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Abstract: Deep forest models offer a promising alternative to traditional deep neural networks by 

demanding fewer training samples and hyperparameters. However, existing deep forest fault diagnosis 

models encounter persistent challenges such as insufficient representation of multi-grained spatial 

information and redundancy of cascaded forest features. To address the above challenges, an enhanced 

deep forest method called random multi-grained fusion cascade forest (rgfc-Forest) is presented for 

fault diagnosis of electromechanical systems with limited training samples. First, a random 

multi-grained scanning module is designed to improve feature information learning. Subsequently, a 

feature fusion cascade forest module is constructed to improve the representativeness of features in 

multi-grained scanning and cascade forest delivery while ensuring data diversity. Finally, a decision 

tree self-growth strategy is combined to refine the classification capability of the high-level forest. To 

evaluate the effectiveness of our proposed method, we applied it to experimental data related to motor 

system and gearbox faults. Our results demonstrate significant improvements over existing methods: 

With just 20 samples per class, our method achieved an average accuracy of 84.41% for motor System 

Diagnosis. Similarly, for the gearbox system, we attained an impressive accuracy of up to 92.72% with 

the same limited dataset. These outcomes underscore the superior feature representation and fault 

classification capabilities of our approach compared to both benchmark deep forest models and 

mainstream deep learning methods when confronted with small training datasets. 

Keywords: Fault diagnosis; Small training samples; rgfc-Forest; Random multi-grained scanning; 

Feature fusion cascade forest 
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1. Introduction

Electromechanical systems are integral to various industries, underpinning the reliable and 

efficient operation of devices and machinery (Xu et al., 2023; Wen and Xu, 2021; Li et al., 2022; Liao 

et al., 2023). However, components of machinery operating under complex conditions are susceptible 

to various complex loads, inevitably leading to various fault modes in the mechanical system. Such 

faults, when they occur during operation, can lead to substantial maintenance expenses and even pose 

significant safety risks. Thus, exploring advanced fault diagnosis techniques is of paramount 

importance, offering the potential to reduce economic losses and enhance production safety (Yan et al., 

2023; Liu et al., 2023; Xu et al., 2022; Peng et al., 2023). 

Traditional fault diagnosis process relies on a priori knowledge and expert experience, which 

come with inherent limitations. Deep learning-based fault diagnosis overcomes this shortcoming by 

mining valuable information from raw data, thus enabling end-to-end intelligence for signal feature

extraction and fault pattern recognition (Liu et al., 2022; Su et al., 2022; Qian et al., 2022; Chen et al.,

2023; Cheng et al., 2020). Consequently, deep learning methods such as deep belief networks (Zhong 

et al., 2021), sparse auto-encoders (Liu et al., 2021), recurrent neural networks (Kang, 2020), and 

convolutional neural networks (Wu et al., 2023; Liang et al., 2019; Han et al., 2021) are extensively 

researched and used in fault diagnostics. Jiao et al. (2018) presented a convolutional neural network 

according to data from a multivariate encoder and used this model for defect diagnostics of planetary 

gearboxes. Their findings revealed remarkable accuracy, with the test set achieving up to 97.32% 

accuracy when the training dataset contains500 samples for each class. Shao et al. (2019) merged 

wavelet transform and convolutional neural networks in order to diagnose inductive motor issues, 

achieving an impressive accuracy of 98.72% on the test set when each class in the training set had 800 

samples. Zhang et al. (2021) used recurrent neural networks for identifying defects in whirling 

machinery and applied this method to the CWRU dataset, achieving an accuracy of 99.96% when each 

class in the training set had 800 samples. While intelligent diagnostic technologies based on deep 

learning have demonstrated promising results, their effectiveness heavily relies on the availability of 

abundant high-quality training samples. In real-world engineering scenarios, practical challenges 

emerge, such as high labeling costs and difficulty in collecting fault data. Consequently, these methods 

tend to overfit when dealing with small training samples, leading to suboptimal performance (Hu et al., 

2018). Therefore, the pursuit of fault diagnosis with small sample sizes holds practical significance, as 

it closely mirrors real-world engineering applications while also mitigating model computation and 

data collection expenses (Lin et al., 2023; Liang et al., 2023). 

To resolve the aforementioned issues, Zhou and Feng (2019) presented a model named deep forest. 

This model builds upon the foundation of a random forest while incorporating a deep structure akin to 

deep learning. It presents an effective solution with tunable parameters, capable of adapting to varying 
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data sizes (Zhu et al., 2018). However, the model still has some challenging issues to be addressed to 

further improve its diagnostic performance: 

1) Multi-grained scanning structures: Existing multi-grained scanning structures rely on the

interception of features using sliding windows, resulting in inadequate learning of representations for 

other uncorrelated spatial features. Moreover, there is an imbalance in the number of feature scans, 

with the middle position experiencing significantly more scans than the two ends, leading to the loss of 

feature elements at the extremities. 

