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Abstract
An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux
boundary conditions is usually computed by solving the corresponding time-dependent reaction-
diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less
CPU time in direct computation for the steady state; however, their convergence is sensitive to the
initial guess, often leading to divergence or convergence to spatially homogeneous solution.
Systematically numerical exploration of spatial patterns of reaction-diffusion equations under
different parameter regimes requires that the numerical method be efficient and robust to initial
condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern.
Here, a new approach that combines the advantages of temporal schemes in robustness and
Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is
proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to
be much more efficient than temporal schemes and more robust in convergence than typical
nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of
this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions,
along with direct comparisons to several other existing methods, demonstrates that AIIE is a more
desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a
large parameter space.
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1. Introduction
Reaction-diffusion equations are often used to model interactions among molecules and
chemical species through reactions and random motion by diffusion [1, 2, 3, 4, 5, 6]. A
reaction-diffusion system usually takes the form
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(1)

where u ∈ Rm represents concentration of m types of molecules or chemical species,  ∈
Rm×m is the matrix of diffusion coefficients, and  ∈ Rm represents reactions and
interactions among different species.

The boundary conditions for (1) are critical in determining the property of reaction-diffusion
equations. For example, when influxes of molecules or chemical species are from part of the
domain, spatially inhomogeneous solutions and steady state patterns arise naturally due to
the boundary conditions [7, 8]. For many applications, the boundary conditions are no-flux
or periodic in every direction of regular domain [2, 3, 4, 5, 6]. For such homogeneous
boundary conditions, some constants in space can be a steady state solution of the system;
however, the interest of study is usually spatially inhomogeneous patterns in steady state
that arise from a close interaction between reaction and diffusion, such as Turing patterning
[9]. One major mechanism which consists of a short-range activation for the activator and a
long-range inhibition for the inhibitor (drastic differences between the diffusion constants
for the activator and the inhibitor) is responsible for spontaneous formation of many patterns
in systems ranging from cell polarization [10, 11] to animal coats [12, 4].

To study the reaction-diffusion equations with homogeneous boundary conditions, such as
no-flux boundary conditions, linear stability analysis around the spatially homogeneous
steady state can provide necessary conditions and constraints on the parameters that allow
pattern formation [9]. Other analytical theories, such as weakly nonlinear analysis [13], have
been utilized for deriving more information on the specific form and stability of patterns [14,
15]. For complex biological models involving more species along with strong nonlinear
regulations, linear stability analysis and analytical study become increasingly challenging. It
leads to difficulty of finding the parameter regions permitting interesting patterns or
choosing appropriate initial conditions evolving to desirable patterns.

One approach for systematic exploration of parameter regions for steady state patterns of a
reaction-diffusion system is to apply temporal algorithms to solve equation (1) with various
initial conditions. Because of the temporal stability constraint due to diffusion and possible
stiff reactions, many time steps are required to compute the long time behavior of the
temporal systems to approximate the steady state within a reasonable error, even using many
recently developed new algorithms that are specifically designed to handle the stability
constraints in diffusion [16, 17] and stiff reactions [17, 18, 19, 20]. In addition, one may
need to search a large parameter space of the reaction-diffusion equation to find a
correlation between parameters, which connect to specific biological processes, and patterns,
which correspond to phenotypes [2, 21, 6].

Here, we focus on computing the steady state of (1) directly by solving the following system
of equations

(2)

with no-flux boundary conditions. Note that a solution uniform in space (often called a
homogeneous or constant solution) of the algebraic equation (u) = 0 is also a solution to
(2). Here, the goal of solving (2) is to identify non-constant solutions, corresponding to
inhomogeneous spatial patterns.
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One popular approach is to first approximate the differential operator in (2) to form a
nonlinear algebraic system (e.g., through the finite difference method or the finite element
method), and then solve the resulting nonlinear equations using Newton’s method [22] or
nonlinear multigrid methods [23, 24, 25]. Because of their strong dependence on the initial
guesses, these types of iterative methods may easily converge to constant solutions of the
algebraic equation (u) = 0 even if the methods are efficient and convergent. For example,
if the initial guess is not far from a homogeneous solution, Newton’s method may converge
to this solution even if it is unstable. While if using temporal schemes, perturbing from an
unstable homogenous solution very likely leads to another stable solution, a possible spatial
pattern. Our goal of solving (2) is to identify spatial patterns with minimal analytical
knowledge of the solution, which is the case for most of the applications. Therefore, a
desirable method needs to be efficient enough such that many parameters can be explored
within a reasonable amount of time while the convergence to spatially inhomogeneous
solutions is less sensitive to the choice of the initial guesses.

To this purpose, we present a hybrid approach that takes advantage of fast convergence of
steady state solvers such as Newton’s method and robustness of temporal schemes that
usually always lead to a convergent solution. In particular, we apply the implicit Euler
method to equation (1); however, without exactly solving the implicit equation during each
time step, to generate a new iterative procedure for solving the equation (2). Several
methods derived from this new approach are then applied to two different reaction-diffusion
equations in one, two, and three spatial dimensions for a comparison with Newton’s
methods and some other existing methods. It is found that the new approach is much less
sensitive to the initial guesses in generating spatially inhomogeneous solutions and is much
more efficient than temporal schemes. Although the new iterative procedure might be slower
in convergence than Newton’s method, it is much more likely to converge to a spatial
pattern for a given set of parameters. The balance of efficacy and robustness makes the new
approach particularly suitable for computational searching of spatial patterns of reaction-
diffusion equations in a large parameter space.

