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Abstract

We propose a novel framework to solve PDEs on moving manifolds, where the evolving surface is represented
by a moving point cloud. This has the advantage of avoiding the need to discretize the bulk volume around
the surface, while also avoiding the need to have a global mesh. Distortions in the point cloud as a result of
the movement are fixed by local adaptation. We first establish a comprehensive Lagrangian framework for
arbitrary movement of curves and surfaces given by point clouds. Collision detection algorithms between
point cloud surfaces are introduced, which also allow the handling of evolving manifolds with topological
changes. We then couple this Lagrangian framework with a meshfree Generalized Finite Difference Method
(GFDM) to approximate surface differential operators, which together give a method to solve PDEs on
evolving manifolds. The applicability of this method is illustrated with a range of numerical examples,
which include advection-diffusion equations with large deformations of the surface, curvature dependent
geometric motion, and wave equations on evolving surfaces.
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1. Introduction

The need to numerically solve PDEs on evolving surfaces arises in various fields. From the modelling of
surfactants [55] and other fluid dynamics [19], to the modelling of airbags [22] and parachutes [1]. PDEs on
deforming curves and surfaces also appear in the modelling of biomembranes [12] and cell motility [13], in
visualization [27], and image processing [25].

Most methods for solving PDEs on moving surfaces are mesh-based. Both finite elements [10, 11, 37]
and finite volumes [46] have been used in this context. The movement of the surface is achieved by moving
the discretizing mesh. This introduces the trouble of mesh distortion which needs an expensive remeshing
[32]. Note that this is the same issue with moving mesh methods for volumetric flow with free surfaces. To
avoid the need of meshing and remeshing, surfaces are often discretized with a cloud of numerical points.
As a result, a significant amount of work has been done towards the development of meshfree methods for
solving PDEs on static surfaces (for example, [16, 33, 39]). Some of these meshfree methods have also been
extended to handle evolving surfaces.

To the end of solving PDEs on stationary surfaces, a lot of work has been done to derive meshfree methods
that scale with the dimension of the surface itself, rather than the dimension of the embedding space [17, 33].
This significantly decreases the computational cost as compared to methods which discretize the embedding
space (or a subset of the same dimension). However, when it comes to PDEs on evolving surfaces, most
meshfree methods require a discretization of the bulk volume surrounding the surface [3, 30, 49, 50, 54].
The movement of the discrete manifold is captured by some notion of tracking on this surrounding grid or
point cloud. This is similar in essence to interface tracking for free surface volumetric flows done in static
mesh-based methods [21], and all inaccuracies in that context carry over to the present context. Thus, by
requiring tracking of the surface, these methods lose one of the fundamental advantages of meshfree methods.
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Moreover, they require a discretization of a higher dimensional space, which makes them computationally
expensive.

In the context of volumetric flows, it is well known that Lagrangian frameworks can accurately capture
advection as well as the shape of interfaces and free surfaces [28, 53]. In this paper, we introduce such a
fully Lagrangian framework to accurately capture the movement of an evolving surface. We present a new
meshfree method for solving PDEs on evolving surfaces that scales with the manifold dimension. The surface
is discretized with a cloud of numerical points, without any need to discretize the embedding space around
the surface. Movement of the surface is captured using a fully Lagrangian framework. Spatial derivatives
are computed by virtual projections to the tangent space at each point. A major advantage of a moving
point cloud over a moving mesh is that point cloud distortion is much easier to fix. For point clouds defining
volumes, this has been shown in, for example, [9]. Here, we will show that the same also holds good for
surfaces. To this end, we present methods to fix distortions in surface point clouds by adding and removing
points where necessary by purely local considerations.

We note that moving Lagrangian particles have already been used to solve PDEs on evolving surfaces by
several authors. The novelty in the present work lies in the fact that only the surface is being discretized,
and not the bulk around it. In contrast, [4] uses Lagrangian particles in a band around the manifold, and
a regular grid in the background to interpolate particle locations and to fix distortion. While [29] and [50]
use Lagrangian particles for the moving surface with a regular fixed grid of the dimension of the embedding
space in the background for reference and neighbourhood information.

The paper is organized as follows. Section 2 contains some information about the setup of surface
point clouds. Section 3 describes how a Lagrangian framework can be established for surface PDEs, and
includes the details about the Lagrangian movement, the required adaptation of nodes, and contact handling.
Section 4 then goes on to show how this can be used to solve PDEs on moving manifolds in a Lagrangian
way, and presents numerical examples. The paper is then concluded with a short discussion in Section 5.

2. Preliminaries

To distinguish between the cases of PDEs on surfaces and those on volume domains, we use the term
‘volumetric’ to denote the volume domain case.

Throughout this work, we establish initial point clouds as per [9]. Notation and definitions for the point
clouds are in accordance with [56, 58]. Conventions typically used for volumetric meshfree GFDM point
clouds [9, 24] are carried over to the surface case here. Throughout this paper, we consider only smooth
orientable 2 manifolds in R3. However, the ideas presented in this paper can easily be generalized to higher
dimensions and co-dimensions.

The smooth oriented surface or manifold M is discretized with N non-uniformly spaced numerical points
also referred to as nodes or particles. These points are simply locations where approximations are carried
out, and they do not carry mass. The N points include points both in the interior and at the boundary (if
any) of the manifold. Approximations at a numerical point i = 1, 2, . . . , N are done based on a support or
neighbourhood Si of nSi

nearby points, within a distance of h. h = h(~x, t) is referred to as the interaction
radius or smoothing length. The spatial distribution of points is described by three parameters: h, rmax,
and rmin. It is ensured that there is no hole of size rmaxh within the point cloud, and that no two points
are closer than rminh. Both rmax and rmin are global constants, taken to be the same for all simulations,
and are not dependent on the PDE being solved. As a result, the smoothing length h serves not just as the
size of the support at each point, but also as the spatial discretization size. rmax and rmin determine the
number of neighbouring points in each support domain. We use rmax = 0.45 and rmin = 0.2, which result in
about 15− 20 points in each neighbourhood. These values are carried over from conventions on point cloud
spacing used in meshfree GFDM volumetric flow solvers [9, 24, 58]. All distance computations are done in
the embedding space (here, in R3), and not along the manifold. To satisfy these maximum and minimum
distance criteria on manifolds, which could change with time, addition and deletion of points on the surface
is carried out, which is explained in Sections 3.4 and 3.5.
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3. The Lagrangian Framework

In this section we present details about how a meshfree Lagrangian framework can be established for
surfaces. To the best of the authors’ knowledge, such a fully Lagrangian meshfree setting without any
background grid has never been done for manifolds.