2) Feature redundancy in multi-grained scanning: When processing high-dimensional data samples,

current multi-grained scanning encounters problems of feature redundancy. Furthermore, the feature 

dimension of multi-grained scanning often surpasses the dimension of enhanced features generated by 

the cascade forest. This significant dimension difference leads to feature submersion during 

concatenation. 

3) Fixed decision tree classifiers: In the existing cascade forest framework, the number of decision tree

classifiers remains fixed at every level. This rigidity poses challenges in adapting to the growing 

complexity of the model as the number of cascade forest layers increases. 

Addressing these challenges is pivotal for advancing the diagnostic capabilities of deep forest 

models and further enhancing their utility in practical applications. To this end, this article presents a 

random multi-grained fusion cascade forest model, called the rgfc-Forest model, for small-sample fault 

diagnosis of electromechanical system. The following encapsulates the primary contributions of this 

article: 

(1) A random multi-grained scanning module is designed to enrich the expression of the initial

vibration signals, enhancing the learning of spatially uncorrelated features. 

(2) A feature fusion cascade forest module is constructed to address the issues of feature

redundancy and feature submergence in the input cascade forest, further improving the quality of 

feature learning. 

(3) A decision tree self-growing strategy is combined bolster the feature discrimination

capabilities of higher-level cascade forests. 

The structure of the article is organized as below. The related literature on deep learning and deep 

forest are elaborated in Section 2. The fundamental method is presented in Section 3. Section 4 

provides the specifics and overall framework of this proposed method. Section 5 substantiate the 

effectiveness of our proposed method through an array of experimental comparisons. The concluding 

remarks and key takeaways of the article are outlined in Section 6. 

2. Related works

2.1 Deep learning 

In real-world industrial scenarios, the obtained vibration data of the machine is complex, and since 

-
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the machine usually works in a healthy condition, the measured abnormal data of the machine is very 

limited. This presents a formidable challenge for conventional deep learning techniques, rendering 

them ineffective in addressing such issues Consequently, novel small sample training strategies based 

on deep learning have emerged to tackle these challenges, thereby promoting the application of 

intelligent diagnostic methods in real-life scenarios. 

At present, the small sample training strategy of deep learning includes strategies such as 

parameter optimization and data expansion (Wang et al., 2023). Kumagai (2016) proposed a method of 

parameter transfer and deduced the learning boundary of the parameter transfer algorithm. Bertinetto et 

al. (2016) proposed a method for learning another network parameter with a network. In offline mode, 

the learner's network is trained through a training set; and in online mode, the learner's network 

generates the parameters of the pupil network through samples ultimately serving for classification 

tasks. Ma et al. (2021) applied the parameter transfer approach to ascertain the initial parameters of the 

DNN, followed by fine-tuning these parameters on an existing dataset, resulting in significant model 

improvement. Li et al. (2020) proposed an adversarial feature illusion network. The model is based on 

conditional Wasserstein Generative Adversarial networks, which can generate various and 

distinguishable features in the case of a few labeled samples. Zhang et al. (2018) proposed a MetaGAN 

method for the image classification task of feed-shot learning, which generates indistinguishable fake 

samples from real sample data, thereby providing more training signals for classifiers and thereby 

improving the accuracy of classification. Although the above-mentioned small sample training strategy 

methods for deep learning have good classification effects, they do exhibit certain drawbacks. For 

example, due to the training of numerous hyperparameters, these methods tend to have relatively 

lengthy training times. Furthermore, their training processes can be intricate; some approaches 

necessitate pre-trained models as a prerequisite. 

2.2 Deep forest 

The deep forest algorithm addresses the challenges associated with a high number of 

hyperparameters and complex training processes. At present, deep forest has been widely used in the 

fields of tobacco drying condition recognition, image recognition, and power system steady state 

research and has achieved promising research results, while electromechanical fault research is in the 

research and exploration stage (Bi et al., 2022; Xia et al., 2021). Li et al. (2021) used the deep forest 

model for the evaluation of the transient stability of power systems, revealing that the proposed method 

is simpler in parameter setting and faster in training in comparison to the deep neural networks. Ding et 

al. (2021) used the deep forest model for fault diagnosis of bearing data and matched it up against the 

deep neural networks model and random forest model, demonstrating the strong generalization 

capability. 

