2

Estimation results for the S&P500 daily index returns. The first row: Posterior mean. The second row:
Posterior 95% credible interval in parentheses. The third row: Monte Carlo error of the posterior mean. The
fourth row: CD statistics

Parameter SV-N SV-t SV-S SV-VG

α

−0.0016 −0.0040 −0.0147 −0.0011

(−0.0104,0.0069) (−0.0130,0.0044) (−0.0270, −0.0043) (−0.0095,0.0072)

0.93 × 10−4 0.90 × 10−4 1.81 × 10−4 0.41 × 10−4

−0.11 −0.12 −0.94 0.51

φ

0.9700 0.9722 0.9730 0.9721

(0.9543,0.9833) (0.9570,0.9844) (0.9579,0.9856) (0.9568,0.9846)

3.04 × 10−4 3.03 × 10−4 3.11 × 10−4 2.99 × 10−4

−1.38 0.38 −1.30 −0.59

σ2

0.0447 0.0411 0.0404 0.0402

(0.0293,0.0652) (0.0273, 0.0599) (0.0254,0.0594) (0.0270, 0.0607)

5.27 × 10−4 5.40 × 10−4 5.29 × 10−4 4.82 × 10−4

0.93 1.39 0.62 0.61

ν

– 20.1527 2.2618 17.7880

– (11.2700,28.5300) (2.0670,2.4250) (9.7930, 30.1460)

– 0.2389 0.0012 0.4535

– 0.69 −0.61 −0.38
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Table 3

SP&500 return data set. DIC: deviance information criterion, BPIC: Bayesian predictive information criterion.

DIC BPIC

Model Value Ranking BPIC Ranking

SV-N 6889.6 3 7603.1 4

SV-t 6888.1 2 6957.4 2

SV-S 6878.4 1 6951.4 1

SV-VG 6906.8 4 7406.5 3
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