The paper is organized as follows. In section 2, we describe the new hybrid approach; in
section 3, we compare several methods described in section 2 through two important
performance measurements: likelihood of each method converging to spatially
inhomogeneous steady state patterns and CPU time of convergence, for two reaction-
diffusion equations in different spatial dimensions. In section 4, we conclude and discuss.

2. Methods
In this section, we first briefly describe three existing numerical methods: Newton’s method,
the implicit Euler method, and the FAS multigrid method, in a context of solving temporal
or steady state reaction-diffusion equations. Following the description, we then present a
new approach that integrates these three methods to solve the steady state equations (2).

To use Newton’s method (NM) to solve the reaction-diffusion system (2), a spatial
discretization of the linear diffusion operator usually leads to a nonlinear algebraic equation:

(3)

where B is a discretized linear diffusion operator (e.g., through a second-order central
difference scheme [26]) and F is a nonlinear reaction term. In general, G is a nonlinear
function from RM → RM with u ∈ RM, where M is the total number of unknowns. For
example, M = mN for a one-dimensional m-variable system which is discretized in N spatial
grid points. The Newton’s iteration for (3) becomes
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(4)

It converges quadratically to a solution if the initial guess is close enough [22].

The implicit Euler method (IE) is an implicit time-evolution method for solving temporal
reaction-diffusion systems with stiff reactions. IE takes the general form of

(5)

The temporal solution un+1 is updated by the previous time step solution un in an implicit
form. When the sequence un is convergent, it will converge to a stable solution of the steady
state reaction-diffusion systems.

The main computational expense of the IE method is to solve the nonlinear system (5) for
un+1 at each time step. Although IE is linearly absolutely stable allowing a large time step
size Δt for stability reason [27], solving one nonlinear system at each time is still very
expensive. In particular, the reaction-diffusion system needs to be solved for a large number
of n to approach a steady state solution. Recall that our goal is to obtain approximation of
steady state solutions (i.e., one only needs to derive an approximated solution û, such that
G(û) is close to zero). As a result, the nonlinear system (5) does not need to be solved
accurately at each time step.

2.1. Adaptive Implicit Euler Method with Inexact Solver (AIIE)
We present a new approach that uses only one Newton’s iteration to solve the nonlinear
system (5). Specifically, replacing Δt with α in (5) and applying one Newton iteration with
the initial guess un yields this iteration procedure:

(6)

where I is an identity matrix with the same dimension as G′(un). We assume α is chosen
such that the operator G′(un) − α−1I is non-singular. Clearly, G(un+1) converges to zero as
un+1 converges to a finite value in (6).

It is noted that the iterative procedure (6) is similar to a modified Newton’s method [28].
The modification for the Newton’s method in searching optimal points is mainly for the
purpose of stabilizing the Jacobian matrix to improve the convergence property of Newton’s
method [29, 30]. Here, we dynamically vary the critical parameter α to adjust the
contribution of the temporal scheme and Newton’s iteration such that the new method can
exhibit advantages of both the temporal scheme and Newton’s method.

We define this iteration procedure (6) as the inexact implicit Euler (IIE) method. In IIE, the
intermediate solution un+1 is no longer an accurate approximation of the original temporal
solution at tn+1. If the nonlinear system (5) can be solved accurately using one Newton’s
iteration with the solution at the previous time step as the initial guess (this may be the case
when α is very small), the method (6) behaves similarly to an implicit Euler method.

For larger α, to approximate the rate of convergence, we consider the extra term α−1I as the
error term of the Jacobian matrix approximation and apply the following theorem in [22].

Theorem 1—If G′ is Lipschitz continuous and nonsingular at u = u* where G(u*) = 0, then
there are C > 0, δ > 0 and δ1 > 0 such that if ||un − u*|| < δ and ||M|| < δ1 then
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is defined and satisfies

If the initial guess for (6) is close to the steady state solution, denoted as u*, we let M = α−1I
(||M|| = ||α−1I|| = α−1) and apply Theorem 1 to obtain

(7)

where C is a positive number independent of n. As seen in (7), when α is very large, the
iterative procedure behaves similarly to Newton’s method with a quadratic convergence
rate.

Similar to temporal schemes with an adaptive time step, an adaptive α presumably makes
the iteration process of (6) more robust and efficient. We denote IIE with an adaptive α as
AIIE. When α is small, the nonlinear system (5) can be solved accurately using one
Newton’s iteration with the solution at the previous time step so AIIE behaves similarly to
an implicit Euler method. Note that when α → 0, the iteration process of (6) also
approaches to an explicit Euler method. In (6), the term − (G′(un) − α−1I)−1G(un) can be
rewritten as

When α → 0, it equals to αG(un) after skipping all the higher order terms. So (6) becomes

which equals to a time update process of an explicit Euler method. It is consistent that when
α is small, the difference between un+1 and un is small so implicit Euler method behaves like
explicit Euler method.

When α is large, according to (7), AIIE behaves more similarly to Newton’s method, which
has a quadratic convergence rate.

To take advantage of both NM and IE, we choose to increase α in IIE adaptively for an
adaptive IIE (AIIE) such that the overall method gradually switches from a temporal scheme
to a steady state solver like Newton’s method during the iteration process. Typically, α is
chosen to be an increasing function of n, such as α = 0.1n, α = 2n and α = n, as shown in
the next section for direct numerical tests. Among those three choices, it is found for the
reaction-diffusion equations tested in this paper that α = n provides the best performance
and robustness for AIIE.
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2.2. FAS Multigrid Method with AIIE (FAIIE)
The nonlinear multigrid methods [23, 24] can enable rapid convergence by employing grids
of different mesh size in solving nonlinear systems. Through a suitable smoothing operator
and coarse grid correction, a multigrid approach can accelerate convergence, particularly for
diffusion-dominated systems in multi-spatial dimensions. Here, we integrate a Full-
Approximation Storage (FAS) multigrid method with the new AIIE approach, denoted as
FAIIE, to solve the system (3) using a two-grid iteration cycle [23, 24]. Here is an outline of
the iteration procedure:

1. Obtain an approximation vh by performing n1 times AIIE iteration on Gh(uh) = 0.

2. Restrict the approximation vh and its residual to the coarse grid:

3. Smooth n2 times AIIE iteration on the coarse-grid residual problem:

4. Extract the coarse-grid correction: e2h = u2h − v2h.

5. Interpolate and apply the correction: .

Similar to AIIE, α can be adjusted according to the number of FAS iterations. In this paper,
we set n1 = n2 = 1 and only consider FAIIE with α = n, where n is the number of iteration
cycles of the FAS method.

The performance of the FAS multigrid method depends crucially on a smoother and a coarse
grid solver, and nonlinear Gauss-Seidel smoother usually is used for a typical FAS multigrid
approach. In the numerical tests shown in the next section, it is found that the FAS multigrid
with a Gauss-Seidel nonlinear smoother typically results in divergence or convergence to a
homogeneous solution, showing no interesting biological patterns. With AIIE as a smoother,
the overall method more likely converges to an inhomogeneous solution with spatial pattern.
For the rest of the paper, we choose AIIE as a smoother for the FAIIE approach. We note
that if the inverse (G′(un) − α−1I)−1 in AIIE is computed by a direct solver, smoother
calculation is not cheap. However, here we keep such structure of FAS and leave the
investigation of a more efficient smoother to future work.

3. Numerical Results
Our interest is to find all types of inhomogeneous solutions with a spatial pattern of reaction-
diffusion system. Therefore, an important performance measurement for a nonlinear solver
is the robustness of converging to inhomogeneous solutions. How sensitively a method
depends on its initial guesses to produce a spatially inhomogeneous solution becomes
critically important. Therefore, in addition to comparing efficiency, which is measured as
CPU time for obtaining a solution, we also focus on studying the likelihood of each
numerical method converging to spatially inhomogeneous steady state patterns.

In this section, we first consider two reaction-diffusion biological models in one spatial
dimension for five different numerical methods: Newton’s method (NM), Implicit Euler
(IE), Implicit Euler with inexact nonlinear solver (IIE), IIE with adaptive α = n (AIIE), and
FAS on IIE (FAIIE) with adaptive α = n, as described in the previous section. Next, we
extend our study of NM and AIIE to two-dimensional and three-dimensional domains to
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show that the results are consistent with the one-dimensional examples. We finally study
how the performances of NM and AIIE depend on the number of spatial grid points. All the
numerical tests are implemented in MATLAB with the help of the software package iFEM
[31]. For solving the linear system in (4) or (6), it is found that the Gauss-Seidel method and
the multigrid method with a Gauss-Seidel smoother usually results in non-convergence. In
this paper, we solve the linear system by using the direct solver built in MATLAB. The
numerical parameter settings will be discussed in the later sections.

3.1. One-dimensional systems
Here, we study all five methods under two possible scenarios depending on how much
analytical information can be obtained for the reaction-diffusion equations. The first
scenario is when the linear stability analysis around the homogeneous steady state solutions
can be carried out analytically to obtain a set of necessary conditions for parameters
resulting in inhomogeneous patterns. For this case, we study how the convergence of each
method to inhomogeneous patterns depends on the initial guess, which is chosen as a
perturbation from the homogeneous steady state solution. The second scenario is when no
analytical information of the reaction-diffusion equation is known. For this case, we
compare the five methods using a large set of randomly chosen initial guesses and
parameters to study performance in terms of robustness and efficiency.

3.1.1. A system with linear stability analysis and known homogeneous
solutions—The normalized one-dimensional activator-substrate system [32] has the
following form:

(8)

in x ∈ (0, 10) with no-flux boundary conditions at both ends. The substrate S may be
depleted by activator A. The constant D measures the diffusion coefficient ratio of activator
to substrate. The parameters ρ and μ measure the production rates of activator and substrate,
respectively.

Solving the system

(9)

gives us a homogeneous steady state:

(10)

The linear stability analysis in [32] states that an inhomogeneous steady state may exist if
the following inequalities hold:

(11)

In particular, we choose parameter ranges as
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(12)

The ranges in (12) give a subset of parameters satisfying the conditions (11) for the
existence of inhomogeneous steady state patterns. The initial guess (A0, S0) takes the
following form:

(13)

where δA(x) and δS(x) are standard normally distributed random variables with zero mean
and variance being one. All of the random variables are spatially independent. The constant
γ is used to measure the magnitude of the perturbation away from the homogeneous solution
(A*, S*). Figure 1 is a typical inhomogeneous steady state pattern of equation (8).

To study how the convergence of each method to an inhomogeneous pattern depends on the
initial guess (13) for different perturbation amplitude γ, we randomly select 100 sets of
parameters from the analytically derived range (12) with uniform probability distribution.
Then we investigate the percentage of such simulations converging to an inhomogeneous
pattern and the average CPU time per simulation for obtaining the approximated solution.

Denote N = 2J + 1 as the number of spatial points where J is a positive integer. In Figure 2,
we choose J = 10, and for NM, IIE (α = 1, 10), AIIE, FAIIE, the iteration is considered to
converge to steady state if the residual in the form of (3) is less than 10−7 within 1,000
iterations. For IE, the implicit equation (5) is solved by Newton’s method with a tolerance of
10−10. In this paper, if we do not mention the number of spatial grid points, iteration
tolerances and implementation, all of them are chosen to be the same as in Figure 2.

In the simulations for each γ with 100 sets of randomly generated parameters and initial
guesses, all methods except IIE with α = 1 have more than 90% of the cases converging to
either a homogeneous steady state or an inhomogeneous pattern. IIE with α = 1 has only
around 30% of the cases converging within 1,000 iterations. With relatively small α, IIE
behaves like an implicit Euler method, as α is similar to a time step, and most of the
parameters make the IIE less “stable” with such a large “time step” leading to non-
convergence.

Next we study the percentage of simulations that converge to inhomogeneous patterns and
average CPU time used for simulating one set of parameters. As shown in Figure 2, the
likelihood that NM will converge to inhomogeneous patterns strongly depends on γ, the size
of perturbation in the initial guess. If the initial guess is closer to a homogeneous steady
state, it is less likely that NM will converge to an inhomogeneous pattern. As expected, once
convergence, NM costs the least average CPU time used for simulating one set of
parameters.

On the other hand, the likelihood of convergence to inhomogeneous patterns for all four
other methods seems to be insensitive to the perturbation parameter γ in the initial guess
(13). This is not surprising because all of the four methods have some characteristics of
temporal schemes and the iterated solutions evolve away from the unstable homogeneous
solution. Among these four methods, AIIE has a similar likelihood of obtaining
inhomogeneous patterns as IE, a temporal scheme which is most likely to obtain
inhomogeneous patterns, while AIIE is the cheapest one in average CPU time per simulation
and IE is significantly more expensive. The advantage of AIIE becomes clear among these
four methods, as seen in Figure 2. FAIIE is a bit more expensive than AIIE. The
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convergence of FAIIE is mainly due to AIIE, so there is no benefit from FAS. The results
also show that IIE with a fixed α is not as good as AIIE in CPU time as well.

Compared with AIIE, NM is much more likely to obtain homogeneous solutions for a very
small γ, although NM is significantly cheaper in CPU for this case. On the other hand, for
large γ (e.g., close to γ = 0.5), the likelihood of obtaining inhomogeneous patterns for NM
is just slightly smaller than for AIIE while the CPU time per simulation for NM is also only
slightly better than AIIE for a large γ.

In short, there is a trade-off between robustness and efficiency, i.e., likelihood of obtaining
inhomogeneous patterns and CPU time for NM and AIIE. To obtain inhomogeneous
patterns, NM is much more sensitive to initial guess than AIIE while NM is cheaper once it
converges. Of course, the details of such a trade-off are problem-dependent and vary from
system to system.

3.1.2. A system without analytical information of the homogeneous steady
state solution—When the reaction term in a reaction-diffusion system takes general
nonlinear function with saturations, such as the Hill function [4], or the system involves
more than two equations, analytical information of the solution to the system becomes
difficult to obtain. As an example, we consider another activator-substrate system [32] with
Hill functions in the nonlinear reaction term:

(14)

in x ∈ (0, 10) with no-flux boundary conditions at both ends.

Following the same process as in subsection 3.1.1, we can still derive a homogeneous steady
state of system (14):

(15)

However, in order to test the performance of all the methods when analytical information is
not provided, we do not use the analytical information of the system (14). We search for
inhomogeneous patterns by randomly sampling parameters within given ranges:

(16)

Specifically, ρ and μ are uniformly selected in the range (16) and the probability distribution
of D is log-uniform. The initial guesses have the following form:

(17)

where δA(x) and δS(x) are defined the same as in (13).

Similar to the study in the previous subsection, we select 1,000 sets of parameters for each γ
with an initial guess in the form of (17) and compare NM, IIE (α = 1, 10), AIIE, FAIIE and
IE with different values of γ. To ensure the sample size is large enough for statistically
reliable results, we also double the sample size to 2,000 sets of parameters for each γ and
find the results are consistent between the two kinds of sampling.
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It is found that more than 90% of the simulations for each method converges to steady state
solution. However, most of the convergent solutions are spatially homogeneous solutions,
with about 2.5% of the convergent cases inhomogeneous at best. The result is
understandable, since we do not have a priori information on the range of parameters to
produce patterns. We verify that the steady state is an inhomogeneous pattern by checking if
the diffusion term Bu is larger than 10−4; this is also confirmed by observation.

As the results shown in Figure 3, the likelihood that NM will converge to inhomogeneous
patterns strongly depends on γ, and NM costs the least average CPU time per simulation.
This is consistent with what we observed in the previous subsection. For γ = 0.5, NM has a
higher likelihood of obtaining inhomogeneous patterns than the other four methods. It is
different from the results shown in Figure 2 that AIIE always has a higher likelihood of
obtaining inhomogeneous patterns than NM.

Without considering the likelihood of obtaining inhomogeneous patterns, NM is the most
efficient method among all the five methods. If the initial guess with suitable range of
perturbation can be obtained, NM may be the most efficient and robust method. However,
the process for searching a suitable range of perturbation may take significantly more CPU
time, especially in two-dimensional and three-dimensional domains. If we require that the
performance of the method has to be less sensitive to the initial guess, AIIE is the most
efficient method for obtaining inhomogeneous patterns.

To further explore this observation, we study the performances of NM and AIIE by selecting
parameters ρ and μ in a uniform distribution of the ranges [0.001, 0.1] and [0.01, 1]
respectively, with three different diffusion ratios D = 0.0005, 0.001 and 0.002 using the
initial guess of the form (17).

The choice of the parameter ranges is motivated by the results of Figure 3, in which most of
the inhomogeneous patterns appear within the following parameter ranges:

(18)

For each set of parameters, NM and AIIE are carried out for both γ = 0.1 (Figure 4) and γ =
0.5 (Figure 5). For the case γ = 0.1, AIIE method leads to a wider white region than NM
method (Figure 4), showing that AIIE is more likely to produce an inhomogeneous pattern
than NM; when γ increases from 0.1 to 0.5, the white region for AIIE does not change
much, while the white region obtained through NM is enlarged with increasing γ. The result
on likelihood of converging to inhomogeneous patterns for both AIIE and NM, consistent
with the case when parameters are randomly selected.

The average CPU times used for simulating one set of parameters using NM are 0.108s and
1.307s for the case γ = 0.1 and the case γ = 0.5, respectively. The average CPU times used
for simulating one set of parameters with AIIE are 2.528s and 3.865s for γ = 0.1 and γ =
0.5, respectively. The average CPU time per simulation depends on γ because the time used
for convergence is related to how close the initial guess is to the steady state. When γ = 0.1,
the initial guess is close to the homogeneous steady state, NM converges to homogeneous
steady state rapidly. When γ = 0.5, the initial guess is far from the homogeneous steady
state but may not be close to the inhomogeneous one, so more CPU time is required.

The time cost per simulation is increasing when the diffusion ratio D is decreasing when
applying NM and AIIE. For AIIE, there are more non-convergence cases when D decreases
because the number of iterations for convergence is increasing per case (example in Figure
6). With a small D, the system is dominated by the nonlinear reaction term, leading to more
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iterations for both AIIE and NM. AIIE becomes less effective as it is designed for a system
with diffusion.

3.2. Two-dimensional and three-dimensional systems
We next study the performance of NM and AIIE for systems in two-dimensional and three-
dimensional domains. In particular, we consider the system (14) in (x, y) ∈ (0, 2) × (0, 2)
and (x, y, z) ∈ (0, 10) × (0, 10) × (0, 10) with no-flux boundary conditions on all boundaries.

Similar to the one-dimensional tests, ρ and μ are generated uniformly in the ranges [0.001,
0.1] and [0.01, 1] respectively, with fixed diffusion ratios D = 0.001. The initial guesses
have the following forms:

(19)

(20)

where δA2D(x, y), δS2D(x, y), δA3D(x, y, z) and δS3D(x, y, z) are standard normally
distributed random independent variables with zero mean and variance being one. For each
set of parameters, NM and AIIE are carried out for γ = 0.1 and γ = 0.5 (Figures 7 and 8).
The grid levels J are set to be 6 in the two-dimensional domain with a total number of spatial
grid points N = (2J +1)2; for the three-dimensional domain, we set J = 4 with the total
number of grid points N = (2J + 1)3.

Figures 7 and 8 for the two- and three- dimensional systems exhibit similar behavior as that
seen in the one-dimensional system in Figures 4 and 5. The performance of NM is more
sensitive to the magnitude of perturbation acted on the initial guess than AIIE. From the
point of view of CPU time, NM is more efficient than AIIE for one simulation. The overall
performance of AIIE and NM for the two- and three-dimensional systems is consistent with
that of the one-dimensional model (that is, AIIE is more robust in obtaining an
inhomogeneous pattern, while NM is more efficient if it is convergent).

3.3. Spatial resolution refinement tests
To understand how the number of grid points affects convergence, we first study the
performance of NM and AIIE using different spatial level J (number of spatial points N = 2J

+ 1) for the one-dimensional system (14) with initial guesses of form (17). Figure 9A shows
that when J increases, the likelihood that NM will converge to inhomogeneous patterns is
reduced. It is clear that the likelihood that NM will obtain inhomogeneous patterns is much
more sensitive to the number of spatial grid points regardless of the size of perturbation
acted on the initial guess. Compared with NM, the robustness of AIIE is slightly affected by
the change of J, the spatial resolution.

In the case of Figure 9A, the initial guess for both methods is independent at each spatial
resolution and is directly generated from the equation (17). The two methods behave
differently if the initial guesses are generated by linearly interpolating the initial guesses on
the coarse grid J = 6 to the fine grids J = 8, 10, 12 and 14 for their initial guesses. Figure 9B
shows that the likelihood of NM and AIIE converging to inhomogeneous solutions is much
less sensitive when the number of spatial grid points is varied.

The analysis of previous section shows that the likelihood of converging to inhomogeneous
solutions increases when the magnitude of perturbation of the initial guess increases. The
reason is that the amplitudes of non-zero frequencies of the perturbation increase with the
magnitude of perturbation [33] and enough strength of some non-zero frequencies is
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necessary for leaving a homogeneous steady state and converging to an inhomogeneous
pattern [32, 9]. For the simulations in Figure 9B, the amplitudes of the frequencies of the
perturbation are not affected during the spatial refinement because the initial guesses have
the “same” form in different spatial levels. So the likelihood of NM and AIIE converging to
inhomogeneous solutions is not affected by the spatial resolution. But for the simulations in
Figure 9A, the increase of spatial levels may reduce the strength of some non-zero
frequencies so there is not enough level of perturbation for a convergence to an
inhomogeneous pattern. Then the likelihood of convergence to inhomogeneous solutions
decreases when the spatial level increases.

Sometimes, although the change of spatial resolutions may not significantly affect the
likelihood of convergence to inhomogeneous patterns, a specific form of pattern may be
varied as the spatial level J changes. For some cases, the corresponding numerical method
may not converge to the exact steady state solution of the continuous reaction-diffusion
equations and the convergent solution for a fixed number of spatial grid points is only the
steady state solution of the corresponding finite-dimensional discretized system.

To study how the pattern is varied as the spatial level J changes, we apply both AIIE and
NM to the one-dimensional system (8) using 50 sets of parameters and initial guesses in the
form (13). In all sets of the parameters and initial guesses, both NM and AIIE converge to
inhomogeneous patterns using J = 9 level of grid. Here, the initial guesses are first generated
for J = 9 coarse grid (N = 2J + 1) and are linearly interpolated to J = 10 level of grid. When
the level of grid increases from J = 9 to J = 10, AIIE maintains the same form of pattern in
46% of cases, while NM converges to the same form of pattern only in 16% of cases. In this
test, AIIE is more likely to maintain the same of pattern during the spatial resolution than
NM. Here two patterns are defined to be the same if their relative pointwise difference is
less than 0.1%.

We further investigate this in two-dimensional systems. We apply AIIE and NM to different
initial guesses using the two-dimensional system (14). The initial guesses are first generated
for J = 6 coarse grid (N = (2J + 1)2) and they are then linearly interpolated to J = 7 and J = 8
level of grids.

Initial guesses for A or S of the system (14) in a two-dimensional domain are defined as
follows:

where D1 = {(x, y) : |(x, y) − (5, 5)| < 2}, D2 = {(x, y) : |(x, y) − z→| < 1, z→ = (3, 3), (3, 7),
(7, 3), (7, 7)}, δU (x) is a uniformly distributed random number in [0, 1] and δ(x) is a
normally distributed random variable with zero mean and 0.5 for its variance. The spatial
patterns for those five initial guesses are shown in Figure 10.

In the test, we choose one set of parameters for each model. Time evolution simulation
shows that the inhomogeneous steady state exists with this set of parameters. Figure 11
shows that AIIE and NM converge to inhomogeneous patterns in all simulations for J = 6.
To examine if those steady state patterns are locally stable for the corresponding temporal
reaction-diffusion equation, we use a second-order Runge-Kutta method with an initial
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condition that is perturbed away from the steady state (A*, S*) computed by AIIE or IE. In
particular, the initial conditions with perturbation have the following form:

(21)

where δA(x, y) and δS(x, y) are standard normally distributed random independent variables
with zero mean and variance being one. For a fixed spatial resolution, all temporal
evolutions eventually go back to the steady state solution computed by AIIE or NM,
showing the steady state solutions are locally stable for the finite discretized system.
However, when the number of spatial points increases, all the convergent solutions using
NM change to different patterns, with some cases failing to converge to an inhomogeneous
pattern (e.g., IG3, Figure 11). Among the five initial conditions, only the case IG4 seems to
show a consistent pattern when spatial resolution is varied. In contrast, when AIIE is used,
the cases IG3, IG4 and IG5 all show a consistent pattern when the spatial resolution
increases. AIIE seems to be more likely to maintain the same form of pattern during the
spatial resolution, suggesting that the steady state solution of the discretization system is
more likely to converge to the steady state of the continuous system.

To investigate if this property of AIIE and NM depends on a particular form of reaction-
diffusion equations, we study another system, the Gray-Scott model [6] in a two-
dimensional domain (x, y) ∈ (0, 10) × (0, 10):

(22)

which has no-flux boundary conditions on all edges of the domain. The model describes the
growth of an activator A reacted with substrate S fed from the activator with a rate ρ, and S
is converted to an inert product at the rate k. DA and DS are the diffusion coefficients of A
and S, respectively.

Instead of producing the pattern of spots in Figure 11, the system (22) generates the stripe
patterns shown in Figure 12. As expected, NM is unable to produce consistent patterns for
either one of the five initial guesses when the spatial resolution increases; however, AIIE is
able to produce a consistent stripe pattern for at least two out of the five initial guesses (e.g.,
IG1, IG2 in Figure 12).

We further study the effect of spatial resolution for the systems (14) and (22) in a three-
dimensional domain (x, y, z) ∈ (0, 10) × (0, 10) × (0, 10) using three different initial
guesses. The three initial guesses for A or S in a three-dimensional domain are the
corresponding three-dimensional version of IG1, IG3, IG5, where D1 = {(x, y, z) : |(x, y, z)
− (5, 5, 5)| < 2}. The total number of spatial grid points for the three-dimensional system is
N = (2J + 1)3.

For the system (22), NM converges to inhomogeneous patterns or homogeneous steady
states on the grid level J = 3, but NM does not converge on the grid levels J = 4, 5. However,
AIIE converges to steady state on all grid levels. All the steady states AIIE obtains on J = 4,
5 are inhomogeneous patterns. Figure 13 shows the form of a three-dimensional pattern
computed by AIIE using the initial guess IG1. The form of pattern is similar to that found in
a two-dimensional domain.

For the system (14), AIIE and NM both converge to inhomogeneous patterns on the coarsest
grid level J = 3. When the grid level increases to J = 4 or 5, both AIIE and NM do not
converge to any steady state. Although both methods converge on the grid level J = 3, the
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patterns obtained may not be the “real” patterns of the continuous reaction-diffusion
equations due to the large error of spatial approximation. On the finer grids J = 4, 5, AIIE
and NM are unable to converge to any steady state solution. This is probably due to the fact
that the initial guesses are far from any steady state, suggesting that better initial guesses
may be needed for both methods to converge in three dimensions.

In general, AIIE is found to be relatively more consistent in generating the same pattern
when the spatial resolution is refined. NM may converge in low spatial resolution; however,
it may lose convergence in a higher spatial resolution. Also, a convergent pattern computed
by NM to solve the same system is more likely to vary when its spatial resolution is varied.

4. Conclusion and Future Work
In this paper, we have presented a new hybrid approach to solve steady states of reaction-
diffusion equations with no-flux boundary conditions. AIIE, one of the new methods,
integrates the implicit Euler temporal scheme with one Newton iteration. This method
behaves similarly to a temporal scheme during the early part of the iteration process and
gradually becomes a Newton’s method as iteration continues. The design principle of this
method is to take advantage of strengths in both an implicit temporal scheme, which is
robust in finding steady state inhomogeneous solutions, and Newton’s method, which has a
fast convergence when the method does converge.

For most existing numerical methods, a trade-off usually occurs between the likelihood of
finding an inhomogeneous pattern and CPU time for a method to converge. AIIE seems to
alleviate such a trade-off to a certain degree. AIIE is faster than the temporal schemes, while
its convergence to a spatially inhomogeneous pattern is less sensitive to initial guess and
spatial grid size compared with Newton’s method. In other words, AIIE may be the most
efficient, compared with existing methods, in searching for spatial inhomogeneous patterns.
Because each simulation for a given set of parameters may diverge or converge to a spatially
homogeneous solution, the efficiency of such a task is determined by two factors: likelihood
of converging to patterns and CPU time for each convergent simulation. Therefore, an
efficient method for finding patterns needs a balance of performances affected by these two
factors.

Although AIIE is shown to have good performance and efficiency, several improvements
can be made for the new approach introduced in this paper. The dominant cost of AIIE,
similar to Newton’s method, comes from solving the linear system involving the Jacobian
matrix at each iteration step. Since the Jacobian matrix in (4) or (6) is tridiagonal in a one-
dimensional system or has a structure of block tridiagonal matrices for high spatial
dimensions, one may develop a direct fast method to solve the linear equation (4) or (6). For
a one-dimensional system, the Thomas algorithm [26] may be carried out directly. For two-
or three- dimensional systems, the Alternating Direction Implicit (ADI) method [26] for
direction splitting may be incorporated with the Thomas algorithm or a similar fast
algorithm in each direction for the development of fast solvers.

Similar to Newton’s method, calculation of the Jacobian matrix in AIIE may also become
problematic for the systems involving many species with reaction terms that may not be
smooth enough for differentiation. In such cases, the approximation of the Jacobian matrix
or a Jacobian-free approach [22] may be adapted for further improvement of the AIIE type
of method.

A typical FAS multigrid approach with the nonlinear Gauss-Seidel smoother usually results
in divergence or convergence to a homogeneous solution. Although the FAS multigrid
method with the AIIE smoother can guarantee the convergence to an inhomogeneous steady

Lo et al. Page 14

J Comput Phys. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



state, it costs more CPU time than the AIIE method in our simulations. It is important to
develop a cheaper, though still robust, smoother for FAS. Again, the difficulty here is to
balance the computational efficiency and ability of obtaining pattern solutions.

The essence of the AIIE method, which combines the implicit Euler method and Newton’s
method in this paper, is the integration of an implicit temporal scheme and an inexact
nonlinear solver along with an adaptive iterative “step” to solve steady state pattern for
reaction-diffusion equations. To utilize the strength of various temporal schemes (e.g.,
implicit vs. explicit) and nonlinear solvers (e.g., Newton’s method vs. other types), one can
incorporate other temporal schemes with Newton’s method, or implicit Euler with other
nonlinear solvers, or two other temporal and iterative methods for designing new hybrid
methods that are more robust and more efficient than AIIE in exploring spatial steady state
patterns driven by complex reaction-diffusion equations.
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Figure 1.
A typical inhomogeneous steady state pattern for the system (8) in a one-dimensional
domain. The parameters for this case are D = 0.1, ρ = 0.01, and μ = 1.
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Figure 2.
Comparisons of five different methods for solving system (8) in a one-dimensional domain.
(A): The percentage of the simulations that converge to inhomogeneous steady state patterns
as a function of the magnitude of the perturbation in the initial guess. (B): CPU time for
simulating one set of parameters as a function of the magnitude of the perturbation acted on
initial guess. The percentage and CPU time of the simulations at each marker are calculated
within 100 random sample sets of parameters chosen from the ranges (12).
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Figure 3.
Comparisons of five different methods for solving system (14) in a one-dimensional domain.
(A,C): The percentage of the simulations which converge to inhomogeneous steady state
patterns as a function of the magnitude of the perturbation in the initial guess. (B,D): CPU
time for simulating one set of parameters as a function of the magnitude of the perturbation
acted on initial guess. The simulations at each marker in (A,B) and (C,D) are calculated
within 1,000 and 2,000 random sample sets of parameters, respectively. All the parameters
are chosen from the ranges (16).
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Figure 4.
Comparison of AIIE and NM using small perturbation acted on initial guess (γ = 0.1) for the
robustness of convergence to an inhomogeneous pattern for solving system (14) in a one-
dimensional domain. (A) AIIE. (B) NM. Grey: Convergence to a homogeneous steady state;
White: Convergence to an inhomogeneous pattern; Black: Non-convergence for a tolerance
of 10−7 and a maximal iteration number of 1,000.
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Figure 5.
Comparison of AIIE and NM using a larger perturbation acted on initial guess (γ = 0.5) for
the robustness on converging to an inhomogeneous pattern for solving system (14) in a one-
dimensional domain. (A) AIIE. (B) NM. Grey: Convergence to a homogeneous steady state;
White: Convergence to an inhomogeneous pattern; Black: Non-convergence for a tolerance
of 10−7 and a maximal iteration number of 1,000.
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Figure 6.
The number of iterations for AIIE to converge vs. the diffusion coefficient D. All the
simulations have the same initial guess and the fixed parameters: J = 10, μ = 1 and ρ = 0.1
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Figure 7.
Comparison of AIIE and NM, when applied to a two-dimensional system (14), for the
robustness of converging to an inhomogeneous pattern with two different magnitudes of
perturbation of the initial guess. (A) AIIE. (B) NM. Grey: Convergence to a homogeneous
steady state; White: Convergence to an inhomogeneous pattern; Black: Non-convergence for
a tolerance of 10−7 and a maximal iteration number of 1,000.
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Figure 8.
Comparison of AIIE and NM, when applied to a three-dimensional system (14), for the
robustness of converging to an inhomogeneous pattern with two different magnitudes of
perturbation of the initial guess. (A) AIIE. (B) NM. Grey: Convergence to a homogeneous
steady state; White: Convergence to an inhomogeneous pattern; Black: Non-convergence for
a tolerance of 10−7 and a maximal iteration number of 1,000.
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Figure 9.
The percentage of the simulations that converge to inhomogeneous steady state patterns as a
function of the spatial level J (number of spatial point N = 2J + 1). (A): With initial guess of
form (17). (B): With initial guess linearly interpolated from the initial guess formed on J = 6
coarse grid. The percentage of the simulations at each marker is calculated within 1,000
random sample sets of parameters chosen from the ranges (18).
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Figure 10.
Five different sets of initial guesses used for spatial resolution refinement tests.
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Figure 11.
Two-dimensional patterns at three different spatial resolutions of AIIE and NM for solving
system (14). All the simulations have a tolerance of 5 × 10−4 within 1,000 iterations. D =
0.01, ρ = 0.01 and μ = 0.5.
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Figure 12.
Two-dimensional patterns at three different spatial resolutions of AIIE and NM for solving
system (22). All the simulations have a tolerance of 5 × 10−4 within 1,000 iterations. DA =
0.01, DS = 0.005, ρ = 0.04 and k = 0.06.
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Figure 13.
A three-dimensional pattern computed by AIIE for system (22) with initial guess of form
IG1 and a tolerance of 10−4. DA = 0.01, DS = 0.005, ρ = 0.04 and k = 0.06.
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