As the research on the deep forest model advances, scholars have identified certain structural -
4
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shortcomings in the original model. Fan et al. (2019) optimized the structure of cascade forest. Every 

forest's standard deviation for various of its most essential characteristics is integrated into a new 

feature for subsequent cascade tier. Additionally, to increase the likelihood of training, each level of the 

cascade structure is expanded to two sublayers. Testing this approach on five datasets from the UCI 

machine learning library, it exhibited superior classification performance, particularly on small-scale 

datasets. Li et al. (2022) proposed a deep forest model for predicting the occurrence of rock explosions, 

which adjusts the hyper-parameters of the whole model through Bayesian optimization, and the results 

show the capability to predict the occurrence of rock explosions with a high degree of accuracy. Wu et 

al. (2022) applied the deep forest method to IoT, employing it for the detection of botnet traffic on the 

Internet of Things. They selected dominant features using the Fisher score and input them into the deep 

forest model, demonstrating that the deep forest model remains robust even in the face of vast 

high-dimensional data. Li et al. (2022) combined the methods of wavelet analysis and deep forest for 

the diagnosis of rolling bearing faults and finally verified that the method has good diagnostic accuracy 

when dealing with small samples. Su et al. (2023) proposed an improved gc-Forest algorithm for defect 

detection of flip-chips, which added the Kernel principal component analysis (KPCA) strategy to the 

cascade forest structure and modified the classifiers in the cascade forest to improve the generalization 

ability of the model. 

The studies discussed above reveal that existing enhancements to the deep forest model have 

typically focused on either multi-grained scanning or cascade forest structures, but not both 

simultaneously. Motivated by these approaches, this paper proposes a random multi-grained fusion 

cascade forest model for small sample fault diagnosis of electromechanical systems. 

3. Benchmark deep forest

Deep forest is an ensemble learning approach for decision trees that largely consists of two 

components: multi-grained scanning and cascade forest (Rodriguez-Galiano et al., 2012). It enhances 

the feature representation capability by transforming the input original features using the multi-grained 

scanning method, followed by a cascade structure that facilitates layer-by-layer feature learning. 

3.1 Multi-grained scanning 

The multi-grained scanning framework is shown in Fig. 1, where the original features are scanned 

through a sliding window. If a sample contains K- dimensional (dim) features and the sliding window 

of length is L with a step size of S, then after sliding sampling, we obtain N L-dim feature vectors. 

( )
1

K L
N

S


  (1) 

Subsequently, each of the sliding window scanning feature vectors is put into both ordinary 

random forest (ORF) and completely random forest (CRF). As a result, every type of the forest will 
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produce N instances of dimension P. Finally, these probability vectors are concatenated to obtain the 

output of the multi-grained scanning structure. 

ordinary

random forest

S
li

d
in

g
 S

L dim

N instances

L
 d

im

completely 

random forest

P dim

P dim

Concatenate

K
 d

im

N instances

2*N*P dim

Fig. 1. Multi-grained scanning structure diagram. 

3.2 Cascade forest 

The cascade forest framework structure is illustrated in Fig. 2. Every layer of the cascade forest 

consists of several ORF and CRF (Breiman, 2001). At every node of the decision tree, the CRF 

randomly picks a feature to divide until each node includes only instances of the same class. On the 

other hand, the ORF randomly selects r  features as options (where r is the number of input 

features), computes the information gain for every feature, and selects the feature with the highest 

information gain to grow the tree. 

The specific method is as follows: For the i-th feature, i
x , its information gain is calculated as

the difference between the entropy of the feature set FS
D and the empirical conditional entropy of 

FS
D given i

x , ( )
FS i

H D x . The expression for the information gain function ( )Gain   is:

( ) ( ) ( )
FS i FS FS i

Gain D x H D H D x  (2) 

with 

( )

( ) ( )
i

i

i FS

FSx a

FS i FSx a

a P D FS

D
H D x H D

D







  (3) 

2
( ) =  log

y y c
FS c FS

FS

c C FS FS

D D
H D

D D






 (4) 

 ( , )
i

FSx a FS i
D x y D x a


   (5) 

 ( , )
yFS c FS

D x y D y c


   (6) 

where ( )
i FS

P D  is the proportion of the feature i
x  in the total features of the dataset FS

D and c 

represents the possible class labels of the element i
x .

Each forest has a number of decision trees, each of which produces a class vector as a result. The 

mean of the output class vector is taken as the final output Q of the forest. 
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where P stands for a P-categorization problem and t stands for the number of decision trees in the 

forest. At the final level of the cascade, all the forest decisions are averaged at the same level, and the 

category corresponding to the maximum value is taken as the prediction result for the sample at that 

level of the cascade. 

In Fig. 2, the output of the multi-grained scanning is used as the input for the cascade forest but is 

also concatenated with the output of each layer in the cascade forest to create enhanced features for the 

next level input. Additionally, it is possible to independently determine how many levels there are in 

the cascade forest, allowing the deep forest model to adaptively determine the model's depth based on 

the size of the dataset, reducing the manual effort required for parameter tuning. 

ORF

ORF

Concatenate

Level 1 Level 2 Level M

Average
Final 

Prediction

CRF

CRF

ORF

ORF

CRF

CRF

ORF

ORF

CRF

CRF

 

Fig. 2. Cascade forest structure diagram. (In the figure ORF stands for ordinary random forest and CRF 

stands for completely random forest.) 

4. Proposed method 

4.1 Overall framework 

The proposed method comprises two main components: the design of a random multi-grained 

scanning module and the construction of a feature fusion cascade forest module, complemented by a 

decision tree self-growing strategy. In addition to these two parts, Fig. 3 shows the overall fault 

diagnosis process and describes the five main steps in detail. 

