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ABSTRACT

In the literature, a distributed consensus protocol by which a connected swarm of agents can gen-
erate artistic patterns in 2-dimensional space is proposed. Motivated by this protocol, in this paper,
we design the parameters of this protocol for a 3-agent swarm of non-holonomic robots of finite size
that results in the generation of periodic trochoidal trajectories that satisfy a set of geometric and
speed constraints; this design also includes selecting the initial positions of the robots. This problem
finds applications in persistent surveillance and coverage, guarding a region of interest, and target
detection. While the trajectories may be self-intersecting, imposing geometric constraints i. elim-
inates collisions between robots; ii. ensures minimum and maximum separation distance between
any robot and a fixed point, thus ensuring the robots are in communication range. Imposing speed
constraints ensure that tracking these trajectories becomes feasible. It is also shown that robots can
be injected to these paths at specific locations, in order to increase the refresh rate, without violating
any of the geometric constraints. The designs are implemented in an indoor mobile robot platform.

Keywords Swarm Robotics; Trochoidal Patterns; Persistent Coverage; Surveillance

1 Introduction

The distributed consensus protocol (CP) presented in [1] enables a connected swarm of agents, modelled as single
integrators, to trace repeated geometric paths in both 2-dimensional (2-D) and 3-D spaces. The parameters of the
protocol, the connection topology of the swarm, and the initial positions of the agents define the characteristics of the
generated paths. The applications of agents, or robots, tracing such paths have been well identified in the literature,
for example, persistent coverage and surveillance of a region, guarding an asset, and target detection; the cited refer-
ences provide an exhaustive list. In such applications, the issues of collisions between robots, communication range,
feasibility of path tracking, and time taken to trace the path, have to be considered explicitly. Further, in applications
involving guarding a specific region or an asset, the path should be defined by making the asset the centre of rotation
(CoR).

In this paper, the protocol is designed for a connected swarm of 3 unicycle-robots of finite size moving in a 2-D
Cartesian space; the use of 3 robots leads to the generation of trochoidal paths, where each robot traces a unique
trochoid. For a given communication topology, design of the trochoidal paths involves the selection of 3 scalars for the
CP, a positive integer, k, with magnitude k ≥ 2, and the initial coordinates of the 3 robots inX−Y space, thus leading
to a total of 10 design variables. The 3 scalars in the CP and k determine the nature of the trochoid - hypotrochoid or
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epitrochoid - and the number of cusps, respectively; it is remarked that for a chosen set of these variables, all robots
trace the same type of trochoid. In addition to these variables, the initial positions influence the coordinates of the
common CoR, distances between robots, and the closest and farthest distances of the robots from the CoR. Thus, the
constraints of no collisions or maintaining a communication range can be ensured for an appropriate choice of the
design variables.

By analysing the properties of the CP and the common features of the resulting trochoids, the exercise of designing
10 variables is reduced to designing 4 variables: i. one scalar that determines the number of cusps (k); ii. one set
of positive integers that form a Pythagorean triple; and iii. a pair of distance metrics, denoted by (Rc, dc). Since the
trochoids have to satisfy numerous constraints, first, these constraints are expressed in the form of linear inequalities
in terms of (Rc, dc) and second, for a choice of k and a Pythagorean triple, regions bounded by these inequalities in
the (Rc, dc) space are identified. Finally, any (Rc, dc) pair that lies in these feasible regions is selected, which in turn,
decides the values of the original design variables. By selecting a design variable as a Pythagorean triple, the trochoids
become closed, [2], that is, the robots return to their respective initial positions after one period.

The use of trochoidal paths, for diverse applications, has received attention in the literature. In [2], a consensus-
based control policy - and a single scalar - is proposed by which a connected network of agents defined as double
integrators, all trace trochoidal trajectories with the same parameters in the 2-D space; the choice of initial conditions
ensures collision avoidance. This solution is extended to the 3-D case in [3], but, collision avoidance is not explicitly
considered in the analysis. In [4] and [5], the eigenvalues of a design matrix are evaluated so that agents modeled
as single and double integrators, respectively, trace trochoidal paths; even in these references, collision avoidance
between agents is not explicitly considered. The CP adopted in this paper guarantees eigenvalues with the desired
properties; their selection is made simpler still with the use of Pythagorean triples. In [6], a feedback control law is
designed using Barrier Lyapunov Functions that allow a swarm of agents, moving at constant speed, to trace closed
curves, such as trochoids (also the same for all agents); the control law balances the curve-phases of the agents in the
complex plane. A cyclic pursuit based control policy is proposed in [7], where the agents can trace either circular
or logarithmic spiral patterns, based on the choice of a design parameter. A variant to trochoidal paths is the tracing
of Lissajous curves, as described in [8, 9]; by selecting the initial locations of the agents and the parameters of the
Lissajous curve (which are naturally smooth), the agents guarantee sensor coverage of a rectangular region without
colliding with each other. A guidance law is proposed in [10], whose design parameter leads to a robot generating
a trochoidal trajectory around a stationary target; the trochoidal trajectory is designed to maximise observability of
the target based on range measurements. Bifurcation is used as the idea to generate limit cycles that are trochoidal
patterns in [11]; in both [10] and [11], a single unicycle robot is considered. In this paper, the 3 agents trace different
trajectories, albeit of the same type, that is, hypotrochoidal or epitrochoidal; further, these results form a design
methodology, along with extensions, to the protocol proposed in [1].

From an implementation perspective, it is known that the properties of the trochoidal paths are closely tied to the
initial positions. Thus, if the robots’ initial positions are slightly perturbed, the resulting paths will be different and
may also violate a few of the distance-based constraints. In this paper, a bound on such perturbations is identified
so that the perturbed paths continue to remain feasible. It is shown that this can be achieved by choosing a feasible
(Rc, dc) pair from “large” regions in the Rc − dc space. It is also highlighted that since analytical forms of the paths
are known, these can be programmed in each robot, thus relaxing the need for communication, as now the robots can
implement individual path tracking controllers to trace them. It is also shown that if need be, by scaling down the
Pythagorean triples equally, speed and turn rate constraints that are present in hardware can be respected. Though the
design is performed for a 3-robot swarm, it is also shown in this paper that additional robots can be injected at different
locations on each trochoidal path, while ensuring collision avoidance with any other robot. With the introduction of
these additional robots, the refresh period - the time taken by a single robot to trace the complete path, [12] - is
considerably reduced; the additional robots injected in one path follow the robot that traces this path by implementing
the CP.

