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CHROMATIC NUMBER OF RANDOM KNESER HYPERGRAPHS

MEYSAM ALISHAHI AND HOSSEIN HAJIABOLHASSAN

Abstract. Recently, Kupavskii [On random subgraphs of Kneser and Schrijver graphs. J. Combin.

Theory Ser. A, 2016.] investigated the chromatic number of random Kneser graphs KGn,k(ρ) and
proved that, in many cases, the chromatic numbers of the random Kneser graph KGn,k(ρ) and
the Kneser graph KGn,k are almost surely closed. He also marked the studying of the chromatic
number of random Kneser hypergraphs KGr

n,k(ρ) as a very interesting problem. With the help
of Zp-Tucker lemma, a combinatorial generalization of the Borsuk-Ulam theorem, we generalize
Kupavskii’s result to random general Kneser hypergraphs by introducing an almost surely lower
bound for the chromatic number of them. Roughly speaking, as a special case of our result, we show
that the chromatic numbers of the random Kneser hypergraph KGr

n,k(ρ) and the Kneser hypergraph
KGr

n,k are almost surely closed in many cases. Moreover, restricting to the Kneser and Schrijver
graphs, we present a purely combinatorial proof for an improvement of Kupavskii’s results.

Also, for any hypergraphH, we present a lower bound for the minimum number of colors required
in a coloring of KGr(H) with no monochromatic Kr

t,...,t subhypergraph, where Kr
t,...,t is the com-

plete r-uniform r-partite hypergraph with tr vertices such that each of its parts has t vertices. This
result generalizes the lower bound for the chromatic number of KGr(H) found by the present au-
thors [On the chromatic number of general Kneser hypergraphs. J. Combin. Theory, Ser. B, 2015.].

Keywords: random Kneser hypergraphs, chromatic number of hypergraphs, Zp-Tucker lemma

1. Introduction and Main Results

For positive integers n and k, by the symbols [n] and
([n]
k

)

, we mean the set {1, . . . , n} and the
set of all k-subsets of [n], respectively. A hypergraph H is a pair (V (H), E(H)), where V (H) is a
finite nonempty set and E(H) is a family of distinct nonempty subsets of V (H). Respectively, the
sets V (H) and E(H) are called the vertex set and the edge set of H. If each edge of H has the
cardinality r, then H is called r-uniform. A 2-uniform hypergraph is simply called a graph. Let H
be an r-uniform hypergraph and V1, . . . , Vr be pairwise disjoint subsets of V (H). The hypergraph

H[V1, . . . , Vr] is a subhypergraph of H whose vertex set and edge set are respectively

r
⋃

i=1

Vi and

E(H[U1, . . . , Ur]) =

{

e ∈ E(H) : e ⊆
r
⋃

i=1

Ui and |e ∩ Ui| = 1 for each i ∈ [r]

}

.

For a positive integer r ≥ 2, the Kneser hypergraph KGr
n,k is a hypergraph which has the

vertex set
([n]
k

)

, and whose edges are formed by the r-sets {e1, . . . , er}, where e1, . . . , er are pairwise
disjoint members of

([n]
k

)

. Kneser 1955 [14] conjectured that for n ≥ 2k, the chromatic number

of KG2
n,k is n − 2k + 2. After more than 20 years, in a fascinating paper, Lovász [17] gave an

affirmative answer to Kneser’s conjecture using algebraic topology. Lovász’s paper is known as
the beginning of the study of combinatorial problems by using topological tools, which is called
topological combinatorics. Later, in 1986, Alon, Frankl and Lovász [6] generalized Lovász’s result
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to Kneser hypergraphs by proving that for n ≥ rk,

χ(KGr
n,k) =

⌈

n− r(k − 1)

r − 1

⌉

.