Step 1: Data collecting. The one-dimensional vibration signal of the electromechanical system is 

firstly acquired, and then the data set is normalized to obtain the original feature data. 

Step 2: Random multi-grained scanning. The original feature dataset is split up into two portions, the 

training set and the test set, with the training set be input into the random multi-grained scanning 

-
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module. The original training fault features are scanned through the multi-dimensional window and 

random feature extraction, and then input into the random forest for feature transformation, and finally 

the obtained features are stitched together to obtain the high-dimensional transformed features. 

Step 3: PCA feature extraction. The high-dimensional transformed features output by the random 

multi-grained scanning module are normalized, the optimal number of PCA principal components is 

selected, then the optimal principal components are selected according to the singular value 

decomposition (SVD), and finally the feature space is transformed to obtain the reduced-dimensional 

transformed features before being input into the cascade forest. 

Step 4: Feature fusion cascade forest. The PCA-extracted features from step 3 are first fed directly 

into the first layer of the cascade forest for training, and then the enhanced features from each layer are 

spliced with the PCA-extracted transformed features from step 3 and transported into the subsequent 

level of the cascade forest for training, and so on. 

Step 5: Fault diagnosis performance testing. Every level of the cascade forest is tested for diagnostic 

performance using Z-fold cross-validation, and if the performance does not converge then return to step 

3 to start a new level of cascade forest growth until the diagnostic performance converges and the 

cascade forest stops growing. Then the test dataset is transported into the trained model to make 

classification predictions and output diagnostic results. 

Data collecting
Random multi-

grained scanning

PCA feature 

extraction

Feature fusion 

cascade forest

Fault diagnosis 

performance 

testing

Data normalization Dividing the dataset

Multi-window 

scanning and 

random feature 

extraction

Feature transform

High-dimensional 

transform feature 

stitching

Normalization

PCA principal 

component selection

SVD principal 

component selection

Characteristics 

after dimensionality 

reduction

Feature Splicing

Z-fold cross-

validation

Self-growing 

decision tree 

strategy

Validation set 

verifies diagnostic 

performance

Test Set test 

diagnostic 

performance

Diagnostic 

results

Convergence？

NO

YES

The final layer 

yields predictions

 

Fig. 3. Overall diagnostic framework diagram. 

4.2 Design of a random multi-grained scanning module 

Due to the insufficient representation learning capability of the benchmark deep forest's 

multi-grained scanning structure for spatially unrelated features, a random multi-grained scanning 

module is designed. In addition to preserving various sliding window extracted features, this module 

introduces a random feature extraction component. Specifically, it randomly selects several features 

from each feature category to compose feature fragments, enhancing the representation capability of 

I \ I \ I \ I \ I \ 
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the original features. After extracting features using both sliding window and random feature extraction, 

the resulting feature fragments are fed into ORF and CRF for training. Every feature fragment 

generates a corresponding classification probability vector. These probability vectors are then 

concatenated to obtain transformed features. The random multi-grained scanning module's final output 

is created by concatenating the modified features from each feature fragment. In Fig. 4, the overall 

structure is depicted. 

To increase the diversity of features obtained by the model, multiple different sliding windows can 

be used for multi-scale feature sampling, resulting in feature segments of varying scales. Assuming the 

original input features are d-dim, we can utilize sliding windows of sizes d/4, d/8, and d/16 for 

scanning. Under a stride of 1, each sliding window will generate (3d/4+1), (7d/8+1), and (15d/16+1) 

features, respectively. Then, we randomly extract a-dim features from the d-dim features b times (a and 

b are the new parameters.) These feature vectors, generated through window scanning and random 

extraction, are separately input into a ORF and a CRF to create transformed features. If it is an n 

classification problem and the above scanning window is used, the d/4 window input forest will 

produce (3d/4+1) n-dim features, and finally the features produced by the two forests will be 

concatenated together to produce 2n(3d/4+1)-dim transformed features corresponding to the original 

d-dim features. Similarly, the d/8 window generates 2n(7d/8+1)-dim features, the d/16 window 

generates 2n(15d/16+1)-dim transformed features and the randomly selected window generates 

2bn-dim transformed features, and finally the four sets of transformed features are concatenated 

together to obtain the output of the random multi-grained scanning module. 

b instances
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Fig. 4. Random multi-grained scanning module. 

 

4.3 Feature fusion cascade forest module construction and decision tree self-growing strategy 
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combination 

In the benchmark deep forest model, the input of the cascade forest structure is the 

high-dimensional features output by the original features through the multi-grained scanning structure. 

After one layer of training, the generated enhanced features from the cascade forest are directly 

concatenated with the high-dimensional transformed features. This may lead to feature redundancy, 

decreasing the effectiveness of the method as a result. Moreover, since the dimension of the original 

transformed features is much larger than that of the enhanced features generated by the cascade forest, 

it can, to some extent, overshadow the enhanced features, resulting in insufficient learning of the new 

enhanced features and hence lowering the accuracy of the model. 