We consider an advection velocity ~v, which can have components both normal and tangential to the
surface. In contrast to a lot of existing methods for PDEs on evolving surfaces, we do not split the velocity
into its normal and tangential components, and use the entire velocity as the Lagrangian transport velocity.
Furthermore, unlike many mesh-based Lagrangian methods for surface PDEs, we do not assume any corre-
spondence between the point clouds at different time levels. At a given time level, no mapping is preserved
to the initial configuration of points, and all approximations are done at the present point cloud directly.

3.1. The Actual Movement

The Lagrangian motion step involves solving the ODE system

d~x

dt
= ~v , (1)

where ~v is the advection velocity. In most volumetric Lagrangian frameworks for meshfree methods, Eq. (1)
is solved by a first order method which assumes the velocity is constant between two time levels. The same is
also done in Lagrangian and semi-Lagrangian methods for surfaces. Both in the moving mesh-context [32],
and meshless manifold tracking context [50]. This involves each point of the point cloud, or equivalently
each node of the mesh, being moved with the given velocity field as

~x(n+1) = ~x(n) + ~v (n)∆t , (2)

where the bracketed superscripts indicate the time level. Here, time-integration is done between the time
levels tn and tn+1, and it is assumed that ~v (n+1) is unknown. Alternatively, similar methods are also done
by moving with the velocity ~v (n+1), if known, or an average of ~v (n+1) and ~v (n). In each case, the velocity
is taken to be constant within each time step.

In our earlier work for meshfree volumetric Lagrangian flows [57], we have shown the inaccuracies sur-
rounding the first order movement similar to Eq.(2), which lead to large defects in volume conservation.
To get accurate Lagrangian movement with Eq. (2), most authors tend to very small time steps. The same
arguments of inaccuracy presented in [57] for volumetric flows carry over to the surface case here. Thus, we
use the more accurate second order method for point cloud movement

~x (n+1) = ~x (n) + ~v (n)∆t+
1

2

~v (n) − ~v (n−1)

∆t
∆t2 . (3)

Alternatively, if ~v (n+1) is known at the time of updating point locations, ~v (n) and ~v (n−1) can be replaced
by ~v (n+1) and ~v (n) respectively in Eq. (3). This would be the case if the new velocity has been determined
before the movement step. Note that since Eq. (3) retains the explicit nature of Eq. (2), the second order
method comes at virtually no extra cost over the first order one.

To emphasize the need of such a second order method according to Eq. (3), a simple case of a rotating
quarter-sphere is considered in Section 3.7.1.

We note that most practical applications for PDEs on evolving surfaces will rely on time-dependent
velocity fields. While even higher order integration methods for the movement step can be developed for
time-independent velocity fields, they can not be easily generalized to the time-dependent case for moving
point clouds [57], so they are not very interesting in the present context.

In both Eq. (2) and Eq. (3), each point of the point cloud is moved explicitly and independently of all
other points. Here, it is assumed that any implicit or global constraint on the motion of the surface is
already represented in ~v.
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3.2. Normal Computation
Each interior point i of the manifold must be equipped with a unit normal ~ni and two unit tangents ~t1,i

and ~t2,i. Furthermore, each boundary point i (if any) of the manifold must be equipped with a unit manifold
normal ~ni, a unit tangent ~ti, and a unit boundary normal ~νi. Note that ~νi is normal to the boundary of the
manifold, but lies in the tangent space of the manifold. At each point, these normals and tangents form an
orthonormal system of vectors.

Multiple possibilities exist for the computations of these normals and tangents on point clouds. A popular
way to determine these is by using principal component analysis (PCA) [33, 44] which computes eigenvalues
of local covariance matrices.

PCA is known to be sensitive to outliers and noise in the point cloud. Weighted PCA approaches have
been used to overcome the same [51]. To use a more robust method to compute normals on point clouds, we
use a minimization approach that maximizes the angles between the normal and the neighbouring points.
This is based on the procedure used for computing normals at the free surface for volumetric flow by [52].
For an interior point i, the manifold normal ~ni is set to be the unit normal vector minimizing the functional∑

j∈Si

cos2(θij)Wij = ~nTi
∑
j∈Si

(
Wij

(~xj − ~xi)(~xj − ~xi)T

‖~xj − ~xi‖2

)
~ni , (4)

where θij is the angle between the normal ~ni and the distance vector ~xj−~xi, and Wij is a Gaussian weighting
function to emphasize the effect of the closest neighbours. Once ~ni is known, the tangents can be computed
so as to obtain an orthonormal system of vectors.

For boundary points, the boundary normal ~νi is first computed considering only the boundary neighbours.
Based on this, the boundary tangent is computed. After which, the manifold normal can be established at
the boundary point.

This process of normal and tangent computation needs to be done at each time step, since the positions
of each point are time-dependent.

We emphasize that we consider surfaces that are orientable, and the computed normal field should also
result in an oriented surface. For example, for the case of the surface of a sphere, all the normals must either
be pointing inwards, or all outwards. The need of an oriented normal field becomes especially important,
for example, when computing the curvature of the surface by the surface divergence of the normal field
κ = − 1

2∇M · ~n.
The same is explicitly checked by a sweep through all points when the normals are computed for the

first time during a simulation. At later time steps, to maintain the orientation of the normal field, newly
computed normals are compared with the old values. The orientation of ~n new

i is chosen such that

~n new
i · ~n old

i > 0 , (5)

where the superscripts new and old indicate the normals at the current and previous time levels respectively.
Similar considerations are also done for normal computation at newly added points (to be explained in a
coming section), but based on the normals of neighbouring points.

3.3. Neighbour Searching
Efficient neighbour searching is crucial for the efficiency of meshfree methods for surface PDEs, just as

it is in the volumetric case. Neighbour search algorithms used in volumetric meshfree methods [8, 9, 48]
directly carry over to the surface case being considered here. For each node, its neighbouring nodes are
determined as the nodes within a certain distance h from it. The naive approach to neighbour searching
would involve computing distances between every pair of nodes in the computational domain. However, this
procedure is exorbitantly expensive. To avoid excessive distance computations, the domain is usually split
into multiple regions referred to as boxes or cells. Using such a decomposition, for each node, distances
only need to be computed with other nodes within the same box (or possibly also adjacent boxes). Several
different data structures have been used to this end. One of the ways to do the same is to use quadtree or
octree type searching algorithms. For the Lagrangian case, it needs to be ensured that when a new point is
added, it is added in the correct box. To save time, it is often desirable to preserve the tree structure for a
few time steps, and reconstruct it only every p time steps.
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Figure 1: Local triangulation of a point on a surface. The central point is marked with a red cross. The black circle around it
marks the neighbourhood of the central point. The blue triangles indicate the triangulation computed to determine locations
where points need to be added to maintain regularity of the point cloud. The grey region indicates the surface specified by the
black points.

3.4. Addition of Points

Just like the mesh-based case, Lagrangian movement of a surface point cloud can cause distortions which
manifest as ‘holes’ in the point cloud where no points are present, or ‘clusters’ where too many points are
present. To fix this, points are added in holes, and removed or merged when they come too close. We now
propose a method for hole identification and filling in the absence of a background discretization of the
embedding space.

Several volumetric meshree methods use locally defined meshes [34] for a variety of purposes, from
integration in weak form methods [2], to support domain selection [35], to post-processing [24]. We propose
to use locally defined triangulations to identify holes in the surface point cloud. For this, at each point, we
compute a ‘one-ring’ of triangles based solely on the locations of neighbouring points. An example of such
a triangulation within a support domain is shown in Figure 1.

It is important to note the difference between the above mentioned locally computed triangulation, and
the generation of an actual mesh on the entire surface. The local triangulations are much easier to generate.
They scale very well when computed in parallel as the procedure for each point is independent of that for all
other points. There is no imposed restriction for the triangles to be ‘good’. All the local 1-ring of triangles
need not stitch together to form a global mesh of the surface. In fact, in most cases, they do not, unless the
support domains are considered very large, which is rarely done in practice. Furthermore, these triangles
are not preserved between time steps. In fact, they need not even be stored. Unlike the compuation of a
triangulation on an entire surface [5], the computation of these local triangles does not require any mapping
to a parameter space.

These locally defined triangles, as shown in Figure 1, are used to determine locations of holes where
points need to be filled. For this, we recall the volumetric point cloud spacing conventions introduced in
Section 2, which are carried over to the surface case here. We intend to ensure that there is no hole of size
rmaxh in the point cloud, where the smoothing length h = h(~x, t) can be a function of both space and time.
We set rmax = 0.45, following volumetric point cloud spacing conventions [9]. Thus, for any triangle with a
circumradius greater than rmaxh, a point is added at its circumcenter, but only as long as the circumcenter
is within the triangle. Once this process is carried out at all points in the domain, it is then repeated for
the newly created points. This process of filling points is illustrated in Figure 2.
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Figure 2: Addition of points in regions with insufficient points. Clockwise from top left: Initial configuration (top left),
triangulation of a point within the support radius (top right), addition of red points in ‘large’ triangles (bottom right), and
final configuration (bottom left).

For each newly created point, we need to approximate all physical quantities there. A considerable
amount of work has been done in determining optimal ways to perform approximations at these new points
for the volumetric Lagrangian framework [9, 15, 23] and those can easily be adapted for the needs of the
surface-based case.

We note that for boundary points, we need to ensure to not form a triangle between three boundary
points, as that could lead to addition of points outside the domain. To ensure a sufficient number of points
on the boundaries, a separate addition process is also done only for boundary points, with the distance
between two adjacent boundary points checked.

3.4.1. Curvature Corrected Addition

The above process of addition at the circumcenter of large triangles assumes the surface to be piecewise
linear. This can be improved by correcting the new location to take the curvature into account. For a point
being added, we start by approximating a normal at that point by

~napprox =
~n1 + ~n2 + ~n3

3
, (6)
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Figure 3: Merging points that are too close. The two red points in the left figure are merged to the green point in the right
figure.

where the summation is over the three points in the triangle being considered. The newly created point is
then moved in the direction of this approximated normal

~xnew = ~xc + dκ~napprox , (7)

where ~xc is the original location at the circumcenter, and ~xnew is the corrected location. The distance dκ
of moving the newly created point is computed based on the angles between the distance vectors and the
normal field, in a manner similar to the procedure of normal computation explained earlier. The following
constraint is enforced: ∑

j

δ~xj · ~nj = 0 , (8)

where the sum is over the three points of the triangle, and δ~xj = ~xj − ~xnew. This leads to

dκ =

∑
j(~xj − ~xc) · ~nj∑
j ~napprox · ~nj

. (9)

3.5. Deletion or Merging of Points

To prevent clustering of points as a result of Lagrangian movement, numerical points within rminh of
each other are merged into a single point, with all physical properties interpolated at the new location. This
process is illustrated in Figure 3.

In this process, priority is given to boundary points. If one boundary point and one interior point are
within a distance of rminh from each other, instead of merging the two points, the interior point is deleted,
and values are re-interpolated at the boundary point. This is done so as to not artificially deform the
boundary.

These procedures of addition and deletion of points can be used to obtain adaptive refinement, when
needed. Changing the smoothing length h will trigger the required point addition or merging algorithm.
For example, refinement can be done based on some error bounds, as has been done in the context of
volumetric meshfree GFDMs by [47, 59]. Alternatively, refinement can be carried out based on the gradient
of a numerical solution ∇φ. The smoothing length h can be reduced with increasing ‖∇φ‖, which would
result in a higher number of points in those locations. This process is illustrated in a numerical example in
Section 3.7.3.
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3.6. Contact Detection and Topological Change

Effectively modelling topological change of manifolds, and contact between different manifolds is one
of the most challenging parts of setting up a comprehensive Lagrangian framework. Collision detection is
usually done with the help of a mesh [61]. Even particle methods rely on a background mesh for the same
[29]. A lot of work has been done for collision detection between two volume phases, by both mesh-based
methods [61] and meshfree methods [31]. Several adaptations of these are needed to apply such methods for
collision detection between surfaces given by point clouds.

As a preliminary, each meshfree node is assigned a ‘chamber’ attribute to indicate the difference between
different manifolds. Note that for each point i, the nSi

points in its neighbourhood Si all belong to the
same chamber. We start with collision between different manifolds, and later extend these algorithms for
self-intersection which involves contact between different parts of the same manifold.

In this paper, we do contact detection in two steps. For a particular point i in chamber ci, the first step
involves a spatial search to determine which points of other chambers could possibly come into contact with
the current chamber. To do this efficiently, and to avoid the need to compute distances with every point of
other chambers, we use the neighbour searching algorithms mentioned above. After this stage, we assume
that each point i has a list of own-chamber neighbours Si, and a list of other-chamber ‘neighbours’ Sexti

which are within a distance h of point i. Note that, unlike Si, there is no need to store Sexti after contact
detection is done. Furthermore, i ∈ Si but i /∈ Sexti .

The next step involves the actual contact determination. We propose doing this in two parts. One
involves determining penetrated points, i.e. determining parts of a surface that have ‘crossed’ another
surface. For this, we first compute a signed distance DCi to the other chamber, where DCi indicates the
distance to contact. DCi is computed as the distance of the point i from an approximated surface given by
the points in Sexti . The sign depends on the normals of Sexti . First, the distance to the surface given by Sexti

is approximated as a quadratic polynomial

dS
ext
i = d0 + d1x+ d2y + d3x

2 + d4y
2 + d5xy , (10)

where the coefficients dk are determined based on the positions and normals of the points in Sexti . For this,

we use the fact that the distance should be 0 at every point in Sexti . Thus, dS
ext
i (~xm) = 0 , ∀m ∈ Sexti .

Furthermore, the gradient of the distance function should be along the normal to the surface. At a dummy
location obtained by moving a point in Sexti by a fixed distance ξ in the normal direction, the distance

function should return ξ. Thus, dS
ext
i (~xm ± ξ~nm) = ±ξ , ∀m ∈ Sexti and sufficiently small ξ > 0. We take

ξ to be a third of the minimum distance between points. These two conditions together form, in general,
an over-determined system, which is solved in a least squares sense to determine the coefficients dk. Then,
DSi is computed by evaluating Eq. (10) at ~xi.

It is important to note that, unlike the volume-based case, the sign of the distance computed above does
not directly determine whether or not the point has penetrated another chamber. In the volume case, each
boundary surface has normals pointing either inwards or outwards, which is known a-priori. However, in the
case of manifolds, the concepts of interior and exterior are not always well defined. And thus, the direction
of the normals are not always known a-priori. This is illustrated in Figure 4. In Figure 4, the red and blue
manifolds are moving towards each other. It shows the two possibilities of the normal direction of the red
manifold. As shown in the figure on the right, it is quite possible that the normals of the chambers are
pointing in the same direction. Thus, checking for conflicting Lagrangian information, as is often done [50],
is not always enough.

Thus, the sign of DCi at one time step alone does not give us enough information. To solve this problem,
we store the information about signed distance for each point. If the sign of DCi has flipped compared to the
previous time step, then we can say that the point has penetrated another chamber. Using a soft penetration
model, |DCi| is then used for force computation, which depends on the considered physical model, as would
be done in mesh-based methods [61].

The above method checks for opposing chambers that crossed each other in the previous movement
step. The second part of contact detection involves determining opposite chamber points that are almost in
contact. This is done by keeping track of points that are within the deletion distance of rminh, but have not
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Figure 4: Different possible orientations of manifolds coming into contact. The colours of the points indicate the different
manifolds. The grey arrows are the manifold normals. The red and blue arrows indicate the velocities of the manifold. The
blue and red manifolds are moving towards each other in both cases. In the figure on the left, the normals of the two manifolds
point away from each other. While in the figure on the right, they point towards each other.

yet crossed into the opposite chamber. Once again, force computation can be done based on the distance,
which will depend on the considered physical model.

The processing of detected contacts between manifolds is differentiated into 3 types:

• Non-penetration contact: This is the most standard form of contact, indicating that two surfaces can
not cross each other. Handling this numerically takes the form of adding the correct force once particles
penetrate or come too close to another chamber, as described above.

• Delete contact: This is the case, for example, when two fluid droplets modelled only by their surfaces
come into contact with one another. Thus, the points of each chamber coming into contact are
deleted. For the geometric handling of this case, a numerical point is deleted if it has just penetrated
into another chamber, or if it is within deletion distance of a point of another chamber.

• Merge contact: This third situation happens when two manifolds ‘stick’ together, such that the re-
sultant can be treated as a single manifold, with modified properties. For this, points of different
chambers are merged into a single chamber.

Numerical examples of the first two types of contact, based purely on the geometry of the problem,
without any physical model, are presented in Section 3.7.3.

The above methods can also be extended quite easily for contact detection between different parts of the
same manifold. For this, the only difference is the identification of the equivalents for Si and Sexti defined
above, which is done based on the direction of the normals.

3.7. Numerical Results

Before solving PDEs on evolving surfaces, we first test the Lagrangian framework by only performing
advection of the manifold. In each of the simulations presented below, the point clouds are irregularly
spaced. The initial point clouds are obtained starting from a CAD file by placing points using an advancing
front technique for point clouds, similar to that done by [9].
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Figure 5: Quarter sphere point clouds after one full rotation. The blue point cloud is a result of the second order movement,
Eq. (3), while the red point cloud is a result of the first order movement, Eq. (2). The grey background shell represents the
original configuration at initial time.

3.7.1. Rotating Quarter Sphere

To show the need of movement by the second order method according to Eq. (3), we consider the case of a
quarter of a unit sphere rotating about its center. To illustrate the effect of the movement only, no addition
and deletion of points is done in this example. The sphere is centered at the origin, and the velocity of the
surface is given by

~v =

 y
−x
0

+

 0
z
−y

 , (11)

where the terms correspond to a rotation about the z and x axis, respectively. Clearly, the velocity is
tangential to the surface at every point. Thus, updating point locations with the conventionally used first
order movement, Eq. (2), results in points going off the sphere. As a result, numerically, the radius of the
quarter sphere increases with every time step. This issue is no longer present for the second order movement,
Eq. (3). Figure 5 shows the point clouds after one full rotation based on the two different movement methods
in comparison with the original quarter sphere. The quarter sphere surface is discretized with N = 3 792
irregularly spaced points. The time step is fixed as ∆t = 0.05. Figure 5 illustrates the inaccuracy of the
first order movement whenever the advection velocity has a rotational component. The blue point cloud
from the second order movement is virtually at the initial location, while the red one from the first order
movement is off it. To quantify this error, we measure the distance from the unit sphere. After one full
rotation, the mean distance of the resultant point clouds from the unit sphere is 1.37 × 10−1 for the first
order movement, and 5.57× 10−4 for the second order movement. It is important to note here that for the
first time step, the second order method reverts to the first order one due to unavailability of a previous
velocity, and that the mean error after the first time step is 1.12 × 10−4 for both methods. The error as
a result of the second order movement barely increases after the first time step, whereas that of the first
order movement increases by several orders of magnitude. Thus, we now only use the movement according
to Eq. (3) for the remainder of the paper.
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Figure 6: Elongation and contraction of a unit hemisphere, with addition and deletion of points to maintain regularity.
Clockwise from top left: At times t = 0 (top left), t = 0.09 (top center), t = 0.24 (top right), t = 0.55 (bottom right),
t = 0.745 (bottom center) and t = 0.975 (bottom left). The red points indicate manifold boundaries.

3.7.2. Deforming Hemisphere

To illustrate the addition and deletion of points in the Lagrangian framework, we consider stretching and
contracting of a unit hemisphere as shown in Figure 6. The velocity field is given by

~v =

 2π cos(2πt) sin(π2 z)
0
0

 , (12)

which is a modification of the example considered in [6]. Figure 6 shows the evolution of the surface for
∆t = 0.005. The number of points N on this evolving surface as a function of time is shown in Figure 7.
As the sphere is stretched, to maintain regularity of the point cloud, points are added on the manifold. For
the same reason, points are deleted from the manifold as the sphere contracts.

This serves as a good example of surface deformation because the surface returns to its original shape.
We know that at every multiple of t = 0.5, the manifold should once again take the initial shape. The
resulting error in the Lagrangian movement can thus be checked by measuring the mean distance from the
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Figure 7: Number of points as a function of time for the distorting hemisphere test case.
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Figure 8: Convergence of error in location as the deforming hemisphere returns to its original state at t = 0.5 (left) and
t = 1.0 (right).

unit sphere, as done in the previous example.

εx(t) =
1

N(t)

N(t)∑
i=1

∣∣‖~xi‖2 − 1
∣∣ . (13)

We reiterate that εx should be 0 only for integer multiples of t = 0.5. The convergence of the error εx
at t = 0.5 and t = 1.0 is plotted in Figure 8 for a varying time step. The two plots also show that the
accumulation of the Lagrangian movement error with time is not significant. The figure illustrates that a
numerical convergence order of O(∆t) is observed. The main reason for the small convergence order is that
the rate determining step is the very first time step, where a first order movement is necessary as no previous
velocity is available. We note that the same was quantified in the previous example. This could be avoided
by prescribing an initial velocity derivative, which is not done here.

3.7.3. Joining Spheres

To illustrate the contact handling algorithms, we consider two unit spheres moving towards each other.
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Simulations are done for the same with both delete contact, and non-penetration contact enforced, as
described in Section 3.6.

The two examples considered in this section are only used to illustrate the applicability of the geometric
collision detection and penetration avoidance algorithms presented earlier. Thus, no physical model has been
applied. The delete contact case is handled as described in Section 3.6. For the non-penetration contact
case, since no force is added, a slight modification is required to avoid penetration. Once penetration has
been detected geometrically, as described earlier, penetrated points are projected back so as to ensure that
the two discrete manifolds do not cross each other. Velocities are recomputed as averaged values after the
projection.

In both simulations, we use a time step of ∆t = 0.03, and a smoothing length of h = 0.1 which corresponds
to N = 15 018 total points in each of the two spheres at the initial time level. The spheres move towards
each other with a velocity of ~v = (−sign(x1)0.5, 0, 0), where ‘sign’ is the signum function, and the origin
is between the two spheres at initial state. The center of the spheres are at an initial distance of 2.2 units
apart.

For the non-penetration contact case, Figure 9 shows the evolution of the spheres as they move towards
one another. Note that Figure 9 only shows a slice of the two spheres, such that only the half away from
the viewing angle is seen.

The delete contact simulation uses the same setup with one difference. To better process the contacts,
we apply an adaptive refinement. For regions closer to the interface, the smoothing length h is reduced to
h = 0.05. As a result, the hole filling algorithm explained in Section 3.4 causes the point cloud to become
finer near the interface. Figure 10 shows the result when enforcing the delete contact. It also illustrates
the adaptive refinement. Once again, only a slice of the result is shown. We note that the jagged interface
between the two surfaces after deletion on contact is a result of unevenly spaced points. This becomes more
regular (more straight, in this case) as the number of points is increased, or as refinement is done near the
interface.

3.7.4. Addition of Points

The examples considered so far use addition of new points at the circumcenter of ‘large’ triangles. We now
consider curvature corrected addition as per Section 3.4.1. We consider the case of addition of points on the
stationary surfaces of a sphere, and of a torus given by(

c−
√
x2 + y2

)2

+ z2 = a2 , (14)

with c = 3 and a = 1. In each case, the smoothing length is decreased which results in the point cloud
getting finer. The error in the location of addition of new points is measured as the mean distance off the
surface. This error is give by Eq. (13) for the sphere. For the torus, it is given by

εx =
1

N(t)

N(t)∑
i=1

∣∣∣∣(c−√x2 + y2
)2

+ z2 − a2

∣∣∣∣ . (15)

For both considered geometries, points are added to 4 point clouds of different discretization sizes to
observe how the error in location converges with increasing number of points. In each case, the initial
smoothing length h0 is halved, which results in approximately quadrupling the number of points. The
resultant error after the entire addition procedure is plotted in Figure 11 for different starting discretizations.
The corresponding number of points in each domain before the refining is done is shown in Table 1. Figure 11
illustrates that using the curvature corrected addition results in about halving the error, and that the errors
converge faster than O(h2). Further improvements to curvature corrected addition remains an open problem,
and will not be discussed in the present work.
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Figure 9: Two sphere surfaces moving towards each other, with non-penetration contact enforced. Clockwise from top left:
At times t = 0 (top left), t = 0.36 (top right), t = 0.72 (middle right), t = 1.08 (middle left), t = 1.44 (bottom left) and
t = 1.8 (bottom right). The colour represents the different manifolds. To make the result easier to visualize, only the half of
the domain away from the viewing angle is shown in the figure.

Table 1: Number of points (before refining) corresponding to the discretization sizes mentioned in Figure 11. In each case,
the final number of points after refining, when the errors are measured, are approximately 4 times that of the initial number
mentioned below.

ho Sphere Torus

0.4 770 7 801
0.2 3 520 34 836
0.1 14 994 147 112
0.05 63 627 612 828
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Figure 10: Two sphere surfaces moving towards each other, with delete contact enforced. Clockwise from top left: At times
t = 0.03 (top left), t = 0.63 (top right), t = 0.93 (bottom right), and t = 1.5 (bottom left). The colour represents the different
manifolds. To make the result easier to visualize, only the half of the domain away from the viewing angle is shown in the
figure.
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Figure 11: Error in location of newly added points against the discretization size. The blue lines indicate the errors after
regular addition at the circumcenter. The red lines indicate the errors when the curvature corrected addition according to
Section 3.4.1 is used. Errors are shown for the surface of a sphere (left) and the surface of a torus (right).
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4. PDEs on moving manifolds

We now use the meshfree Lagrangian framework for surfaces developed above to solve PDEs on moving
manifolds. In contrast to many existing methods for PDEs on evolving surfaces [6], in this method, inte-
gration is done on the surface at the existing time level, and no map is maintained between the initial and
current state. At each time step, differential operators are computed for the point positions at that level
directly.

The moving Lagrangian framework for evolving PDEs developed in Section 3 of this paper can be used
to solve PDEs on moving manifolds with a wide variety of methods to define the numerical derivatives. In
this paper, we use meshfree Generalized Finite Difference Methods (GFDMs) for surface PDEs for the same.
This is based on our earlier work for PDEs on stationary surfaces [56]. For the sake of completeness, we
provide a short description about how they are computed.

4.1. Differential Operators

Meshfree GFDMs [14, 18, 26, 38] are strong form methods. For volume-domains, they have been shown
to be robust methods, with a wide variety of applications [9, 24, 42, 45]. They have also been referred to
under the name of Generalized Moving Least Squares (GMLS) [43]. Differential operators are computed
using a least squares approach while ensuring that monomials up to a certain order are differentiated exactly.

Here, we use the GFDM formulation for surface PDEs from [56]. This relies on discretizing differential
operators entirely in the tangent space. This method scales with the true dimension of the manifold. It
has the advantage of avoiding differential geometry complexities. One of the biggest advantages of this
method is that most existing developments in volume-based numerical methods can directly be carried over
to surfaces. GFDMs also have the advantage that it is straightforward to handle a wide variety of boundary
conditions.

Differential operators are computed by virtual projections to the tangent space at each point which
recovers a Euclidean problem in the dimension of the tangent space. Below, we explain how the differential
operators are computed. For details about the same, we refer to [56].

4.1.1. Surface Gradients

For a function u defined on the surface, its surface gradient is given by

∇Mu = ∇û , (16)

where ∇M is the surface gradient, ∇ is the volumetric gradient, and û is a normal extension of u to a
band around the surface such that ~n · ∇û = 0. Thus, computing a numerical approximation to ∇Mu can
be done by computing a numerical approximation to ∇û. Since ~n · ∇û = 0, we only have to approximate
the tangential components ~tk · ∇û for k = 1, 2. For each point i, these tangential derivatives ~tk · ∇û are
approximated in the tangent plane Ti spanned by ~t1,i and ~t2,i.

For this, given a point i on the surface, its neighbouring points j ∈ Si are projected to the tangent
space Ti. The projection of the point j ∈ Si to Ti will be referred to by jTi . This projection is done along
the manifold normal ~ni. This process is illustrated for a 1-dimensional manifold in R2 in Figure 12. The
projection to the tangent space is not actually done at the numerical level. Only the distances between the
central point i and the projected locations jTi

are required. These are computed by rotating the distance
vector δ~xij = ~xj − ~xi. Using these distances, volumetric differential operators are computed in the tangent
space.

For a central point i, and projected locations jTi , usual 2-dimensional gradients are computed along the
~t1,i and ~t2,i directions, given by

∇T û ≈ ∇̃T û =


∑
j∈Si

ct1ijT ûjT∑
j∈Si

ct2ijT ûjT

 , (17)
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Figure 12: Projection to the tangent plane along the central normal. The central point is marked with an extra circle around
it. Its neighbouring red points are projected to the tangent plane to the blue locations.

where ∇T denotes the gradient in the tangent plane, the ˜ overhead denotes the discrete derivative, and
ûjT = uj denotes the function value at the projected location jTi

. The stencil coefficients cijT are computed
using a least squares approach while ensuring that monomials up to a certain order are differentiated exactly:∑

j∈Si

ctkijTmjT =
∂

∂tk
m(~xi) ∀m ∈ PT , (18)

min Ji =
∑
j∈Si

(
ctkijT
WijT

)2

, (19)

for k = 1, 2, where PT is the set of monomials, usually up to order 2, in ~t1,i and ~t2,i on the tangent plane.
These are then rotated to obtain the numerical surface gradients. The surface derivatives are given by

∇̃M,iu =


∑
j∈Si

cM,x
ij uj∑

j∈Si
cM,y
ij uj∑

j∈Si
cM,z
ij uj

 , (20)

where cM,x
ij are the stencil coefficients for the surface gradient in the x direction, and similarly for the other

directions. We have 
cM,x
ij

cM,y
ij

cM,z
ij

 = RT


ct1ij

ct2ij

cnij

 , (21)

for cnij = 0, and a rotation matrix R given by

RT =
(
~t1 ~t2 ~n

)
, (22)

for column vectors ~t1, ~t2, and ~n.
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4.1.2. Surface Divergence

We first rewrite the numerical surface gradients computed above as

∇̃M,iu = (G1iu,G2iu,G3iu)T . (23)

Thus, G1iu =
∑
j∈Si

cM,x
ij uj , and similarly for G2i and G3i. Using this notation, the divergence of a vector

valued function ~v = (v1, v2, v3) defined on the manifold is given by

∇̃M · ~v =
∑

k=1,2,3

Gkiv
k . (24)

4.1.3. Surface Laplacian

The numerical surface Laplacian or Laplace Beltrami is given by

∆̃Mu =
∑
j∈Si

c∆M
ij uj . (25)

To determine the stencil coefficients c∆M
ij , we proceed in a manner similar to what was done above for the

gradients. We first compute a 2 dimensional volumetric Laplacian operator on the tangent plane:∑
j∈Si

c∆T
ijT
mjT = ∆Tm(~xi) ∀m ∈ PT , (26)

min Ji =
∑
j∈Si

(
c∆T
ijT

WijT

)2

. (27)

Since the Laplacian is rotationally invariant, the tangent plane Laplacian directly gives us the surface
Laplacian c∆M

ij = c∆T
ij .

The verification of the concept and implementation of these differential operators for PDEs on stationary
surfaces has been done in [56].

4.2. Numerical Results

All sparse linear systems arising from the discretization of the PDEs are solved using a BICGSTAB2
iterative solver [60], without the use of any preconditioner. Monomials up to the order of 2 are used in the
computation of all the differential operators.

4.2.1. Convection Diffusion Reaction Equation on an Expanding Sphere

We consider the case of an advection diffusion reaction equation on an evolving manifold

Dφ

Dt
+ φ∇M · ~v = α∆Mφ+ f(φ) , (28)

where ~v is the advection velocity of the surface, Dφ
Dt is the advective surface material derivative, and α is

the diffusion coefficient. Note that, in general, ~v can have a component both normal and tangential to the
manifold.

The time integration proceeds as follows. In each time step, first the Lagrangian movement step of
Eq. (3) is performed. After that, integration of the remaining terms of Eq. (28) is done with a first order
implicit method

φ(n+1) − φ(n)

∆t
+ φ(n+1)∇ · ~v (n+1) = α∆Mφ

(n+1) + f(φ(n+1)) , (29)
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where the bracketed superscripts indicate the time level. Discretization of the spatial operators is done as
mentioned in Section 4.1.

To check experimental orders of convergence of the proposed method, we consider the simple example
of an expanding sphere. The initial unit sphere, discretized with irregularly spaced points, expands at a
constant rate. The surface at time t is given by

x2 + y2 + z2 = (r(t))
2
, (30)

with r(t) = 1 + 0.5t. The considered velocity field is ~v = 0.5~n. The numerical solution is compared to a
manufactured solution

φexact(~x, t) = exp(−6t)xy . (31)

Since the exact solution and the location of the surface is known analytically, this serves as a good test case
for the Lagrangian movement, as well as for the discretization of the spatial derivatives. The reaction term
f is determined analytically so that the manufactured solution satisfies Eq. (28) with α = 1. This makes
use of the following:

∇M · ~v =
1

r(t)
, (32)

∆Mφexact = −6φexact

(r(t))
2 . (33)

Relative errors in the numerical solution are measured at t = 1 by

ε2 =

(∑N
i=1 ‖φi − φexact(~xi)‖2∑N

i=1 ‖φexact(~xi)‖2

) 1
2

. (34)

Note that the numerical errors found are not just a function of the numerical differential operators, but also
of the Lagrangian movement and the addition/deletion of points to maintain point cloud regularity.

The errors and convergence orders are tabulated in Table 2 with a changing spatial discretization and a
small time step of ∆t = 0.4h2. Convergence orders are measured with respect to the number of points at
the initial time. A second order convergence is observed for the same. The numerical convergence with a
changing time step is shown in Table 3 for h = 0.1. In this case, first order convergence is observed.

Table 2: Errors at t = 1 and convergence orders with h for the expanding sphere test case. h is the smoothing length, N is the
number of points in the entire domain at the initial time, ε2 is the relative error, and r is the order of convergence of ε2.

h N ε2 r

0.4 480 6.57× 10−2 −
0.2 1 806 1.93× 10−2 1.85
0.1 7 446 4.76× 10−3 1.98
0.05 30 054 1.19× 10−3 1.98

Table 3: Errors at t = 1 and convergence orders with respect to the time step ∆t for the expanding sphere test case. ε2 is the
relative error, and r is the order of convergence of ε2.

∆t× 102 ε2 r

1 5.45× 10−2 −
1/2 2.74× 10−2 0.99
1/4 1.38× 10−2 0.99
1/8 6.99× 10−3 0.98
1/16 3.56× 10−3 0.97
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4.2.2. Diffusion on a Deforming Half Pipe

Next, we consider another convection diffusion reaction case according to Eq. (28). Unlike the previous case,
here, the manifold has a boundary, the surface velocity ~v is dependent on the solution of the PDE, and also
has a tangential component. Moreover, the deformation of the surface is more pronounced. Such cases of
high surface deformation are important to consider here since these are the examples where the advantage
of a moving meshfree method over a moving mesh method become evident. Under such high deformation, a
moving mesh method would require a lot of remeshing, which would significantly slow down the simulation.
The initial domain is taken to be one half of a pipe with radius 0.25 bent in an arc of radius 0.75, as shown
in the first image in Figure 13. The velocity field is given by

~v = 0.5φ~n+

 −yz0
xz

 , (35)

where ~n is the unit normal vector, and φ is governed by Eq. (28). The first term in Eq. (35) causes the
surface to expand with the ‘temperature’ φ, while the second term causes an overall twisting motion with
the two halves twisting in opposite directions. An initial condition with discontinuities is considered. At
t = 0, the domain has two ‘hot’ regions with φ = 1, with the rest of the domain at φ = 0. We set f = 0
and α = 0.2 in Eq. (28). The domain is discretized with a smoothing length of h = 0.05 that corresponds to
an initial number of points of N = 11 802. Time integration is done as mentioned in the previous test case,
with the velocity ~v taken as a function of φ at the previous time level. For a time step ∆t = 0.01, Figure 13
shows the evolution of the surface and the solution φ. The initial half pipe twists in two different directions,
with a slight expansion in the regions of high φ, as φ diffuses.

4.2.3. Geometric Motion

We consider motion of a surface dependent on its curvature. First, we consider the mean curvature flow [7],
in which the velocity of the surface is given by

~v = κ~n , (36)

where ~n is the unit surface normal. The mean curvature κ is given by

κ = −1

2
∇M · ~n . (37)

An initial dumbbell shape is used as the domain as shown in Figure 14. The dumbell is composed of two
unit spheres with their centers 4 units apart, connected by a cylindrical shape of radius 0.2. There is a sharp
change between the dumbbell ends and the handle. The simulation is done with h = 0.12, which corresponds
to an initial number of points of N = 20 015, and a time step of ∆t = 0.005. The results show the dumbbell
shrinking, causing a neck pinch singularity, leading to the separation of the two ends, which evolve towards
spheres as they contract. This matches the known behaviour of the dumbbell shape under mean curvature
flow [20, 40]. As a second geometric motion test case, we consider the averaged mean curvature flow [41].
The surface velocity is slightly modified from Eq. (36) to

~v = (κ− κ̄)~n , (38)

where κ̄ denotes the global average of the curvature. The considered computational domain is the torus
defined by (

c−
√
x2 + y2

)2

+ z2 = a2 , (39)

for c = 3 and a = 1. A coarsely discretized domain is used with h = 0.9, which corresponds to N = 1 490
points at the initial state. The results for a time step of ∆t = 0.05 are shown in Figure 15. The torus
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Figure 13: Diffusion on a deforming half pipe: Surface domain and solution shown at selected times. Clockwise from top
left: At times t = 0 (top left), t = 0.4 (top right), t = 0.8 (middle right), t = 1.2 (middle left), t = 1.6 (bottom left) and
t = 2.0 (bottom right). The colour represents the solution φ.
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Figure 14: Mean curvature flow for a dumbbell shape: Clockwise from top left: At times t = 0 (top left), t = 0.05 (top right),
t = 0.06 (bottom right), and t = 0.2 (bottom left).

Figure 15: Averaged mean curvature flow for a torus: Clockwise from top left: At times t = 0 (top left), t = 4 (top center),
t = 6.8 (top right), t = 7.05 (bottom right), t = 7.55 (bottom center) and t = 10 (bottom left). The points are coloured
according to the curvature κ to make the results easier to visualize. The initial torus contracts and evolves to an ellipsoid.
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contracts towards the center, resulting in a topological change from genus 1 to 0, after which the domain
slowly evolves towards a sphere.

Both results show that the capability of the present method to capture topological change well. For both
the dumbbell and the torus simulations, the contact handling algorithms introduced in Section 3.6 detect
the topological change, with the delete contact enforced, and the simulations do not need to be restarted
after the singularities arise, which is often the case.

An important point to note here is that to maintain stability, the values of κ have to be smoothed before
the velocity is computed. This requirement of smoothing has also been reported by other authors [29]. The
smoothing is done with a wide Gaussian smoothing kernel on the support domain

κ̃i =

∑
j∈Si

W̃ijκj∑
j∈Si

W̃ij

, (40)

with weights

W̃ij = exp

(
−‖~xj − ~xi‖

2

h2
i

)
. (41)

4.2.4. Wave Equation on an Evolving Surface

As the last experiment, we solve a wave equation on an evolving surface [36]:

D

Dt

Dφ

Dt
+
Dφ

Dt
∇M · ~v = c2∆Mφ+ f , (42)

where ~v is the surface velocity, and f = f(φ, ~x, t) is a forcing term. Eq. (42) is considered with initial
conditions

φ(~x, 0) = g1(~x) , (43)

Dφ

Dt
(~x, 0) = g2(~x) . (44)

Numerical integration in each time step begins with a movement step according to Eq. (3), and is followed
by

φ(n+1) − 2φ(n) + φ(n−1)

(∆t)
2 +

φ(n+1) − φ(n)

∆t
∇M · ~v (n+1) = c2∆Mφ

(n+1) + f (n) . (45)

The numerical differential operators are computed as explained in Section 4.1, and φ(−1) is computed based
on Eq. (44). We start by validating the scheme with a manufactured solution

φexact(~x, t) = sin(ωt)xy . (46)

The considered surface at time t is given by

x2 + y2 + z2 = (r(t))
2
, (47)

with r(t) = 1 + 0.5t. The considered velocity field is ~v = 0.5~n. The forcing term and initial conditions are
determined such that φexact in Eq. (46) satisfies Eq. (42) with c = 1. Similar to earlier, we note that the
following holds:

∇M · ~v =
1

r(t)
, (48)

∆Mφexact = −6φexact

(r(t))
2 . (49)
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For a varying spatial discretization, convergence of the relative errors of the numerical solution as compared
to the analytical solution are given in Table 4. The simulations use ω =

√
6 in Eq. (46), and a time step

of ∆t = h/20. Convergence orders are measured with the number of points in the domain at initial time.
The table shows that the numerical results match the manufactured solution. An experimental order of
convergence of 2 is observed which matches the expectation given the use of second order monomials in the
computation of numerical derivatives.

Table 4: Errors at t = 1 and convergence orders with h for the wave equation test case with a manufactured solution. h is the
smoothing length, N is the number of points in the entire domain at the initial time, ε2 is the relative error, and r is the order
of convergence of ε2.

h N ε2 r

0.4 480 7.88× 10−3 −
0.2 1 806 1.96× 10−3 2.1
0.1 7 446 4.90× 10−4 1.95
0.05 30 054 1.23× 10−4 1.98

To further emphasize the capability of the present method to handle complex surfaces with large defor-
mations, we consider the wave equation on a deforming Armadillo, with no forcing term. The considered
initial conditions are

φ(0) = − cos(x) sin(2y) cos(z) , (50)

φ(−1) = − cos(x− c∆t) sin(2y − c∆t) cos(z − c∆t) . (51)

Furthermore, we set f = 0, c = 7.0, ∆t = 0.01, and h = 0.2 which corresponds to N = 13 828 points at the
initial time. The velocity is given by

~v = −0.3φ~n+

 −0.5x
0.25y

+

 −0.5sign(x)
0
0

 . (52)

The simulation results are shown in Figure 16. The Armadillo stretches along its length as the wave travels
in all directions. The collapsing of the Armadillo along its width triggers the contact detection algorithms,
and results in a topological change in the surface.

5. Conclusion

We presented a novel fully Lagrangian framework to solve PDEs on moving manifolds. A surface is
discretized with a point cloud, with no mesh or surrounding particles to discretize the volume around it.
The method can handle arbitrary movements in the surface including those not prescribed a-priori and those
that cause large deformations in the manifold. Distortions in the point cloud as a result of the evolution
of the surface are fixed with purely local considerations. Similar to the volumetric case, the ease of fixing
distortion is one of the biggest advantages of the moving surface point cloud over the moving surface mesh.
We further presented a robust algorithm for contact handling for surface point clouds, that also enables
simulations with topological changes in the surface.

To solve PDEs on evolving-in-time surfaces, this fully Lagrangian framework was used with a meshfree
Generalized Finite Difference Method to approximate numerical derivatives. The Lagrangian framework
was validated with several numerical experiments with different types of motion. And the applicability of
the overall scheme was illustrated with applications to advection diffusion reaction equations on evolving
surfaces, wave equations on evolving surfaces, and curvature-based geometric flow. This work forms a
foundation for a purely meshfree Lagrangian method for PDEs on moving interfaces, with lots of potential
applications ranging from shell mechanics to flow on curved surfaces.
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Figure 16: Wave equation on a deforming armadillo: Clockwise from top left: At times t = 0 (top left), t = 0.24 (top center),
t = 0.48 (top right), t = 0.72 (bottom right), t = 0.96 (bottom center) and t = 1.2 (bottom left). The points are coloured
according to the solution φ of the wave equation.
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A limitation of the present work is that differential operators are computed on a stationary point cloud
at the beginning of each time step. As a result, achieving higher order accuracy for the overall scheme could
be quite problematic. A possible solution to this could be to use more accurate operator splitting, as done,
for example, in [29]. Another improvement that needs to be explored is the correction of locations of points
added to fill holes in the point cloud. In this paper, we considered the evolution of surfaces in both normal
and tangential directions. However, evolution of particles within a (possibly stationary) surface was not
considered. The extension to the present work to tackle the possibility of evolution within the manifold, for
example for Lagrangian flow on a surface, will be considered in our future work.
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dans le procédé float. Revue Verre, 13(5):28–30, 2007.

[46] S. Nemadjieu. A stable and convergent O-method for general moving hypersurfaces. CASA-report. Technische Universiteit
Eindhoven, 2014.

[47] D. T. Oanh, O. Davydov, and H. X. Phu. Adaptive rbf-fd method for elliptic problems with point singularities in 2d.
Applied Mathematics and Computation, 313:474 – 497, 2017.
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