This result also gives a positive answer to a conjecture posed by Erdős [11]. Schrijver [20] improved
Lovász’s result by introducing a subgraph SGn,k of KG2

n,k, called the Schrijver graph, which is a

vertex critical graph having the same chromatic number as that of KG2
n,k. A stable subset of [n] is

a set A ⊆ [n] such that for each i 6= j ∈ A, we have 2 ≤ |i− j| ≤ n− 2. Let
([n]
k

)

stable
be the set of

all stable k-subsets of [n]. The graph SGn,k = KG
(

[n],
([n]
k

)

stable

)

is called the Schrijver graph.

For a hypergraph H and a positive integer r ≥ 2, the general Kneser hypergraph KGr(H) is an
r-uniform hypergraph with vertex set E(H) and the edge set defining as follows;

E(KGr(H)) = {{e1, . . . , er} ⊆ E(H) : ei ∩ ej = ∅ for each i 6= j ∈ [r]} .

Throughout the paper, for r = 2, we speak about KG(H) and KGn,k rather than KG2(H) and

KG2
n,k, respectively. The r-colorability defect of H, denoted cdr(H), is the minimum number of

vertices should be excluded so that the induced subhypergraph on the remaining vertices is r-

colorable. Note that if we set Kk
n = ([n],

([n]
k

)

), then KGr(Kk
n) = KGr

n,k and cdr(K
k
n) = n− r(k−1)

for n ≥ rk. Dol’nikov [10] (for r = 2) and Kř́ıž [15] improved the results by Lovász [17] and Alon,

Frankl and Lovász [6] by proving χ(KGr(H)) ≥
⌈

cdr(H)
r−1

⌉

. A famous combinatorial counterpart of

the Borsuk-Ulam theorem is Tucker lemma [21]. Matoušek [18] proved Lovász’s theorem by use of
Tucker lemma. He also presented a purely combinatorial proof for Tucker lemma, hence a purely
combinatorial proof for Lovász’s theorem. Ziegler [22] extended Tucker lemma to Zp-Tucker lemma
with a proof which makes no use of topological tools. Using this lemma, Ziegler [22], inspired by
Matoušek’s proof, improved Dol’nikov-Kř́ıž lower bound by a purely combinatorial approach. Next,
Meunier [19] found a variant of Zp-Tucker lemma as an extension of Ziegler’s result, which can be
proved combinatorially as well. Using this lemma, he presented a combinatorial proof of Schrijver’s
result.

Remark. Note that since there is a purely combinatorial proof for Zp-Tucker lemma (Lemma A),
see [19, 22], any combinatorial proof with the help of Zp-Tucker lemma can be seen as a purely
combinatorial proof. In this point of view, all results in this paper are proved purely combinatorial.

Let Zr = {ω1, . . . , ωr} be a cyclic group with generator ω. For an X = (x1, . . . , xn) ∈ (Zr∪{0})n,
an alternating subsequence of X is a sequence xi1 , xi2 , . . . , xik (i1 < · · · < ik) of nonzero terms of
X such that xij 6= xij+1

for each j ∈ [k − 1]. The maximum length of an alternating subsequence
of X is called the alternation number of X, denoted alt(X). We define alt(0, . . . , 0) = 0. For each
i ∈ [r], let Xi be the set of all j ∈ [n] such that xj = ωi, that is, Xi = {j ∈ [n] : xj = ωi}. Note
that, by abuse of notation, we can write X = (X1, . . . ,Xr). For two signed vectors X and Y , by
X ⊆ Y , we mean Xi ⊆ Y i for each i ∈ [r]. Let H be a hypergraph and let σ : [n] −→ V (H) be a
bijection. Define

altr(H, σ, q) = max
{

alt(X) : X ∈ (Zr ∪ {0})n s.t. |E(H[σ(Xi)])| ≤ q − 1 for all i ∈ [r]
}

.

Now, set

altr(H, q) = min
σ

altr(H, σ, q),

where the minimum is taken over all bijections σ : [n] −→ V (H). Throughout the paper, for
q = 1, we would use altr(H) rather than altr(H, 1). The present authors [1], using the extension of
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Zp-Tucker lemma by Meunier [19], improved Dol’nikov-Kř́ıž lower bound by proving that

(1) χ(KGr(H)) ≥
⌈ |V (H)| − altr(H)

r − 1

⌉

.