The main contributions of the paper are as follows: the design of a CP for a 3-robot swarm that leads to them tracing
closed trochoidal paths around a region of interest; the designed paths i. ensure geometric and speed constraints are
respected; ii. guarantee collision avoidance; iii. offer flexibility in implementation from a consensus-based approach
to that of control by individual robots; iv. allow for scaling of linear and angular speeds of the non-holonomic robots
without causing any change in the resulting geometric patterns; and v. can be traced with an increased refresh rate
by the injection of additional robots. The placement of eigenvalues The proposed designs are also implemented in an
indoor mobile robot platform to demonstrate the feasibility of the design and its robustness to perturbations in initial
positions of the robots.

The paper is organised as follows: In Sec. 2, the robot characteristics and their communication topology, the CP
presented in [1], and the properties of the resulting trochoids are briefly described. In Sec. 3, the design of the CP
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Figure 1: A connected swarm of 3 agents moving in the plane

parameters and the initial coordinates of the 3 robots is presented. In Sec. 4, simulation and experimental results of
implementation are discussed. Concluding remarks are made in Sec. 5.

2 Preliminaries

2.1 Characteristics of the robots and the CP

Consider a connected swarm of 3 homogeneous agents such as shown in Fig. 1. The motion of the agents in the
Cartesian X − Y plane is defined by the dynamics ẋi = uxi, ẏi = uyi, i = 1, 2, 3, where (xi, yi) are the coordinates
of agent Ai in the Cartesian plane and uxi, uyi are the inputs to Ai. As discussed in [1], the CP

u = ((BL)⊗ S)x, u = [ux1 uy1 · · · ]
T
,x = [x1 y1 · · · ]

T
, (1)

leads to the agents tracing trochoidal paths on the X − Y plane; these paths have the analytical expressions

x(t) = VL (cos (Jt)⊗ I2 + sin (Jt)⊗ S)VRx0, (2)

VL = V ⊗ I2, VR = V−1 ⊗ I2.

In the CP (1) and (2), B ∈ ℜ3×3 is a user-defined diagonal matrix, L ∈ ℜ3×3 is the graph Laplacian, S is the 2-
dimensional skew-symmetric matrix; x0 are the agents’ initial coordinates; (V,J) are the eigenvector and eigenvalue
matrices, respectively, of (BL); and I2 is the 2-D identity matrix. The operator ⊗ denotes the Kronecker product.

Suppose the agents are differential drive robots with non-holonmic constraints, then these can be modeled as unicycles
in the form

ẋi = Vi cos γi, ẏi = Vi sin γi, γ̇i = ωi, (3)

where (x, y, γ)i denotes the pose of robot Ai, |Vi| ≤ Vmax is its linear speed, and |ωi| ≤ ωmax is the angular speed.

Now, the CP (1) can be implemented by calculating the linear speed Vi =
(

u2xi + u2yi
)0.5

, the desired orientation

γiRef = tan−1 (uyi/uxi), and the angular speed as the proportional controller ωi = KP (γiRef − γi) with gain KP >
0; note that ωi can also be designed as a proportional-integral controller.

2.2 Trochoids’ properties

The type of trochoid is defined by the ratio of the largest and smallest eigenvalues of (BL); note that one of the
eigenvalues is always zero. Now, by defining B = diag ([β1 β2 β3]), the other two eigenvalues are given by

λ1,2 =
β1 + 2β2 + β3

2
±

1

2

(

(β1 − β3)
2
+ (2β2)

2
)0.5

. (4)

It is the 3 scalars βi that form the key design variables of the CP. Suppose these are chosen such that the two eigenval-

ues, denoted by λmax > λmin, are distinct. Now, if the ratio λmax

λmin

is an integer, then the trochoidal patterns are closed.
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Further, by introducing the integer design variable k ≥ 2, if λmax

λmin

= +(k + 1), then the path becomes an epitrochoid;

if λmax

λmin
= −(k−1), then the path becomes a hypotrochoid. It is clear that the integer k represents the number of cusps

in the corresponding trochoid.

In terms of these eigenvalues, the expressions (2) for agent Ai have the form

xi(t) = cir cos (λmint+ φr) + cid cos (λmaxt+ φd) + ci0 cosφ0 (5a)

yi(t) = cir sin (λmint+ φr) + cid sin (λmaxt+ φd) + ci0 sinφ0, (5b)

where the coefficients cij and the phase angles φj , j = r, d, 0, are given by

cij = Vi,p

(

q2x + q2y
)0.5

, φj = tan−1

(

qy
qx

)

(6)

qx =
[

V−1
p,1 V−1

p,2 V−1
p,3

]

[

x10
x20
x30

]

, qy =
[

V−1
p,1 V−1

p,2 V−1
p,3

]

[

y10
y20
y30

]

The indices j and p are given by

p =







index of λmin of J for j = r

index of λmax of J for j = d

index of the zero eigenvalue of J for j = 0

(7)

Note that as J is the diagonal matrix of eigenvalues, the index of any eigenvalue is given by its location (p, p).

The eigenvector corresponding to the zero eigenvalue of (BL) consists of identical elements. Hence, the coefficients
ci0 = cj0 = c0, i, j = 1, 2, 3, i 6= j. This implies that all agents trace trochoidal patterns about the point with
coordinates (c0 cosφ0, c0 sinφ0) as the centre. Now, by placing the agents at the “new” initial positions x′i0 = xi0 −
c0 cosφ0 and y′i0 = yi0 − c0 sinφ0, the CoR can be made to be the origin of the X − Y plane.

With this background, the main problems that are addressed in this paper are: Design the i. elements of the matrix B,
ii. the number of cusps k, and iii. the initial positions, to obtain closed and periodic epi- or hypotrochoidal paths, such
that

1. the closest, and farthest, distance to the origin of any path is larger, or smaller, than a user-defined metric;

2. ∀ t ≥ 0, the robots are separated by some distance, say as defined by the size of the agents; and

3. the speed and turn rate constraints are not violated.

These objectives ensure that the robots do not cross into the guarded region, in such applications, and trace large arcs
that may impose communication challenges if they are equipped with limited range sensors, and also that they do not
collide with each other while tracking the paths.

3 Design of the Trochoids

The design of trochoids is demonstrated for an epitrochoid; hypotrochoids can be designed similarly. As mentioned in
the Introduction, to show that designing 10 variables - the parameters of the CP, β1,2,3, the number of cusps k, and the
initial coordinates x0 - can be reduced to designing just 4, the coefficients cir, cid in (5) are analysed. It can be shown
that these coefficients can be expressed in the form

cir = αirRc, cid = αiddc, (8)

where αir and αid are controlled solely by B while Rc and dc are influenced by B as well as x0. These are given by

α1r =
1

βd

β1
β2

(λmin − β2 − β3) , α1d =
1

βd

β1
β2

(λmax − β2 − β3) , (9)

α2r =
β3 − λmin

βd
, α2d =

β3 − λmax

βd
, α3r = α3d =

β3
βd

where

βd = 4b (β1β2 + β2β3 + β1β3) ,

a =
β1
2

+ β2 +
β3
2
, b =

1

2

(

(β1 − β3)
2
+ (2β2)

2
)0.5

,
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and

Rc =
(

(

ΓT
Rxi0

)2
+
(

ΓT
Ryi0

)2
)0.5

, dc =
(

(

ΓT
d xi0

)2
+
(

ΓT
d yi0

)2
)0.5

, (10a)

φr = tan−1

(

ΓT
φryi0

ΓT
φrxi0

)

, φd = tan−1

(

ΓT
φdyi0

ΓT
φdxi0

)

(10b)

where xi0 = [x10 x20 x30]
T , yi0 = [y10 y20 y30]

T , and the coefficient vectors ΓR,Γd,Γφr,Γφd are defined in the
Appendix.

3.1 Design of B

For a closed epitrochoid with a user-defined number of cusps k, the ratio of the non-zero eigenvalues of BL, given

by (4), should also be an integer and satisfy λmax

λmin

= +(k + 1). The parameters βi are selected such that they form a

Pythagorean triple, defined by (s1, s2, s3), where s23 = s21 + s22. With this choice, these parameters are given by

β1 =
2s3 − k (s2 + s1 − s3)

2k
, β2 =

s2
2
, β3 = β1 + s1. (11)

It can be seen that for a specific triple (s1, s2, s3) and some k, the equality β1 = 0 may hold, for example, for k = 5
and the triple (3, 4, 5), including its multiples (that makes them real numbers). In such cases, from (9), it can be seen
that the coefficients α1r = α1d = 0, implying that agent A1 does not move at all. This implies that for agents A2

and A3, their CoR is agent A1; such choices of (s1, s2, s3) and k should be avoided. Note that for hypotrochoids, the

parameter β1 = −2s3−k(s2+s1−s3)
2k , while β2, β3 are the same as in (11).

The benefit offered with the use of a Pythagorean triple, is that by scaling up, or down, the triple (s1, s2, s3), the
coefficients cir, cid, and hence, the magnitudes of the derivatives of xi(t), yi(t), are also correspondingly scaled. This
feature proves helpful in hardware implementation on robots that have bounded linear and angular speed capabilities.

3.2 Design of the Initial Positions

The CP (1), when expanded, reveals a form that is dependent on the difference in the agents’ positions, rather than
their absolute values. Thus, choosing the agents’ initial positions to design the trochoidal trajectories can be simplified
by placing one of them at the origin and finding the positions of others relative to this origin. While this approach
leads to a CoR that is not the origin, once the trochoid is designed, all agents can again be shifted by known distances
so that the trochoids are centered at the origin or some desired location. As a result, without any loss of generality, let
agent A3 be placed at the origin; this choice makes (x30, y30) = (0, 0).

To simplify further choosing initial positions, consider the distance of agent Ai from the origin, given by
√

xi(t)2 + yi(t)2. It can be shown that, for αir, αid > 0, Ai is closest to the origin at

tmin =
1

kλmin

(2(m+ 1)π − (φd − φr)) , m = 0, 1, · · · ,

and farthest at the time instants

tmax =
1

kλmin

(2mπ − (φd − φr)) , m = 0, 1, · · · .

Note that if αir, αid have different signs, then tmin is when the agent is farthest and tmax is when it is the closest.

It is clear from these expressions that the difference (φd − φr) is common to all agents and essentially offsets, in time,
when an agent is closest to, or farthest from, the origin. A similar analysis holds for pair-wise distances between the
agents; the term (φd − φr) shifts when a pair of agents are closest to, or farthest from, each other. Thus, without any
loss of generality, this offset can be set to zero, that is, the initial positions can be selected so that φr = φd, in (10).
With this choice, it can be shown that the agents are now co-linear and lie on a line with slope tanφr. Further, since
the actual magnitudes of φr, φd do not influence the epitrochoidal paths, for simplicity, they can be set to zero. From
(10b), this implies that the agents can all be selected to lie on the X−axis of the global Cartesian plane; note that
this is a special case of the line on which the agents are co-linear. Thus, for the 3-agent swarm, the x−coordinates of
agents 1 and 2, x10 and x20, respectively, become the design variables.

To satisfy the stated geometrical constraints, which are in essence distance measures, from (10), the design of x10,20,
is transformed to finding the appropriate values of Rc, dc. This is possible since the coefficients ΓR, · · · have already
been found, implying that αir, αid are also known. Thus, the distance constraints can be satisfied by choosingRc, dc.

5



Trochoidal Paths for a Multi-robot Swarm A PREPRINT

0 500 1,000 1,500 2,000 2,500 3,000

0

500

1,000

1,500

2,000

2,500

Rc

d
c

−10 −5 0 5 10

−5

0

5

X

Y

−10 −5 0 5 10

−5

0

5

X

Y

Figure 2: Design parameters k = 2, s1,2,3 = (5, 12, 13), and d0min = 1.5, d0max = dCR = 15, and dCT = 0.5. Left:
Feasible regions in the Rc − dc space; Center: Paths for Rc = 2500, dc = 0; Right: Paths for Rc = 2000, dc = 1200.
Blue is Agent A1, red is Agent A2, and green is Agent A3. The straight lines shown in the left sub-figure represent
Rc, dc values that lead to trochoidal paths that have cusps, which are locations where the angular speed of a non-
holonomic robot is undefined.

3.3 Design of Rc, dc

The parameters Rc, dc are determined by points in the Rc − dc space that are bounded by a set of inequalities. These
inequalities capture the constraints that

1. the closest distance between the origin and any agent, denoted by di0min, satisfies di0min ≥ d0min > 0;

2. the farthest distance from the origin to any agent, denoted by di0max, satisfies di0max ≤ d0max;

3. the closest distance between any pair of agents, Ai, Aj , given by dij min, satisfies dij min ≥ dCT > 0; and

4. the farthest distance between any pair of agents, Ai, Aj , given by dij max, satisfies dij max ≤ dCR.

The distance dCT can be interpreted as a collision threshold, which should not be crossed by a pair of agents, while
the distance dCR can be interpreted as a limit on the communication range between a pair of agents. The value for
dCT can be selected by modeling the agents as being bounded in size by a circle of radius RRob, thus dCT > 2RRob.
Similarly, the distance d0min can also be selected by modeling the asset, around which the agents traverse, as a circle
of radius, sayRAsset, thus, d0min > RAsset. Also note that if the communication range dCR is known, then the distance
d0max can be approximated as d0max ≈ 0.5dCR.

In terms of Rc, dc, for agent Ai, i = 1, 2, 3, it can be shown that these constraints are defined by the inequalities that
are linear in Rc, dc and given by

∣

∣|αir|Rc − |αid|dc
∣

∣ ≥ d0min (12a)
∣

∣|αir|Rc + |αid|dc
∣

∣ ≤ d0max (12b)
∣

∣|αir − αjr|Rc − |αid − αjd|dc
∣

∣ ≥ dCT , i 6= j (12c)
∣

∣|αir − αjr|Rc + |αid − αjd|dc
∣

∣ ≤ dCR, i 6= j (12d)

Rc ≥ 0, dc ≥ 0 (12e)

For the 3-agent swarm, from a geometrical perspective, the values of B and (Rc, dc) that satisfy these 14 inequalities
lead to a feasible set of epitrochoidal paths. As is evident, these inequalities form polyhedra in the Rc − dc space.

Example: Choosing k = 2, the Pythagorean triple = (5, 12, 13), and the distances d0min = 1.5, d0max = dCR = 15,
and dCT = 0.5 leads to the formation of the regions shown in the left sub-figure of Fig. 2. Selection of a particular
(Rc, dc) pair from these regions determines the path. For example, for the solutionRc = 2500, dc = 0 (marked by the
black circle in the left sub-figure in Fig. 2), the paths become circles (denoted by the solid lines in the center sub-figure
in Fig. 2), while for Rc = 2000, dc = 1200 (marked by the red circle in the left sub-figure in Fig. 2), the paths are
epitrochoids (also the solid lines in the right sub-figure in Fig. 2). For a feasible (Rc, dc) pair, the initial coordinates
x10, x20 are obtained from (10a); note that, by construction, x30 = 0 and yi0 = 0 ∀ i. In both the figures in Fig. 2, the
agents’ initial positions are recalculated to shift the CoR to the origin - as can be seen, this recalculation shifts only
the x−coordinates of the initial positions.

6
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3.4 Injecting Additional Agents

In this section, conditions are derived when additional agents can be injected to the 3 epitrochoidal paths designed
following the described procedure. If agent Ai, i = 1, 2, 3, traces path Pi, then additional agents Ami, m = 1, · · · ,
are injected to path Pi. It is clear that agents Ami should be placed such that they do not collide with other agents
Aj , j 6= i and those injected on paths Pj ; note that agents on the same path, if injected at different locations, naturally
do not collide with each other. Consider two epitrochoids in the parametric form

xmi = (k + 1) ric(θ+φ) − dic((k+1)(θ+φ)) (13a)

ymi = (k + 1) ris(θ+φ) − dis((k+1)(θ+φ)) (13b)

and

xj = (k + 1) rjc(θ) − djc((k+1)θ) (13c)

yj = (k + 1) rjs(θ) − djs((k+1)θ), (13d)

where (ri, di) and (rj , dj) are the parameters of paths Pi and Pj , respectively. In (13a) and (13b), the angle φ defines
the location of agent Ami that is offset from agent Ai on the path Pi.

Thus, for agents Ami and Aj to avoid collisions, a suitable φ should be found. To avoid collisions, the squared

separation distance between Ami and Aj , given by d2mij = (xmi − xj)
2 + (ymi − yj)

2, should satisfy d2mij ≥ d2CT ,

where dCT is the collision avoidance threshold. On expanding, it follows that d2mij is a non-linear function of φ

and hence to find the infeasible values of φ, which are the solutions to the minimisation problem d2mij − d2CT = 0,
numerical routines may have to be adopted. However, for some specific values of φ, a closed-form solution for the
feasible solutions can be obtained; this procedure is now discussed.

Choose φ = π
2 and let k = 2n, n = 1, 3, 5, · · · . For this case, the difference δ2mij = (d2mij − d2CT ) has the expression

(k + 1)2
(

r2i + r2j
)

+
(

d2i + d2j
)

+ 2(k + 1) (ridi − rjdj) cos (kθ) + 2(k + 1) (ridj + rjdi) sin (kθ)− d2CT (14)

and the values of θ when this difference has a minimum/maximum are given by kθ = tan−1
(

ridj+rjdi

ridi−rjdj

)

and kθ =

tan−1
(

ridj+rjdi

ridi−rjdj

)

+ π. Substituting the first of these solutions in (14) results in the difference δ2mij achieving its

minimum value, which is given by

δ2mij minKe =
(

(k + 1)
(

r2i + r2j
)0.5

−
(

d2i + d2j
)0.5
)2

− d2CT . (15)

Thus, if the trochoidal parameters, ri,j , di,j , and k are such that δ2mij minKe ≥ 0, then agentAmi can be injected in the

path of agent Ai, but offset by an angle φ = π
2 , so that it does not collide with agent Aj . For the case when k = 2n,

where n = 2, 4, · · · , the result (15) also holds, but achieves its minimum at the second solution of kθ. When k is odd,
the minimum of the difference δ2mij is given by

δ2mij minKo =
(

(k + 1)
(

r2i + r2j
)0.5

− (di + dj)
)2

− d2CT . (16)

In this case, the trochoidal parameters, ri,j , di,j , and k should be selected such that the inequality δ2mij minKo ≥ 0

holds. It can be shown that the inequalities δ2mij minKe ≥ 0 and δ2mij minKo ≥ 0 should be satisfied for φ = 3π
2 as

well.

For the case φ = π, the expressions for the minimum of δ2mij is dependent on the signs of the products

(ri + rj) (di + dj) and (ri + rj) (dj − di). It is remarked that, from the definitions of the coefficients in (8) and
comparing them with the coefficients of the parametric forms in (13), the signs of these products are the same as that
of the products (αir + αjr) (αid + αjd) and (αir + αjr) (αjd − αid), respectively. Thus, the following conditions
can be derived for φ = π:

1. For k even and (αir + αjr) (αid + αjd) > 0, the minimum distance, δ2mij minKe =

((k + 1) (ri + rj)− (di + dj))
2
− d2CT ;

2. For k even and (αir + αjr) (αid + αjd) < 0, δ2mij minKe = ((k + 1) (ri + rj) + (di + dj))
2
− d2CT ;

7
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3. For k odd and (αir + αjr) (αid − αjd) > 0, δ2mij minKo = ((k + 1) (ri + rj)− (dj − di))
2
− d2CT ;

4. For k odd and (αir + αjr) (αid − αjd) < 0, δ2mij minKo = ((k + 1) (ri + rj) + (dj − di))
2
− d2CT ;

Thus, by considering the constraints that should hold for φ = π
2 , π, and 3π

2 , 3 additional agents can be injected in each
path, increasing the number of agents to 12; the number of constraints also increases by 18 (6 constraints for the 3
values of φ per path, that has to be checked for 3 paths).

For the example considered in Sec. 3.3, the variation in the feasible regions in the Rc − dc space with the inclusion
of 3 additional agents per path, and the paths traced by them, are shown in Fig. 3. As can be seen, the region in the
center of the Rc − dc space has significantly shrunk, while that close to the Rc− axis has not. This implies that for
epitrochoidal paths that are close to circles, as shown in Fig. 2, additional agents can be injected quite easily - this is
a natural result as none of these paths intersects each other, while those found from the center of the Rc − dc space
self-intersect and with other paths as well. It is remarked that it may be possible to inject more than 3 agents per path,
by solving the minimisation problem numerically for feasible φ. As should be evident, the frequency with which a
point in the 2-D space is visited increases linearly as the number of agents, thus increasing the refresh rate.

0 500 1,000 1,500 2,000 2,500 3,000

0

500

1,000

1,500

2,000

2,500

−10 −5 0 5 10

−10

−5

0

5

10

Figure 3: Left: Reduction in the feasible regions in the Rc − dc space (marked in red) for the example considered in
Sec. 3.3; Right: Initial positions and paths traced by the 12 agents for the solution Rc = 2400, dc = 1525.

4 Results

Prior to presenting experimental results, challenges that can arise in implementation of the proposed design are iden-
tified and addressed analytically. Mainly, the issues of implementing the designed CP on non-holonomic robots with
input bounds and perturbations in the designed initial positions are considered.

4.1 Inclusion of Speed and Turn-rate Constraints

As introduced in Sec. 2.1, the non-holonomic robots whose kinematics are defined in (3) have bounded linear speed
and turn-rate, defined by the constraints |V | ≤ Vmax and |ω| ≤ ωmax, respectively. In the robot platform used for
experimental evaluation, it is V, ω that should be provided as inputs; thus, considering their limits is crucial. In this
section, the influence of such constraints on feasible regions in the Rc − dc space is discussed.

For analysis, the parametric form of the epitrochoid, (13c) and (13d), are used. In terms of the parameter θ, the linear
speed and turn-rate are given by

V (θ) = ±

(

(

dx

dθ

)2

+

(

dy

dθ

)2
)0.5

= ±(k + 1)
(

r2 + d2 − 2rd cos (kθ)
)0.5

, (17a)

8
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and

ω(θ) =
d2y
dθ2

dx
dθ

− d2x
dθ2

dy
dθ

V (θ)2
=
r2 + d2(k + 1)− rd(k + 2) cos (kθ)

r2 + d2 − 2rd cos (kθ)
. (17b)

If the coefficients satisfy d = r, which is a cusp of the epitrochoid, then, at θ = 2mπ
k
, m = 0, 1, · · · , the linear speed

V (θ = 2mπ
k

) = 0 and the turn-rateω(θ = 2mπ
k

) becomes undefined. This is because, at the cusp, the robot would have
to come to a stop, change its orientation, and trace the path from this new orientation. To avoid this discontinuity, if
still achievable behaviour, certain values of (Rc, dc) are eliminated. These values correspond to when the coefficients
cir and cid, defined in (5) and (8), become cir = cid ∀ i. As an added safety margin, these infeasible regions are
expanded using the inequality

(1− ǫ) ≤
∣

∣

∣

cid
cir

∣

∣

∣
≤ (1 + ǫ) , 0 < ǫ < 1. (18)

Thus, the feasible regions may further shrink when this constraint is added.

At θ = 2(m+1)π
k

, m = 0, 1, · · · , the linear speed and turn-rate achieve their maximum, given by

Vθmax = ±(k + 1)r

(

d

r
+ 1

)

, (19a)

ωθmax =

(

d
r
+ 1
)2

+ k d
r

(

d
r
+ 1
)

(

d
r
+ 1
)2 , (19b)

respectively. Clearly, if d
r
≫ 1, the linear speed requirement becomes large, possibly violating the bound V ≤ Vmax,

although the angular speed demand may be low; the condition d
r
≫ 1 approximates the trajectory to a circle with radius

d - a large number. These solutions of (Rc, dc) may also need to be rejected. To summarise, during implementation on
non-holonomic robots with bounds on their inputs, the feasible regions in theRc−dc shrink further, as those solutions
are eliminated that: i. lead to cusps even for one of the agents; and ii. result in high demands on the linear or angular
speeds.

In the example presented in Sec. 3.3, the values of Rc, dc that lead to cusps for each agent are shown by the straight
lines (by setting ǫ = 0 in (18)) in the left sub-figure in Fig. 2. As can be seen, for AgentA2 (red line), there are parts of
the feasible region that lead to a discontinuity in turn-rate. The almost circular paths in the center sub-figure demand
constant turn-rate and hence zero angular acceleration, while for those in the right sub-figure, larger values of turn-rate
and angular acceleration are expected at the troughs of the trochoidal path. Thus, a trade-off needs to be performed in
the selection of these paths. A decision variable that can be employed is the area traced by the robots moving on these
paths, when they are performing a surveillance or guarding task - a larger surface area coverage can be expected with
trochoidal paths that contain troughs/crests than paths that resemble circles.

Y Xθ1

θ2

2RSenseδl

Figure 4: Computing the area covered by a robot with sensing radius RSense tracing a path
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Area Coverage: To design the paths, in Sec. 3.3, an agent is modeled as being bounded in size by a circle of radius
RRob. Further, assume that each agent is also equipped with a range sensor with rangeRSense ≫ RRob and 360◦ sensing
around the robot (for instance, with a LIDAR sensor or equivalent). Now, from the schematic shown in Fig. 4, the
sensing area covered by an agent Ai in one period of the trochoidal path can be calculated. The infinitesimally small

area (in red) is given by the product 2RSenseδli, where δli =

√

(

∂xi
∂θ

)2

+

(

∂yi
∂θ

)2

is the length of the trochoidal path

(expressed in the parametric form) traced for an infinitesimally small angle δθ = (θ2 − θ1). Thus, as the trochoids are
periodic and closed, the total sensing area covered by agent Ai is given by

SenseAreai = 2RSense

2π
∫

0

√

(

∂xi
∂θ

)2

+

(

∂yi
∂θ

)2

dθ. (20)

Thus, the total area covered by all 3 agents is simply the sum
3
∑

i=1

SenseAreai.

From the feasible regions shown in Fig. 2, for the design pair (Rc, dc) = (2500, 0), which leads to circular paths, the
total sensing area is found to be 146.98 (determined numerically1), whereas for (Rc, dc) = (2000, 1200), which results
in epitrochoids with pronounced troughs/crests, the total area is 243.84 (all in appropriate units). Thus, a considerable
increase in sensing area can be achieved with the use of trochoidal paths, which may require operating close to the
inputs’ limits of the individual agents, than circles, which do not demand such input magnitudes.

4.2 Perturbing Initial Positions

In Sec. 3.2, it is shown that feasible epitrochoidal paths can be generated by choosing the agents’ initial positions to lie
on the X−axis, say (xi0F , 0). The effect of perturbations in these initial positions is now analysed; the other design
parameters remain unchanged. Let the perturbed position of each agent be given by (xi0F +ǫi cosψi, ǫi sinψi), where,
ǫi > 0, ψi ∈ [0, 2π] ∀ i. These new initial positions lead to different values of (Rc, dc), denoted by (Rcp, dcp), hence,
different trochoidal paths, and also for the paths to evolve about a new CoR, since, from (10), φr,d,0 6= 0, and hence,
in (5), c0 = ci0 = cj0 6= 0.

For the example considered in Sec. 3.3, the initial positions that are found for the solution Rc = 2500, dc = 0 (black
circle in the left sub-figure in Fig. 2) are perturbed (with ǫi = 1 ∀ i and ψi randomly chosen to lie in [0, 2π]). These
perturbed initial positions result in the Rc, dc pair marked by the green circle in the same region, which in turn lead
to different trochoidal paths (dashed lines in the center sub-figure in Fig. 2); with perturbations, the path closest to the
CoR exhibits a clear epitrochoidal feature, which is different from the circular path generated in the absence of any
perturbations. From this illustration, the importance of finding “large” regions in theRc−dc space can be appreciated,
as such “large” regions will hold solutions for feasible paths even in the presence of perturbed initial positions.

It can be shown that since (Rcp, dcp) and the new CoR is common to all agents, the smallest and largest distances
between any pair of agents continue to satisfy the inequalities (12c) and (12d), respectively. Thus, perturbing the
initial positions of the agents does not lead to collisions between them. On the other hand, the smallest distance-to-
the-origin inequality, (12a), may be violated. Bounds on the magnitudes of perturbation, ǫi, are now derived so that
(12a) still holds.

This analysis is performed for a closed epitrochoid with the origin as the CoR and expressed in the parametric form
xθ = (k + 1) rcθ − dc(k+1)θ , yθ = (k + 1) rsθ − ds(k+1)θ , where c(·) = cos (·), s(·) = sin (·). A point on this

epitrochoid is closest to the origin at θ = 0, π with distance (r(k+1)−d). Now, let the initial coordinates, evaluated at
θ = 0, be perturbed such that the CoR of the perturbed epitrochoid (PE) has the coordinates (δ cos γT , δ sin γT ), δ > 0
and its orientation is changed by an angle γR. Thus, the parametric form of the PE becomes

xθP = (k + 1) rcθ+γR
− dc(k+1)θ+γR

+ δcγT
,

yθP = (k + 1) rsθ+γR
− ds(k+1)θ+γR

+ δsγT
.

The squared distance of any point on the PE to the origin is given by

d2eP = (k + 1)2 r2 + d2 − 2(k + 1)rdckθ

+ δ2 + 2δ
(

(k + 1)rc(γR−γT+θ) − dc(γR−γT+(k+1)θ)

)

.

1https://in.mathworks.com/help/matlab/ref/integral.html
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As the magnitudes of the perturbation is expected to be small, its influence on d2eP is analysed by linearising this
expression about the following points: i. δ = γR,T = θ = 0 and ii. δ = γR,T = 0 and θ = π. It can be seen that
these are the points when the original epitrochoid is closest to the origin. It can be shown that in the vicinity of θ = 0,

d2eP ≤ (r(k + 1)− d+ δ)2, while in the vicinity of θ = π, d2eP ≤ (r(k + 1)− d− δ)2. Thus, the PE shifts closer to
the origin at θ = π and farther away at θ = 0; in both cases, by no more than δ. This shift in the paths can be observed
in the dashed lines in the center sub-figure in Fig. 2.

Now, the point at θ = 0 on the PE has the coordinates [((r(k + 1)− d) cγR
+ δcγT

) , ((r(k + 1)− d) sγR
+ δsγT

)].
Therefore, for small γR,T , these coordinates can be approximated to [(r(k + 1)− d+ δ) , (r(k + 1)− d) γR]. Thus,

the magnitude of perturbation ǫi ≈
(

δ2 + (r(k + 1)− d)
2
γ2R

)0.5

; the angle ψi ≈
(r(k+1)−d)γR

δ
. The implication of

perturbed initial conditions is that the agents can enter the guarded region around the asset, thus violating one of the
key design requirements. To avoid this issue, the inequality (12a) is amended to

di0min =
∣

∣|αir |Rc − |αid|dc
∣

∣ ≥ (d0min + δ) , (21)

so that perturbations of magnitude ǫi in the initial positions do not lead to any constraint violations. While the farthest
distance inequality (12b) should be similarly modified, if di0max ≫ δ, then, these perturbations do not affect this
constraint greatly.

4.3 Hardware Implementation

The proposed algorithms are implemented on the QBOT 2E mobile robot platform by Quanser2. All experiments are
conducted in the Autonomous Vehicles Research Studio3, also from Quanser, using 3 robots. The Studio allows for
inter-robot communication, with which robots exchange their coordinates with their neighbours and hence the CP, (1),
can be implemented; the communication topology as shown in Fig. 1 is adopted. The robots’ coordinates, including
orientation, γi, are measured by a tracking system built-in to the Studio. To control the motion of the robots, their
linear and angular velocities need to be provided. The angular velocity is implemented as the proportional-integral
controller with feed-forward term, given by

ωi = KP (γiRef − γi) +KI

∫ t

0

(γiRef − γi) dt+

(

dγiRef

dt

)

,

where KP > 0 and KI > 0 are the gains; the linear speeds, reference orientation angles and their time-derivatives are
determined using the formulae presented in Sec. 2.1.

The robots move in an environment which is a square of size 2× 2 m2; the robots themselves are circles with radius,
RRob = 0.015 m. The distances used in the inequalities (12) are set as d0min = 0.01, d0max = 1.8, dCR = 4, and
dCT = 0.5 (all in m). Owing to the relatively large size of the robots with respect to the environment and to obtain
“reasonable” paths, it became necessary to choose d0min = 0.01. Similar to the results shown in Fig. 2, two classes
of paths are generated which the robots trace: i. circular and ii. epitrochoidal. The reference (dashed lines) and actual
paths (solid lines) in the X − Y plane for these two cases are shown in Figs. 5 and 6, respectively. The evolution in
time of the distances of the three agents from the origin as well as inter-robot pair-wise distances are shown for the
epitrochoidal path in Fig. 7. As can be seen, all distance constraints listed in (12) are satisfied by the agents. Thus,
no pair of agents collide with each other and neither do they trace large paths that would cause them to cross the
boundaries of the environment.

The design variables are presented in Table 1. As mentioned in the Introduction, the proposed CP design procedure
simplifies the selection of 10 variables to just 4. To generate these results, the robots were driven to their respective
initial positions prior to the implementation of the designed CP. The reference and actual initial positions of the three
agents are also listed in Table 1; as these are slightly different, the paths traced by the robots also differ from the
designed ones, but are still feasible. Further, the magnitudes of the Pythagorean triples, denoted by s1,2,3, in Table 1
were scaled down by a factor of 0.01 for the circular path and by a factor of 0.0015 for the epitrochoidal path; with
this scaling down of the speed, the robots took close to 6 min to trace one period of the path. As the robot platform
allows for only the linear speed and turn-rate as the inputs to each robot, instead of controlling the input to each wheel
of the robot, this scaling down had to be performed to ensure the robots trace the designed paths; the time-histories
of the linear speeds and turn-rates are presented in Fig. 8. Note that the analysis in Sec. 4.1 focussed on ensuring that
paths with cusps are avoided; the upper-limits on speed and turn-rate constraints are dependent on the robot platform.

As can be seen in the left sub-figure in Fig. 5, for the chosen Pythagorean triple of s1,2,3 = (5, 12, 13), the region in
the Rc − dc space that would yield a non-circular path is much smaller than the other two regions; as discussed in

2https://www.quanser.com/products/qbot-2e/
3https://www.quanser.com/products/autonomous-vehicles-research-studio/
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Table 1: Parameters used to generate the paths shown in Figs. 5 and 6.

Path Design Variables Reference and Actual (in []) initial positions

Circular (Fig. 5) s1,2,3 = (5, 12, 13)
(−1.024, 0) [−1.014; 0.001]
(0.455; 0) [0.447; 0.001]
(1.441; 0) [1.442; 0.001]

Epitrochoidal (Fig. 6) s1,2,3 = (7, 24, 25)
(−0.16, 0) [−0.161; 0.004]
(−0.949; 0) [−0.94; 0.001]
(1.584; 0) [1.588; 0.001]

k = 2, d0min = 0.01, d0max = 1.8, dCR = 4, and dCT = 0.5
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Figure 5: Design parameters: k = 2, s1,2,3 = (5, 12, 13), d0min = 0.01, d0max = 1.8, dCR = 4, and dCT = 0.5. Left:
Feasible regions in the Rc − dc space; Right: Reference (dashed) and Actual (solid) Paths forRc = 500, dc = 0. Blue
is Agent A1, red is Agent A2, and green is Agent A3.
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Figure 6: Design parameters: k = 2, s1,2,3 = (7, 24, 25), d0min = 0.01, d0max = 1.8, dCR = 4, and dCT = 0.5. Left:
Feasible regions in the Rc − dc space; Right: Reference (dashed) and Actual (solid) Paths for Rc = 1000, dc = 1250.
Blue is Agent A1, red is Agent A2, and green is Agent A3.
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Figure 7: Left: Temporal variation in the distances of the robots from the origin; Right: Temporal variation of the
pair-wise distances between the robots. The path parameters are based on the values shown in Fig. 6.
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Figure 8: Left: Temporal variation in the linear speeds of the robots; Right: Temporal variation of the turn-rates the
robots. The path parameters are based on the values shown in Fig. 6.

Sec. 4.2, selecting a solution for (Rc, dc) from this “small region” would not allow for feasible paths to be traced if
the initial positions are perturbed. On the other hand, from the left sub-figure in Fig. 6, as the corresponding region is
larger, greater perturbations in the initial positions can be tolerated. Thus, for each class of path, the (Rc, dc) pair is
selected (red circles in both sub-figures), so that perturbations can be handled.

The results section is concluded by showing the influence of two design parameters: the Pythagorean triple and k,
on the sizes of the feasible regions in the Rc − dc space. The change in these regions for three different triples,
S1 = {5, 12, 13}, S2 = {8, 15, 17}, and S3 = {12, 35, 37}, while keeping k = 2 as a constant, is shown in the left
sub-figure in Fig. 9. Similarly, for S1 and varying k, the regions are shown in the right sub-figure in Fig. 9 To make
comparison easier, the Rc, dc values for each set are normalised to lie between [0, 1]. As can be seen, both parameters
play a crucial role in the generation of feasible paths. While near circular paths can be generated by all sets, regions
that lead to paths that resemble trochoids reduce considerably for some combinations. As discussed before, it helps
to choose regions that are “large” in order to accommodate perturbations in initial positions and those lead to larger
sensing area coverage.

5 Conclusions

In this paper, a CP developed to enable the creation of artistic patterns is designed for a connected swarm of non-
holonomic robots. By considering a swarm of 3 robots, parameters of closed and periodic trochoidal paths are cal-
culated that ensure distance constraints are satisfied; these constraints consider robots of finite-size, hence guarantee
collision avoidance if satisfied, and communication range between the robots. Further, constraints on speed and turn-
rate as well as perturbations in the initial positions of the robots are also considered in the design. By exploiting the
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Figure 9: Regions in the (normalised) Rc − dc space: Left: for the Pythagorean triples: S1 = {5, 12, 13}, S2 =
{8, 15, 17}, and S3 = {12, 35, 37}; k = 2 is fixed. Right: for different values of k: k1 = 2, k2 = 3, k3 = 4; the
Pythagorean triple is fixed to S1. Distance parameters are the same as used to generate the regions in Fig. 2.

properties of the CP and the characteristics of trochoids, the proposed design procedure reduces the number of de-
sign variables and also allows for scaling temporal movements without causing any change in the geometric patterns.
Conditions when additional robots may be added to the paths designed for 3 robots are also identified. The design of
two types of closed paths - circular and epitrochoidal - is also implemented on a hardware platform; the trade-offs that
result between these types of paths are also highlighted.

This work can be naturally extended to the 3-D case, for instance, with ground robots replaced by drones, so that
additional applications can be covered; another extension is considering more than 3 agents. Alternative solutions for
the design of the CP can be considered that can yield non-closed paths, which may present desirable properties in
some applications. Changing these design parameters dynamically, while ensuring the identified constraints continue
to be satisfied, is another extension to this work.

APPENDIX

The coefficient vectors ΓR = [γr1 γr2 γr3], · · · in (10) are given by

γr1 = β2 (β1 + 2β2 + β3 + 2b)

γr2 = β1 (β1 − β3 + 2b)− 2β2β3

γr3 = −
(

β2
1 + 2β2

2 − β1β3 − β2β3 + β1β2 + 2bβ1 + 2bβ2
)

γd1 = β2 (β1 + 2β2 + β3 − 2b)

γd2 = β1 (β1 − β3 − 2b)− 2β2β3

γd3 = −
(

β2
1 + 2β2

2 − β1β3 − β2β3 + β1β2 − 2bβ1 − 2bβ2
)

γφr1 = −β2 (β1 + β3 + 2β2 + 2b)

γφr2 = −β1 (β1 − β3 + 2b) + 2β2β3

γφr3 = β2
1 + 2β2

2 − β1β3 − β2β3 + β1β2 + 2bβ1 + 2bβ2

γφd1 = β2 (β1 + β3 + 2β2 − 2b)

γφd2 = β1 (β1 − β3 − 2b)− 2β2β3

γφd3 = −
(

β2
1 + 2β2

2 − β1β3 − β2β3 + β1β2 − 2bβ1 − 2bβ2
)
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