To address the aforementioned issues, a feature fusion cascade forest module is constructed. A 

principal component analysis (PCA) (Ebied, 2012) module is added between the multi-grained 

scanning structure and the cascade forest structure. By extracting the high-dimensional features from 

the multi-grained scanning structure with principal component analysis and then inputting them into the 

cascade forest structure, the quantity of faulty features might be decreased, thus solving the problem of 

feature redundancy caused by long characteristic single-sample data such as vibration data, and the low 

efficiency of the algorithm operation. The variation features after dimensionality reduction are then 

spliced with the enhanced features of the cascade forest to increase the validity of this method by 

improving the masking of the enhanced features by the original features to some extent. 

As the complexity of the deep forest increases with the number of cascade layers, a decision tree 

self-growing strategy is combined. Deep forest is an ensemble learning modelling built on decision 

trees, whose accuracy is influenced by the decision trees comprised. Since the number of trees in a 

decision tree is a crucial parameter in the model, its size affects the diagnostic results. As the quantity 

of cascade layers rises the complexity of this entire model also grows. Therefore, different levels of 

cascade forest require different demands for the complexity of decision trees: (1) At the first layer of 

the cascade forest, a smaller number of decision trees can be set, which not only allows for better 

learning of features, but also increases the training rate of this method. (2) As the quantity of layers 

rises the number of decision trees per layer can be increased to achieve better learning of higher level 

features. 

The framework diagram of the feature fusion cascade forest module and the decision tree 

self-growing strategy is shown in Fig. 5. After the original features undergo the random multi-grained 

scanning module, high-dimensional transformed features are generated. Given such high-dimensional 

features, the following steps are required for processing. 

(1) The high-dimensional features are first extracted by PCA features and then fed into the first 

layer of the cascade forest for training. Assuming two ORF and two CRF in every layer, the first layer 

will output 4n-dimensional enhanced features. 

(2) The enhanced features of 4n dimensions are concatenated with the transformed features 

-

-

-
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obtained after PCA feature extraction. They will then feed into the cascade forest's second level. This 

process is repeated for the subsequent layers of the cascade forest. As the quantity of layers rises the 

amount of decision trees in every layer will also increase. 

(3) The general efficacy to the complete cascade forest for each additional cascade layer will be 

calculated on each validation set of Z-fold cross-validation. Subsequently, the average diagnostic 

accuracy of the entire cascade forest on all validation sets of Z-fold cross-validation will be taken as the 

overall diagnostic accuracy. If the overall diagnostic accuracy does not show improvement compared to 

the previous level, the validation performance converges, and the training process will terminate. 

ORF

CRF

ORF

CRF

Concatenate

Level 1 Level 2 Level M

Average
Final 

Prediction

PCA

ORF

CRF

ORF

CRF

ORF

CRF

ORF

CRF

 

Fig. 5. Feature fusion cascade forest module with decision tree self-growing strategy framework 

diagram. (Green balls represent decision trees.) 

5. Case study 

5.1 Introduction of the data set 

The superiority and effectiveness of the method for fault diagnosis was verified on two data sets. 

Case 1: 

The data set is collected on an asynchronous motor test bench (Liang et al., 2021). The bench 

consists of a test asynchronous motor and vibration sensor; a vibration signal monitor; and a data 

acquisition device, as shown in Fig. 6. The model of the motor used is YE2-100L2-4, the model of the 

vibration signal monitor is PCH1028, the data acquisition equipment is IPC-610L, the sampling 

frequency of 250K/s PCI-1716 data acquisition card is selected, the sensor is selected CT1020L, the 

voltage sensitivity is 200mv/g, there are three sensors, respectively test the motor three directions of 

vibration. Damage to the motor is man-made and there are five common types of faults, as shown in 

Fig. 7. The signal sampling frequency was 10KHz and the experiment was collected for 10s for each 

fault type, with data collected for a total of eight health states. Each sample in this experiment had a 

length of 1024, for a total of 8000 samples and the dataset is shown in Table 1. 

=> => • 
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Fig. 6. Asynchronous motor test bench (a) Test asynchronous motors and horizontal, vertical and axial 

vibration sensors; (b) Vibration sensor; (c) Advantech data acquisition equipment. 

 

Fig. 7. Common forms of fault in asynchronous motors. (a) Short circuit; (b) air-gap eccentricity; (c) 

Rotor bar broken; (d) Bearing abrasion fault; (e) Bearing cage broken. 

 

Table 1 

Introduction of the motor data set in Case 1. 

Labels of conditions Health conditions of motor system 

0 Normal 

1 2 turns short circuit  

2 4 turns short circuit 

3 8 turns short circuit 

4 Air gap eccentricity 

5 Rotor rod fracture 

6 Bearing cage fracture 

7 Bearing wear 

 

 

(a) (c) ., 

(a) (b) ., 

(c) (d) (e) ., 
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Case 2: 

The data set was obtained from a drivetrain diagnostics simulator at Southeast University (Shao et 

al., 2018), as shown in Fig. 8. The speed and load of this simulator were configured at 20Hz-0V, and 

there were 8 sensor channels measuring the vibration and torque of the motor, planetary gearbox and 

parallel gearbox in x, y and z directions respectively, with a sampling frequency of 5KHz. 4 fault states 

for each of the gears and bearings in the experiment are shown in Fig. 9, plus two normal states for a 

total of 10 fault states. This experiment gathered a total of 10,230 samples, each of which was 1024 in 

length, and the data set is introduced as shown in Table 2 below. 

 

Fig. 8. Southeastern University gearbox experimental bench. 

 

Fig. 9. Common types of gearbox faults. 

Table 2 

Introduction of the gearbox data set in Case 2. 

Labels of conditions Health conditions of gearbox system 

0 Health Gear 

1 Chipped Tooth 

2 Missing Tooth 

3 Root Fault 

4 Surface Fault 

5 Health Bearing 

6 Inner ring 

7 Outer ring 

8 Combo 

9 Ball 

~lotor 

Planetary 
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5.2 Comparison with the improved deep forest model 

The rgfc-Forest model was contrasted with the Deep Forest 21 (DF21) model and the improved 

gc-Forest (Su et al., 2023) for trials in order to demonstrate its superiority. The length of every fault 

sample is configured at 1024, so the selected multi-grained scanning window sizes are 64-dimensional, 

128-dimensional and 256-dimensional respectively. The number of random forests for the 

multi-grained scanning structure was set to 2 and the decision tree for each random forest was set to 

1000. There are 4 random forests in the cascade forest structure, and each of them has 600 decision 

trees. The structural parameters of the benchmark and modified deep forest in this experiment are set to 

the above values. 

In Case 1, the experiments were conducted with the number of training samples of 20, 30, 40, 50, 

60, 70, 80 and 90 in each class, and the test set was 200 samples in every class, for a total of five 

rounds of experiments, and the average diagnostic accuracy and F1 scores for these two models were 

obtained respectively as shown in Table 3 below, and the radar plot for the third experiment can be 

seen in Fig. 10. 

 

Table 3 

Diagnostic results for each method in Case 1. 

Quantity per 

category 

Metric rgfc-Forest DF21 Improved 

gc-Forest 

20 
Accuracy 84.41 65.96 80.97 

F-score 82.16 61.13 76.44 

30 
Accuracy 87.99 75.13 85.69 

F-score 86.55 71.90 83.83 

40 
Accuracy 93.37 80.16 92.37 

F-score 91.90 79.27 91.31 

50 
Accuracy 95.2 83.93 93.94 

F-score 94.74 83.02 93.26 

60 
Accuracy 96.32 88.48 94.81 

F-score 95.97 87.92 94.69 

70 
Accuracy 96.63 90.41 95.37 

F-score 96.65 90.48 95.18 

80 
Accuracy 97.55 91.76 96.50 

F-score 97.62 91.94 96.12 

90 
Accuracy 98.34 92.69 96.88 

F-score 98.15 92.83 96.89 

 

-
- -
I - - - -
I - - - -- - - -
I - - - -- - - -
I - ■ - -- - - -
I - - - -- - - -
I - - - -- - - -
I - - - -- - - -
I - - - -- - - -
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From the experimental results in Fig. 10 it can be seen that the diagnostic accuracy and F1 score 

of the rgfc-Forest model are comprehensively better than those of the two improved deep forest models. 

When there are 20 training samples in each class, the gap between the diagnostic accuracy of the 

proposed model and the DF21 model is the largest. The average diagnostic accuracy of the DF21 

model is only 65.96%, while the average diagnostic accuracy of the rgfc-Forest model can reach 

84.41%, which is also larger than that of the other improved deep forest method, thus proving that the 

rgfc-Forest model has a better diagnostic accuracy even when the number of samples is very small. 

With the increase in the number of training samples in each class, the diagnostic accuracy of all three 

models is improving, and the gap between the diagnostic accuracies of the three models is gradually 

decreasing, especially the gap between the proposed model and another improved deep forest model, 

which is very small. When the number of samples per class is 90, the rgfc-Forest model still has a 

performance improvement of 1.46% compared to the other improved deep forest model, thus indicating 

that the proposed model has better test performance. 

 

(a)                                        (b) 

Fig. 10. Diagnostic radar plot for each method with sample size c in each category in Case 1 (a) 

Accuracy; (b) F1. 

To further compare the diagnostic effectiveness of these three methods for different states with 

small datasets, the receiver operating characteristic (ROC) curves for the three models with 20 training 

samples in each class were obtained as shown in Fig. 11 below. Analysis of the results shows that the 

proposed method has the highest area under curve (AUC) value, with the proposed method having an 

AUC value higher than 0.98. Comparing the AUC values of the proposed model with the DF21 model 

shows that the AUC values are close to each other in the detection of normal category and rotor rod 

fracture, but there is a large difference in the remaining six fault states. The AUC values of the 

proposed method and another improved deep forest model are almost the same for several fault states, 

except for a large gap in the 4-turn short circuit. 
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(c) 

Fig. 11. ROC curves for three experimental methods in Case 1 (a) DF21; (b) rgfc-Forest; (c) Improved 
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gc-Forest. 

5.3 Ablation experiments 

Ablation tests are used to verify the efficiency of the rgfc-Forest model's upgraded module in this 

section. 

In Case 2, the experiments were conducted on four models, namely, the benchmark deep forest 

model, the benchmark deep forest with random grained module, the benchmark deep forest with PCA 

module, and the rgfc-Forest. The training set has 20, 30, 40, 50, 60, and 70 samples per class, whereas 

the test set contains 160 samples each class. The average accuracy, precision and recall for each class 

obtained from five rounds of experiments for each class are shown in Table 4 below, and the accuracy 

plots obtained for each class are shown in Fig. 12. A box plot with 20 training samples in each category 

and 60 training samples in each category can be seen in Fig. 13. 

 

 

Table 4 

Diagnostic results by method in Case 2. 

Quantity per 

category 

Metric rgfc-Forest gc-Forest gc-Forest + PCA gc-Forest +  

Random Grained 

20 

Accuracy 92.72 83.13 88.11 90.27 

Precision 93.33 78.96 91.40 92.26 

Recall 92.52 82.91 88.99 90.08 

30 

Accuracy 95.11 86.27 91.40 92.32 

Precision 95.16 89.52 91.93 93.28 

Recall 94.94 86.08 91.43 92.11 

40 

Accuracy 96.02 91.63 92.56 93.26 

Precision 96.13 92.67 92.32 93.55 

Recall 95.93 91.48 92.21 93.05 

50 

Accuracy 96.31 93.22 94.25 93.71 

Precision 96.52 93.29 93.81 93.74 

Recall 96.21 92.97 93.75 93.4 

60 

Accuracy 96.71 93.57 95.13 94.16 

Precision 96.67 93.34 94.87 94.20 

Recall 96.61 92.93 94.62 93.95 

70 

Accuracy 97.13 93.76 95.54 94.38 

Precision 97.13 93.20 95.19 94.29 

Recall 97.07 93.06 95.14 94.14 

 

-
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The following results can be obtained from Table 4: 

(1) Comparing the benchmark deep forest with the benchmark deep forest with the addition of 

random grained module, when there are 20 training samples for every class, the average test accuracy 

for the former is only 83.13%, whereas the average test accuracy of the latter might be as high as 

90.27%. The addition of the random grained module to the multi-grained scanning has a positive 

impact when there are few training examples available, but this module does not significantly improve 

the model accuracy when the quantity of training samples is larger than 50, as can be seen from Fig. 12. 

As the quantity of samples per class is greater than 50, the difference in diagnostic accuracy between 

the two types of models becomes less obvious. This may be due to the fact that the module enhances 

the learning of features when the training samples are small and causes feature redundancy when the 

training samples are large. 

(2) Comparing the benchmark deep forest with the benchmark deep forest with PCA module, the 

average test accuracy of adding the PCA module at 20 samples per class is 88.11%, which is lower than 

the accuracy of adding the random grained module. The average test accuracy of the former model was 

higher than that of the latter when an amount of specimens per class was greater than 50, demonstrating 

that the addition of the PCA module has a positive impact on the improvement of model accuracy when 

the number of training data per class is relatively high, which may be caused by the fact that the 

addition of PCA module can solve the problem of feature redundancy when there are a huge amount of 

samples. 

(3) Finally, comparing the rgfc-Forest model with all other models, it is found that the diagnostic 

performance of this model is the highest. When there are 20 training samples each class, the average 

test accuracy is 92.72%, and when there are 70 training samples per class, it is 97.13%, indicating that 

the method has a great improvement on the original model when the quantity of samples is small and 

large, indicating that these two added modules are effective and necessary. According to Fig. 13, it 

might be found that the fluctuation of the presented method's test metrics is low, which proves the 

stability of the presented method's diagnostic performance. 

To better show the feature extraction performance of all the methods, the test set results of the 

above four classes of models at a training sample size of 20 were visualized in two dimensions by the 

t-distributed neighborhood embedding algorithm (Van et al., 2008), and the results are shown in Fig. 14. 

It can be clearly observed that the features learned by the proposed method are the most representative, 

with each class basically having clearer classification boundaries, while some of the classes of the other 

three models show more class mixing. 
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Fig. 12. Accuracy graphs for each comparison model for each type of experiment in Case 2. 

 

(a)                                    (b) 

Fig. 13. Comparative model box plots in Case 2 (a) Box plots for 20 training samples per class; (b) Box 

plots for 60 training samples per class. 
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                  (c)                                     (d) 

Fig. 14. 2-dimensional visualization of test set features at 20 training samples per class in Case 2 (a) 

rgfc-Forest; (b) gc-Forest + Random Grained; (c) gc-Forest + PCA; (d) gc-Forest. 

5.4 Comparison with deep learning methods 

To verify the superiority of this method under small training samples, comparative studies are 

conducted with the current mainstream deep learning fault diagnosis methods, including 1DCNN (Zhao 

et al., 2020), SAE (Zhao et al., 2020), AlexNet (Zhao et al., 2020), ResNet18 (Zhao et al., 2020), 

Convformer (Han et al., 2022), 1DCNN + parametric transfer learning (1DCNN + TL) and AlxeNet 

+parametric transfer learning (AlexNet + TL). Among them, the depth of the 1DCNN model is 5 layers, 

the optimizer for all models is Adam, the initial learning rate is 0.001, the epoch is 60 and the batch 

size is 40. In the model with the addition of a migration learning strategy, the first round is pre-trained 

for 20 rounds in noisy data with a signal-to-noise ratio of 8, and then the predictions are obtained by 

training 40 rounds in the original data. In Case 2, the trials on the aforementioned models were run 

using 160 test samples each category and 15, 20, 25, 30, 35, and 40 training samples each category. 

These average accuracy line graphs obtained from five rounds of experiments for each class are shown 

in Fig. 15. 

From the Fig.15, it might be observed that the diagnostic performance of this proposed method is 

better than other deep learning models, and the diagnostic performance of the SAE model is worse. 

When the amount of training samples in each class is less than 25, the proposed method has a large gap 

in diagnostic accuracy compared with other original deep learning models, which is in line with the 

theoretical characteristics of deep neural networks that rely on a large amount of training data. The 

method of the 1DCNN model plus the parameter migration learning strategy has the smallest gap with 

the proposed method at this time, which, side by side, reflects the effectiveness of the parameter 

migration strategy for small samples. However, as the quantity of samples per class rises, the gap 

between the diagnostic accuracy of the proposed method and other deep learning models reduces, 

especially when the amount of training samples per class is 40, which is almost the same as the average 

diagnostic accuracy of the ResNet18 model. The proposed method has better model stability and better 

diagnostic accuracy when the amount of training samples each category is small, which verifies the 

stability and superiority of the proposed method in diagnosing with small samples. Overall, the 
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degradation of the diagnostic performance of the presented method is much lower than that of other 

deep learning models when the amount of training samples is decreased. 

To further demonstrate the diagnostic effectiveness of all the methods for different states, the 

confusion matrix for this experiment with the amount of training samples of 20 for every class is 

visualized as shown in Fig. 16, where 0-9 correspond to the fault states in Table 2. It can be found that 

each model has different advantages and shortcomings for handling different state classes of faults, but 

the proposed method in this paper compares to other deep learning models for each class of faults. The 

superiority of the proposed method is verified by the better diagnosis results for each class of faults 

compared with other deep learning models. 

 

Fig. 15. Line graphs for each comparison model in Case 2. 
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(c)                                      (d) 

 

(e)                                      (f) 

 

(g)                                     (h) 

Fig. 16. Confusion matrix for each experiment at 20 training samples per class in Case 2 (a) SAE; (b) 

1DCNN; (c) AlexNet; (d) rgfc-Forest (The proposed method); (e) ResNet18; (f) Convformer; (g) 

1DCNN+TL; (h) AlexNet+TL. 
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6. Conclusions 

In order to improve the diagnostic performance of the model with small training samples, this 

paper develops a random multi-grained fusion cascade forest model based on the benchmark deep 

forest. Specifically, a random grained module is integrated into the benchmark multi-grained scanning 

to fully exploit the information in the features. A PCA module is added between the multi-grained 

scanning and the cascade forest to reduce the redundant features in the transfer process between the 

two. The diagnostic quality of the algorithm is increased in the cascade forest by adjusting the number 

of decision trees at different stages. 

The superiority and effectiveness of the method is verified through case studies from 

asynchronous motors and gearboxes under small training samples. The diagnostic results show: (1) The 

performance of the proposed method is superior and more robust compared with the original base 

method and mainstream deep learning methods under small training samples. (2) The designed random 

multi-grained scanning module and the constructed feature fusion cascade forest module are able to 

increase the model's capacity for accurate diagnosis. Although the proposed model has a greater 

improvement in diagnostic accuracy compared with the base model, when the structure of the deep 

forest is analyzed, it is found that the selection of base classifiers in the model affects the diagnostic 

accuracy of the model, and the structure of the cascade forest can be further optimized to improve the 

efficiency of its operation, which suggests that there is still room for improvement in the model. In 

future research, the rgfc-Forest model will be further optimized from these two aspects to improve the 

efficiency of the model for fault diagnosis. 
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