Using this lower bound, the chromatic numbers of several families of graphs and hypergraphs are
computed, see [1, 2, 3, 4, 5, 13].

1.1. Random Kneser Hypergraphs. Let ρ be a real number, where 0 < ρ ≤ 1. The random
general Kneser hypergraph KGr(H)(ρ) is a random spanning subgraph of KGr(H) containing each
edge of KGr(H) randomly and independently with probability ρ, i.e., each pairwise vertex-disjoint
edges e1, . . . , er ∈ E(H) form an edge of KGr(H)(ρ) with probability ρ. The stability properties
of random Kneser graphs KGn,k(ρ) has been received a considerable attention in recent years, see
for instances [7, 9]. In this regard, Bollobás, Narayanan, and Raigorodskii [9] proved a random
analogue of the Erdős-Ko-Rado theorem. In detail, they proved that for a real number ε > 0 and an

integer function 2 ≤ k = k(n) = o(n
1

2 ), there is a threshold t(n) ∈ (0, 1] such that for ρ ≥ (1+ε)t(n)

and ρ ≤ (1 − ε)t(n), the quantity Pr

(

α (KGn,k(ρ)) =

(

n− 1

k − 1

))

respectively tends to 1 and 0 as

n goes to infinity. They also asked what happens for larger k. Furthermore, they conjectured that
if k

n
is bounded away from 1

2 , then such a random analogue of the Erdős-Ko-Rado theorem should
continue to hold for some ρ bounded away from 1. This conjecture received an affirmative answer
owing to the work by Balogh, Bollobás, and Narayanan [7]. They proved that the random analogue
of the Erdős-Ko-Rado theorem is still true for each k ≤ (12 − ε)n.

In the rest of the paper, for simplicity of notation, for two functions f(n) and g(n), by f(n) ≫
g(n) or g(n) ≪ f(n), we mean lim

n 7→∞

g(n)

f(n)
= 0. Also, the abbreviation a.s. stands for “almost

surely”, which means that the probability tends to 1 as n goes to infinity.
Recently, Kupavskii [16] studied the chromatic number of random Kneser graphs KGn,k(ρ). He

applied Gale’s lemma [12], in a similar fashion as in Bárány’s proof [8] of Lovász’s theorem, to
introduce an a.s. lower bound for the chromatic number of random Kneser graphs KGn,k(ρ). The
following theorem is the main result of Kupavskii’s paper.

Theorem A. [16] Let k = k(n) ≥ 2 and l = l(n) ≥ 1 be integer functions and ρ = ρ(n) ∈ (0, 1] be

a real function such that d = n − 2k − 2l + 2 ≥ 3. Put x =

⌈

(

k+l
k

)

d− 1

⌉

. If for some ǫ > 0, we have

(1− ǫ)ρ > x−2n ln 3 + 2x−1(1 + ln(d− 1)), then a.s. χ(SGn,k(ρ)) ≥ d.

Kupavskii, at the end of his paper, marked the investigation of the chromatic number of random
Kneser hypergraphs KGr

n,k(ρ) as a very interesting problem. In this paper, we shall study the

chromatic number of random general Kneser hypergraphs KGr
n,k(H)(ρ). As the first main result of

this paper, we extend Theorem A to the following theorem.

Theorem 1. Let A = {Hm : m ∈ N} be a family of distinct hypergraphs and set n = n(m) =
|V (Hm)|. Let r = r(n) ≥ 2, t = t(n), d = d(n), and q = q(n) be integer functions, where
(d− 1)(t− 1) + 1 ≤ q ≤ (d− 1)t and let ρ = ρ(n) ∈ (0, 1] be a real function. Then we a.s. have

χ(KGr(Hm)(ρ)) ≥ min

{ |V (Hm)| − altr(Hm, q)

r − 1
, d

}

provided that n ln(r + 1) + rt(1 + ln(d− 1))− ρtr → −∞ as n tends to infinity.
3



Note that if we set n = m, Hn = Kk
n, then KGr(Hn) = KGr

n,k. Consequently, if we set r = 2,

d = n−2k−2l+2, q =
(

k+l
k

)

, and t =

⌈

(

k+l
k

)

d− 1

⌉

, then the previous theorem results in a slightly weaker

version of Kupavskii’s theorem (using Kneser graphs KGn,k instead of Schrijver graphs SGn,k). Also,

in general, for n = m, A =
{

Kk
n : n ∈ N

}

, d =
⌈

n−r(k+l−1)
r−1

⌉

≥ 2, and q =
(

k+l
k

)

, Theorem 1 implies

that if n ln(r + 1) + rt(1 + ln(d− 1))− ρtr → −∞, then a.s. χ(KGr
n,k(ρ)) ≥ min

{

n−altr(Kk
n,q)

r−1 , d
}

.

On the other hand, for the identity bijection I : [n] −→ [n], since q =

(

k + l

k

)

, we have

alt(Kk
n, q) ≤ altr(K

k
n, I, q) = r(k + l − 1).

Consequently, we a.s. have χ(KGr
n,k(ρ)) ≥ min

{

n−r(k+1−1)
r−1 , d

}

= n−r(k+1−1)
r−1 provided that

n ln(r + 1) + rt(1 + ln(d− 1))− ρtr → −∞.

This observation proves the next theorem provided that condition (I) holds. Therefore, to prove
the next theorem, it suffices to consider just the second condition, which is discussed in Section 3.

Theorem 2. Let k = k(n), r = r(n) and l = l(n) be nonnegative integer functions and let ρ = ρ(n)

be a real function, where 2 ≤ r ≤ n
k
and ρ ∈ (0, 1]. For d =

⌈

n−r(k+l−1)
r−1

⌉

≥ 2 and t =

⌈

(

k+l
k

)

d− 1

⌉

, we

have a.s. χ(KGr
n,k(ρ)) ≥ d provided that at least one of the followings holds;

(I) n ln(r + 1) + rt(1 + ln(d− 1))− ρtr → −∞
(II) r(k + l)(lnn+ 1) + rt(1 + ln(d− 1))− ρtr → −∞.

In Theorem A and Theorem 2, we deal with some quite complicated conditions which make this
theorems difficult to use. To get rid of these difficulties, Kupavskii derived some corollaries from
Theorem A having simpler conditions. In detail, he proved that a.s. χ(SGn,k(ρ)) ≥ χ(KGn,k)− 4

provided that ρ is fixed and k ≫ n
3

4 . Also, for any fixed ρ and for n− 2k ≪ √
n, he improved this

lower bound by proving that a.s. χ(SGn,k(ρ)) ≥ χ(KGn,k)−2. With a straightforward computation

and by use of Theorem 2, one can extend Kupavskii’s results to the Kneser hypergraphs KG2
n,k.

In the rest of this section, we consider some special cases of Theorem 2, which are easy to
interpret. In this regard, we prove two corollaries (Corollary 2 and Corollary 3), which not only
extend Kupavskii’s results to random Kneser hypergraphs, but also improve it (when we deal with
the case r = 2).

Corollary 1. Let ρ ∈ (0, 1] be a real number. Also, let k = k(n) and r = r(n) be positive integer

functions, where 2 ≤ r ≤ n
k
. If k ≫ n

r
2r−1 (lnn)

1

2r−1 , then a.s. χ(KGr
n,k(p)) ≥

⌈

n−r(k+1)
r−1

⌉

. In

particular, if n
r−1

r ≫ rn− r2k, then a.s. χ(KGr
n,k(p)) ≥

⌈

n−rk
r−1

⌉

.

Proof. To prove the assertion, it suffices to check that if at least one of two conditions in Theorem 2
holds for l = 2 and l = 1, respectively. Let us first deal with the case l = 2. We prove this case

via Condition (II) of Theorem 2. To this end, we need to show that for d =
⌈

n−r(k+1)
r−1

⌉

and

t =

⌈

(k + 2)(k + 1)

2(d− 1)

⌉

, we have r(k + 2)(ln n + 1) + rt(1 + ln(d − 1)) − ρtr → −∞, which clearly

holds, since r(k + 2)(ln n+ 1) = o(tr) and rt(1 + ln d) ≤ rt(1 + lnn) = o(tr).
4



For l = 1, note that n
r−1
r

r2
≫ d =

⌈

n−rk
r−1

⌉

and for large enough n, we have k ≥ n
2r ; consequently,

t =

⌈

k + 1

(d− 1)

⌉

≫
n
r

n
r−1
r

r2

= r · n 1

r .

Now, we clearly have n ln(r+1) = o(tr) and rt(1+ ln d) ≤ rt(1+ lnn) = o(tr). Using Condition (I)
of Theorem 2, we have the proof completed. �

Next corollary is an immediate consequence of Corollary 1.

Corollary 2. Let ρ ∈ (0, 1] be a real number. Also, let k = k(n) and r = r(n) be positive integer
functions, where 2 ≤ r ≤ n

k
. Then the following assertions hold.

I) If k ≫ n
r

2r−1 (lnn)
1

2r−1 , then a.s.

χ(KGr
n,k(ρ)) ≥

{

χ(KGr
n,k)− 4 r = 2

χ(KGr
n,k)− 3 r > 2.

In particular, if n 6≡ k, k + 1 (mod r − 1), then a.s χ(KGr
n,k(ρ)) ≥ χ(KGr

n,k)− 2.

II) If n
r−1

r ≫ rn−r2k, then a.s χ(KGr
n,k(ρ)) ≥ χ(KGr

n,k)−2. In particular, if n 6≡ k (mod r−1),

then a.s. χ(KGr
n,k(ρ)) ≥ χ(KGr

n,k)− 1.

Note that Kupavskii’s result (Theorem A) provides an a.s. lower bound for the chromatic number
of random Schrijver graphs SGn,k(ρ), while Theorem 2 and Corollary 2 concern the chromatic num-
ber of random Kneser hypergraphs KGr

n,k(ρ). The next theorem can be seen as a complementary
statement for Theorem A.

Theorem 3. Let k = k(n) ≥ 2 and l = l(n) ≥ 0 be integer functions and ρ = ρ(n) ∈ (0, 1] be a

real function such that d = n − 2k − 2l + 2 ≥ 2. Put t =

⌈

(

k+l
k

)

d− 1

⌉

. If r(k + l)(lnn + 1) + rt(1 +

ln(d− 1))− ρtr → −∞, then a.s. χ(SGn,k(ρ)) ≥ d.

Similar to the proof of Corollary 1 and by using Theorem 3 instead of Theorem 2, we can prove
the next corollary, which is an improvement of Kupavskii’s result.

Corollary 3. Let ρ ∈ (0, 1] be a real number and k = k(n) ≤ n
2 be an integer function. If

k ≫ n
2

3 (lnn)
1

3 , then a.s. χ(SGn,k(ρ)) ≥ χ(KGn,k)− 4.

1.2. Coloring With No Monochromatic Kr
t,...,t Subhypergraph. Let r and t be two integers,

where r ≥ 2 and t ≥ 1 and let H be a hypergraph. Also, set Kr
t,...,t to be the complete r-uniform

r-partite hypergraph with tr vertices such that each of its parts has t vertices. Next result concerns
the minimum number of colors required in a coloring of KGr(H) with no monochromatic Kr

t,...,t

subhypergraph. For t = 1, any edge of KGr(H) is a Kr
1,...,1 subhypergraph of KGr(H). Therefore,

for t = 1, any coloring of KGr(H) with no monochromatic Kr
1,...,1 subhypergraph is just a proper

coloring of KGr(H). Note that for t = q = 1, d = n, the next theorem implies Inequality 1.

Theorem 4. Let H be a hypergraph and σ : [n] −→ V (H) be an arbitrary bijection. Also, let d, q, r
and t be be positive integers, where r ≥ 2 and q ≥ (d− 1)(t− 1) + 1. Then any coloring of KGr(H)

with no monochromatic Kr
t,...,t uses at least min

{⌈

n−altr(H,σ,q)
r−1

⌉

, d
}

colors.

For a given positive integer t, let l be the smallest nonnegative integer such that

q =

(

k + l

k

)

≥
(⌈

n− r(k + l − 1)

r − 1

⌉

− 1

)

(t− 1) + 1.

5



Theorem 4 implies that any coloring of KGr
n,k with no monochromatic Kr

t,...,t subhypergraph uses

at least
⌈

n−r(k+l−1)
r−1

⌉

colors. Note that the case t = 1 concludes the chromatic number of Kneser

hypergraphs KGr
n,k.

Plan. This paper is organized as follows. In Section 2, we introduce some tools which will be
needed throughout the paper. Section 3 is devoted to the proof of main theorems. In the last
section, we present a generalization of Theorem A with a purely combinatorial proof which implies
this theorem immediately.

2. Tools

2.1. Random General Kneser Hypergraphs. Let H = (V (H), E(H)) be a hypergraph and
r, s, C be positive integers, where r, s ≥ 2. Also, let σ : [n] −→ V (H) be a bijection. Let M ⊆ V (H)
be an m-set, where σ−1(M) = {i1, . . . , im} and i1 < · · · < im. By σM , we mean the following
bijective map;

σM : [m] −→ M

j 7−→ σ(ij).

Define T = TH,C,s,σ to be a hypergraph with vertex set V (H) and edge set

E(T ) = {M ⊆ V (H) : M 6= ∅ and |M | − alts(H[M ], σM , q) > (s− 1)C} .
The next lemma, for q = 1, is implicitly used in the proof of Theorem 1 in [1]. Also, a similar

lemma is proved in [13]. However, for sake of completeness, we state it here with a proof.

Lemma 1. Let H = (V (H), E(H)) be a hypergraph and r, s, C and q be positive integers, where
r, s ≥ 2. Then for any bijection σ : [n] −→ V (H), we have

altr(T , σ, 1) ≤ r(s− 1)C + altrs(H, σ, q).

Proof. If altr(T , σ, 1) = 0, then there is nothing to prove. Therefore, we may assume that
altr(T , σ, 1) > 0.

For simplicity of notation, without loss of generality, suppose that V (H) = [n] and σ = I (the
identity map). Therefore, for each A = {a1, . . . , am} ⊆ [n] (a1 < · · · < am), we have

IA : [m] −→ A

i 7−→ ai.

In view of the definition of altr(T , I, 1), there is an X = (X1, . . . ,Xr) ∈ (Zr ∪ {0})n with alt(X) =
|X| = altr(T , I, 1) and such that E(H[Xi]) = ∅ for each i ∈ [r]. It implies that Xi 6∈ E(T ) for
each i ∈ [r]. Let I0 be the set of all i ∈ [r], such that Xi 6= ∅. Note that since altr(T , σ, 1) > 0, we
have I0 6= ∅. Consequently, for each i ∈ I0, we have

|Xi| − alts(H[Xi], IXi , q) ≤ (s− 1)C.

It implies that for each i ∈ I0, there is at least one Yi = (Y i,1, . . . , Y i,s) ∈ (Zs ∪ {0})|Xi| such that

• alt(Yi) = |Yi| ≥ |Xi| − (s− 1)C and
• |E(H[IXi(Y i,j)])| < q for each j ∈ [s].

Note that for each i ∈ I0 and each j ∈ [s], we have

Y ij ⊆ {1, . . . , |Xi|} and IXi : {1, . . . , |Xi|} −→ Xi.

For each i ∈ [r] \ I0, set IXi(Y i,1) = · · · = IXi(Y i,s) = ∅. Define

Z =
(

IX1(Y 1,1), . . . , IX1(Y 1,s), . . . , IXr(Y r,1), . . . , IXr (Y r,s)
)

= (Z1, Z2, . . . , Zrs) ∈ (Zrs ∪ {0})n.
6



One can simply see that alt(Z) = |Z|. This implies that

alt(Z) =

r
∑

i=1

s
∑

j=1

|IXi(Y i,j)|

=
∑

i∈I0

|Yi|

≥
∑

i∈I0

(

|Xi| − (s − 1)C
)

≥ |X| − r(s− 1)C
= altr(T , σ, 1) − r(s− 1)C.

In view of the definition of altrs(H, I, q) and since |E(H[Z l])| < q for each l ∈ [rs], we have

altrs(H, I, q) ≥ alt(Z) ≥ altr(T , I, 1) − r(s− 1)C,

as desired. �

Now, we are ready to state the main lemma, which has a key role in the paper. For the proof of
this lemma, we need the following version of Zp-Tucker lemma.

Lemma A. (Zp-Tucker lemma [19, 22]) Let m,n, p, and α be nonnegative integers, where m,n ≥ 1,
m ≥ α ≥ 0, and p is prime. Let

λ : (Zp ∪ {0})n \ {0} −→ Zp × [m]
X 7−→ (λ1(X), λ2(X))

be a map satisfying the following properties:

(i) λ is a Zp-equivariant map, that is, for each ε ∈ Zp, we have λ(εX) = (ελ1(X), λ2(X)),
(ii) for X1 ⊆ X2 ∈ (Zp ∪ {0})n \ {0}, if λ2(X1) = λ2(X2) ≤ α, then λ1(X1) = λ1(X2),
(iii) for X1 ⊆ · · · ⊆ Xp ∈ (Zp ∪ {0})n \ {0}, if λ2(X1) = · · · = λ2(Xp) ≥ α+ 1, then

|{λ1(X1), . . . , λ1(Xp)}| < p.

Then α+ (m− α)(p − 1) ≥ n.

Lemma 2. Let d, q, r, and t be positive integers, where d, r ≥ 2, and q ≥ (d − 1)(t − 1) + 1. Let
H be a hypergraph and � be a total ordering on the power set of V (H), which refines the partial
ordering according to size. Moreover, let σ : [n] −→ V (H) be a bijection. Then for any coloring

c : E(H) −→ [C], where 1 ≤ C < min{n−altr(H,σ,q)
r−1 , d}, there exists an r-tuple (N1, . . . , Nr) with

the following properties;

• N1, . . . , Nr are pairwise disjoint subsets of [n].
• For each j ∈ [r], |E(H[σ(Nj)])| ≥ q.
• For each j ∈ [r], there are t distinct edges e1,j , . . . , et,j ⊆ σ(Nj) chosen from the last q

largest edges in E(H[σ(Nj)]) (according to the total ordering �) such that all edges in
{ei,j : i ∈ [t] & j ∈ [r]} receive the same color c(N1, . . . , Nr) ∈ [C].

Proof. The proof is divided into two parts. First, we prove the theorem when r is prime. Then, we
reduce the nonprime case to the prime case, which completes the proof.

First, assume that r = p is a prime number. Consider an arbitrary coloring c : E(H) −→ [C]

such that 1 ≤ C < min{n−altr(H,σ,q)
r−1 , d}. Without loss of generality and for simplicity of notation,

we may assume that V (H) = [n] and σ = I is the identity map. Set m = altp(H, I, q) + C and
α = altp(H, I, q). Let

λ : (Zp ∪ {0})n \ {0} −→ Zp × [m]
X 7−→ (λ1(X), λ2(X))
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be a map defining as follows.

• If alt(X) ≤ α, then define λ1(X) to be the first nonzero coordinate of X and λ2(X) =
alt(X).

• If alt(X) ≥ α+1, then, in view of the definition of altp(H, I, q), there is at least one i ∈ [p]
such that |E(H[Xi])| ≥ q. Choose ωi ∈ Zp such that

Xi = max{Xj : |E(H[Xj ])| ≥ q},
where the maximum is taken according to the total ordering �. Now, see all edges in
E(H[Xi]) as a chain (according to the total ordering �) and consider the last q edges of
this chain. In other words, if E(H[Xi]) = {e1, . . . , em}, where e1 ≺ · · · ≺ em, then consider
em−q+1, . . . , em. Define c(X) to be the most popular color amongst all colors assigned to
these q edges. If there is more than one such a color, then choose the maximum one. Clearly
the frequency of this color is at least ⌈ q

C
⌉ ≥ t (note that q

C
≥ q

d−1 > t− 1). Define

λ(X) = (ωi, α+ c(X)).

It is straightforward to check that the map λ satisfies Property (i) and Property (ii) of Lemma A.
Since

n− altp(H, I, q) = n− α > (m− α)(p − 1) = C(p− 1),

the map λ does not satisfy Property (iii) of Lemma A. Thus, there is a chain X1 ⊆ · · · ⊆ Xp ∈
(Z ∪ {0})n \ {0}, such that i = λ2(X1) = · · · = λ2(Xp) ≥ α + 1 and |{λ1(X1), . . . , λ1(Xp)}| = p.

Hence, we have {λ1(X1), . . . , λ1(Xp)} = Zp. Let π : [p] −→ [p] be the bijection for which we have

λ1(Xj) = ωπ(j) for each j ∈ [p]. Define Nj = X
π(j)
j ⊆ X

π(j)
p for each j ∈ [p]. Since the sets X

j
p ’s

are pairwise disjoint, the sets Nj’s are pairwise disjoint as well. In view of the definition of λ, for
each j ∈ [p], there are at least t edges e1,j , . . . , et,j ⊆ Nj such that these edges are amongst the last
q largest edges in E(H[Nj ]) and c(e1,j) = · · · = c(et,j) = c(Xj) = i− α. It implies that all edges in
{ei,j : i ∈ [t] & j ∈ [r]} receive the same color i− α. Clearly, for c(N1, . . . , Np) = i− α, the p-tuple
(N1, . . . , Np) has the desired properties.

Lemma 3. If Lemma 2 holds for r = r1 and r = r2, then it holds for r = r1r2.

Proof. Let c : E(H) −→ [C] be a coloring such that

1 ≤ C < min

{ |V (H)| − altr1r2(H, σ, q)

r1r2 − 1
, d

}

.

Note that this implies that C < d. Consider the hypergraph T = TH,C,r2,σ. First, we define a
coloring f : E(T ) −→ [C]. For each M ∈ E(T ), in view of the definition of T , we have

|M | − altr2(H[M ], σM , q) > (r2 − 1)C.

Hence,

1 ≤ C < min

{ |M | − altr2(H[M ], σM , q)

r2 − 1
, d

}

.

Consider the hypergraphH[M ] and the coloring c restricted to the edges ofH[M ]. Let (N1, . . . , Nr2)
be an r2-tuple whose existence is ensured since we have assumed that Lemma 2 is true for r =
r2. Note that N1, . . . , Nr2 are pairwise disjoint subsets of {1, . . . , |M |}. Now, define f(N) =
c(N1, . . . , Nr2). In view of lemma 1, we have

n− altr1(T , σ, 1) ≥ n− r1(r2 − 1)C − altr1r2(H, σ, q)
> (r1r2 − 1)C − r1(r2 − 1)C
= (r1 − 1)C.
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It implies that

1 ≤ C < min

{ |V (T )| − altr1(T , σ, 1)

r1 − 1
, d

}

.

Since Lemma 2 holds for r = r1, if we set t = q = 1, then there are r1 pairwise vertex-disjoint
edges M1, . . . ,Mr1 ∈ E(T ) such that f(M1) = · · · = f(Mr1) = i. Now, for each i ∈ [r1], let
(Ni,1, . . . , