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Abstract

This paper discusses regression analysis of interval-censored failure time data, which occur in 

many fields including demographical, epidemiological, financial, medical, and sociological 

studies. For the problem, we focus on the situation where the survival time of interest can be 

described by the additive hazards model and a multiple imputation approach is presented for 

inference. A major advantage of the approach is its simplicity and it can be easily implemented by 

using the existing software packages for right-censored failure time data. Extensive simulation 

studies are conducted which indicate that the approach performs well for practical situations and is 

comparable to the existing methods. The methodology is applied to a set of interval-censored 

failure time data arising from an AIDS clinical trial.

1. Introduction

Interval-censored failure time data occur in many areas including demographical, 

epidemiological, financial, medical, and sociological studies (Sun, 2006). In these 

situations,the exact time of failure cannot be observed but is known to fall between two 

observation times. Interval-censored failure time data may arise in several ways. For 

instance, an individual may miss one or more observation times that have been scheduled to 

clinically observe possible changes in a disease status and then return with a changed status. 

Alternatively, individuals may visit clinical centers at times convenient to them rather than 

at predetermined observation times. In both situations, the data on change in status are 

interval-censored.

A special case of interval-censored failure time data, case I interval-censored data arise 

when there is only one monitoring time and each subject is known only to experience the 

onset of the event either before or after this observation time. In other words, the observation 

on the failure time of interest is either left- or right- censored (Kalbfleisch and Prentice, 

2002; Klein and Moeschberger, 2003). Left (right) censoring can be considered as an 
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extreme case of interval censoring in which the left (right) endpoint is 0 (∞). Case I 

interval-censored data are often referred to as current status data. In this paper, we focus on 

general or sometimes referred to as case II interval-censored failure time data.

Many authors have considered regression analysis of interval-censored failure time data 

since mid-1980s. Finkelstein (1986) studied the use of the proportional hazards (PH) model 

for interval-censored data followed by many others. In particular, Huang and Wellner (1997) 

discussed the asymptotic properties of the PH model along with other models. Several other 

semiparametric models have also been considered for this type of data. These include the 

proportional odds model studied by Huang and Rossini (1997) and the accelerated failure 

time model proposed by Rabinowitz et al. (1995). Also for this problem, Kooperberg and 

Clarkson (1997) discussed linear spline models and Sun (1997) investigated the logistic 

model. Furthermore, Younes and Lachin (1997) and Zhang et al. (2005) proposed to use the 

linear transformation model. Bacchetti and Quale (2002) and Zeng et al. (2006) considered 

the additive hazards model.

For inference, three approaches are commonly used and they are the maximum likelihood 

approach (Huang, 1996), the estimating equation approach (Lin et al., 1998) and the 

imputation approach (Pan, 2000). In theory, the maximum likelihood approach applies to 

any model and is the most efficient method. However, it may be complicated both in terms 

of investigation of its properties and its implementation. Alternatively, one may consider 

profile likelihood approach (Huang and Wellner, 1997). But the asymptotic validity of the 

profile likelihood approach needs to be verified. For semiparametric model, the efficient 

score function approach (Huang and Wellner, 1997; Bickel et al., 1993; van der Vaart and 

Wellner, 1996) is commonly used, but it requires estimating an infinite-dimensional 

nuisance parameter such as the cumulative hazard function in the additive hazards model. 

For case II interval-censored data problem, a general approach to develop estimating 

equations or inference procedures is to transfer them to current status data assuming a 

simple inference procedure is available in the case of current status data. However, the 

asymptotic validity and properties of the resulting methods and their efficiency are difficult 

to investigate.

In this paper, we develop a multiple imputation approach for fitting the additive hazards 

model to interval-censored failure time data. A major advantage of the imputation approach 

over the existing methods is its simplicity and it can be easily implemented. Among others, 

Wei and Tanner (1991) developed multiple imputation algorithms for right-censored failure 

time data under the location-scale regression model. This algorithm imputes censoring times 

by sampling from the current estimate of the conditional distribution of the error. Once the 

censoring times have been imputed, least squares is applied to estimate the regression 

parameters. Pan (2000) investigated multiple imputation approach for interval-censored 

failure time data under the PH model. The basic idea of his approach is to impute exact 

survival times from interval-censored data and reduce the analysis of interval-censored 

failure time data to that of right-censored failure time data. However, under the PH model 

the effect of covariates is restricted to be multiplicative on hazards of failure and the 

estimates of regression parameters are not easy to interpret. We adopted the idea of Pan 

(2000) but allow the covariate effect on hazards of failure to be additive. The additive 

Chen and Sun Page 2

Comput Stat Data Anal. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hazards model was argued to be more reasonable for certain instances such as dose on risk 

or hazard (Breslow and Day, 1987). In particular, we considered time-dependent covariates 

as they often arise in practice but most of the inference approaches developed for this type 

of data only apply to time-independent covariates.

Before presenting the multiple imputation approach, we will first briefly introduce in 

Section 2 the additive hazards model and the inference procedure proposed by Lin and Ying 

(1994) for right-censored failure time data. The imputation approach is then presented in 

Section 3 and the key idea behind the approach is to generate right-censored data conditional 

on the observed data. Then the estimation procedure given by Lin and Ying (1994) can be 

applied. Results from an extensive simulation study are reported in Section 4 for assessing 

the developed approach and they indicate that the presented multiple imputation procedure 

performs well for the situations considered compared to the existing methods. Section 5 

applies the method to a set of well-known interval-censored failure time data arising from an 

AIDS clinical trial and Section 6 contains some concluding remarks.

2. The additive hazards model and right-censored failure time data

Consider a survival study and let T denote the failure time of interest and Z a vector of 

covariates that may depend on time t. We assume that given Z, the hazard function of T has 

the form

(1)

where λ0(t) denotes the unknown baseline function and β is the vector of regression 

coefficients. That is, T follows the additive hazards model (Cox and Oakes, 1984). The goal 

is to make inference about β.

In this section, we assume that right-censored failure time data are available and given by 

{Xi, δi, Zi, i = 1, . . . , n} from n independent subjects. Here Xi denotes the observed failure 

time defined as the minimum of the true failure time Ti and the censoring time for subject i 

and δi = 1 if the true failure time is observed and 0 otherwise. It is assumed that the failure 

time and the censoring time are independent given covariates. Define Yi(t) = I(Xi ≥ t), the 

risk indicator process, and Ni(t) = I(Xi ≤ t, δi = 1), a counting process, i = 1, . . . , n.

To estimate β, Lin and Ying (1994) proposed to use the following estimating equation

where

It can be easily shown that the solution to the equation above has the explicit form
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(2)

where  for a vector a. Furthermore, they showed that  converges 

weakly to a normal vector with mean zero and a covariance matrix that can be consistently 

estimated by Σ = A–1 BA–1, where β0 denotes the true value of β,

Given , a natural estimate of the baseline cumulative hazard function  is 

given by

(3)

Note that the estimate (3) may not always be monotone in t. For this, Lin and Ying (1994) 

suggested using . In the next section, we will discuss the use 

of the estimates (2) and (3) in estimation of β when only interval-censored failure time data 

are available.

3. A multiple imputation approach for estimation of β
Now we consider situations where instead of right-censored data, one observes only 

interval-censored data given by {(Li, Ri], Zi, i = 1, . . . , n}, where Li ≤ Ri. Here Li = 0 

represents a left-censored observation, Ri = ∞ corresponds to right-censored one, and Zi is 

the same as before. Note that for right-censored data, one may know Ti exactly, while for 

interval-censored data, all available information about Ti is the interval (Li, Ri] with Ti ∈ (Li, 

Ri]. Our proposal is to impute the exact failure times from finite interval-censored (left-

censored or interval-censored) observations but not right-censored observations. Then the 

problem is reduced to analyzing the imputed (right-censored) data, which can be handled 

with the inference procedure in Section 2.

To estimate β, we propose the following estimation procedure. Let K be a prespecified 

integer.

Step 1. Choose initial estimates  and  of β and the baseline survival function S0(t) = 

exp{–Λ0(t)}, respectively.
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Step 2. At the lth iteration, let  and  denote the estimates of β and S0(t) obtained 

at the (l – 1)th iteration and generate K sets of right-censored data {Xik, δik, Zik, i = 1, . . . , n, 

k = 1, . . . , K} as follows. If Ri = ∞ (right-censored), define Xik = Li and δik = 0; if Ri < ∞, 

define δik = 1 and Xik to be a random number drawn from the survival function

given Li ≤ Xik < Ri, where . The imputed value was drawn this way: 

suppose that, in interval (Li, Ri],  has probability 

mass {p1, . . . , pSi} at time points {t1, . . . , tSi}, then Xik was randomly drawn from {t1, . . . , 

tSi} with probability proportional to {p1, . . . , pSi}. Also for all i and k, define Zik = Zi.

Step 3. First define the estimate  as  given in (2) with {Xi, δi, Zi, i = 1, . . . , n} replaced 

by {Xik, δik, Zik, i = 1, . . . , n}. Then determine the estimate 

, where  is given by (3) with {Xi, δi, Zi, i = 

1, . . . , n} replaced by {Xik, δik, Zik, i = 1, . . . , n}. Also calculate the covariance matrix 

as Σ given in Section 2 based on {Xik, δik, Zik, i = 1, . . . , n}.

Step 4. Define the updated regression estimate  and the estimate of baseline survival 

as

and the covariance matrix can be estimated by

Step 5. Return to step 2 until the convergence is achieved.

To implement the procedure above, one needs to choose the initial estimates of β and S0. For 

β, a simple choice is to let  or use the estimate (2) based on the right-censored data 

{Xi, δi, Zi, i = 1, . . . , n}. To generate the Xi's, one can simply impute Xi = (Li + Ri)/2 for the 

left- and interval-censored observations. Instead of this simple imputation, an alternative is 

to generate a uniform random variable from the interval (Li, Ri). For , as with the second 

approach for β, one could apply the estimate (3) based on the same set of right-censored data 
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and the relationship S0(t) = exp{–Λ0(t)}. For the convergence of the procedure, since the 

main purpose is to estimate β, one can apply the criterion

for a given positive constant ε. Alternatively, one could judge the convergence based on 

both  and .

Note that as the estimate (3), the estimate  may not be monotone. In this case, 

we can replace it by  in step 4. Let  denote the final estimate of 

β given by the multiple imputation procedure above. Then one can expect that when n is 

large, the distribution of  can be approximated by the normal distribution with mean β0 and 

the covariance matrix that can be estimated by

4. Simulation studies

Two simulation studies were conducted to assess the performance of the multiple imputation 

approach presented in Section 3. In the first study, the hazard function for the underlying 

failure time T was taken to be 0.1 + βZ, which gives the density and survival functions

respectively, for a subject with covariate Z. In the second study, we allowed a time-

dependent covariate with the hazard function 0.1 + βZt, which gives the density and survival 

functions

respectively, for a subject with covariate Zt. For the observation times, to mimic the pattern 

of many medical follow-up studies, the time interval between two examinations was 

assumed to be constant as len = 0.25. It was assumed that there are potentially eight 

examinations in total for each subject. Denote τ0 = 0 and τ9 = ∞. Suppose τ1 is the random 

baseline examination time, let τ1 = Ci, i = 1, . . . , n, and Ci was generated from the uniform 

distribution (0, α), where α was arbitrarily chosen to give a prespecified percentage of 

observations right-censored. Then the seven follow-up times are calculated as τk = τ1 + (k – 
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1) × len, k = 2, 3, . . . , 8; but a subject may miss the scheduled examination times with 

probabilities 0.3 for the first four and 0.5 for the latter four. We can obtain an interval-

censored observation (Li, Ri], where Li = τj and Ri = τk for some 0 ≤ j < k ≤ 9 and (τj, τk) is 

the shortest interval covering Ti such that the subject did not miss the examinations at τj and 

τk. The covariate Z was generated from the Bernoulli distribution with success probability p 

= 0.5.

For comparison, in the simulation study, we also studied the parametric maximum 

likelihood estimation procedure in addition to the imputation approach. This procedure 

assumes that one knows that the distribution of the Ti's with the hazard function λ(t; Z) = λ0 

+ βZ or λ(t; Z) = λ0 + βZt with λ0 and β as unknown parameters. In this case, β can be easily 

estimated by its maximum likelihood estimate with the variance estimated based on the 

Fisher information matrix. The results given below are based on 2000 replications.

Table 1 presents the simulation results for estimation of β and for the situation where the 

covariates Zi's are time-independent with the true value, β0, of β taken to be 0.01, 0.1, 0.3, 

0.5 and 0.7, the sample size n = 100 and 200, respectively. For each simulation setup, the 

average percentage of right censoring (%RC) is recorded. The=results include the average 

bias of the estimates of β (BIAS), the means of the estimated standard deviations (ESD), the 

sample standard errors of the estimated β (SSE), and the 95% empirical converge 

probabilities (CP). It can be seen from the table that the multiple imputation approach 

performs as well as the parametric estimation approach as the two methods gave similar 

biases and variance estimates. Note that the parametric estimation approach serves as a 

benchmark here as it is the most efficient method for the situations. It can also be seen from 

the table that as expected, both bias and variance decrease when the sample size increases.

Table 2 gives the simulation results obtained under the same setups as in Table 1 except that 

the covariates were assumed to change with time. Overall it gave similar conclusions to 

those from Table 1. For all situations considered in the simulation study, similar 

performances were given by the parametric approach and the imputation approach. It can 

also be seen from both tables that even with about 50% purely interval-censored 

observations, the imputation approach still performs quite well.

We also investigated the performance of our proposed method with different percentages of 

exact failure times and various choices of initial estimates. The simulation results based on 

2000 replications indicate our estimating procedure is not sensitive to how many exact 

failure times are observed or choice of initial estimates (shown in Table 3).

For the simulation results given above, we used K = 10 for the imputation procedure. To 

investigate the effect of K on the performance of the procedure, we also performed the 

simulation with K = 5, 50 and 100 and obtained similar results. To assess the normality of , 

we obtained the quantile plots of the standardized  against the standard normal variable. 

Figs. 1 and 2 presented two such plots and suggest that the asymptotic normality seems 

reasonable. The plots for other setups were similar.
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5. An application

We now apply the presented imputation procedure to a set of interval-censored data arising 

from an AIDS clinical trial, AIDS Clinical Trial Group (ACTG) 181 on 204 HIV-infected 

individuals (Goggins and Finkelstein, 2000). In this study, patients were scheduled to 

provide urine samples at clinic visits every 4 weeks. The Urine samples were tested for the 

presence of the cytomegalovirus (CMV), which is often referred to as shedding of the virus. 

Since CMV shedding is not accompanied by any symptoms and only detectable in the 

laboratory test, it cannot be observed immediately when it exists and only possibly observed 

at scheduled clinic visits. For some patients the shedding times are left-censored because the 

shedding had already occurred when they entered the study. For some patients the shedding 

times are right-censored since they had not started shedding by the end of the study. For the 

other patients, the shedding times are given by observed intervals with the last negative and 

first positive urine tests, respectively. Thus the observations on virus shedding times in urine 

are interval-censored. In addition to the observed information about CMV shedding times, 

the data also include information about the patients’ baseline CD4 cell counts. In particular, 

the patients are classified into two groups with Z = 1 if the baseline CD4 cell count was less 

than 75 cells/μl and Z = 0 otherwise. We are interested in determining whether the baseline 

CD4 cell count is predictive of CMV shedding in urine.

To analyze the data above, we applied the multiple imputation procedure with K = 10 to the 

observations of CMV shedding times in urine. For this event, there are 49, 67 and 88 left-

censored, interval-censored, and right-censored observations, respectively. The procedure 

yielded  with the estimated standard error of 0.0175, The p-value is close to zero for 

testing β = 0, no group difference. With K = 5 and K = 50, the procedure yielded p-values 

zero. These results suggest that the patients with baseline CD4 cell count below 75 cells/μl 

have significantly higher risk of CMV shedding in urine than those with baseline CD4 cell 

count above 75 cells/μl. This result is similar to those given in Sun (2006) under the PH 

model.

The presented method and analysis above assumed that the CMV shedding time in urine can 

be reasonably described by the additive hazards model (1) and one may question the 

appropriateness of the model for the data. For comparison and model checking, we include 

in Fig. 3 the model-based estimators of the survival functions for the patients in the two 

groups and the nonparametric maximum likelihood estimators (NPMLEs) of the same 

survival functions obtained by the self-consistency algorithm of Turnbull (1976). Fig. 3 

suggests that the additive hazards model seems to provide a reasonable fit to the data.

6. Concluding remarks

This paper discussed regression analysis of interval-censored failure time data generated 

under the additive hazards model and for the analysis, a multiple imputation approach was 

presented and investigated. Compared to the existing methods for the problem, a major 

advantage of the imputation approach is its simplicity as it can be easily implemented by 

using the existing software packages for right-censored failure time data. Although there 

exist other approaches for regression analysis of interval-censored failure time data, they are 
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either less efficient or complicated. The numerical studies showed that the imputation 

approach presented here is efficient and performs well for practical situations.

Time-dependent covariates often arise in practice. However, most of the inference 

approaches developed for interval-censored failure time data only apply to time-independent 

covariates (Sun, 2006). This paper generalized the imputation approach to situations where 

covariates are time-dependent.

One potential limitation of the study is that the imputation procedure is likely to be 

improper. According to Rubin (1987), if the statistics of  and  from infinite-K imputation 

procedures provide valid random-response randomization based inferences for the posterior 

distributions of β and Σ, then the imputation is proper. We adopted Wei and Tanner's 

Poorman's Data Augmentation (PMDA) and this imputation procedure is likely to be 

improper because it omits the step of drawing parameters from their posterior distributions. 

Instead, we update the regression estimates by taking the average over the K augmented data 

sets, thus multiple imputations are conditional on the current guess. In this case the true 

between-imputation variability may be underestimated when the missingness is severe. 

However, in our procedure, repeated imputations were generated under the true model for 

the response mechanism and the true model for the data, and the complete-data inference 

equals the complete-data inference derived under the same models. Under these situations, 

the conditions for repeated-imputation inferences to yield valid random-response 

randomization based inference will be satisfied asymptotically under mild regularity 

conditions (Rubin, 1987). This means the average of the estimators is a consistent, 

asymptotically normal estimator, and an estimator of its asymptotic variance is given by a 

simple combination of the average of the complete-data variance estimators (within-

imputation variance) and the empirical variance of the K estimators (between-imputation 

variance). Our simulation studies suggest PMDA works reasonably well even with 50% of 

missingness (finite interval censoring). However, future research is warranted to investigate 

algorithms that specify random drawings of parameter values to facilitate random generation 

of multiple imputations.

There exists several other directions for future research. One is that although the simulation 

suggests that the normal approximation seems reasonable to the distribution of  and  is 

efficient, it would be helpful to provide rigorous justification to these. Also one may want to 

consider the generalization of the imputation approach to situations where failure times and 

observation times are dependent and bivariate failure time data as in the example. It would 

also be interesting to develop a formal procedure for model comparison between the 

proportional hazards model and the additive hazards model as such a procedure has not been 

established so far.
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Fig. 1. 
Quantile plot of the estimates with time-independent covariates (β0 = 0.01, n = 200).
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Fig. 2. 
Quantile plot of the estimates with time-dependent covariates (β0 = 0.01, n = 200).
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Fig. 3. 
Estimates of survival functions of time to CMV shedding in urine.
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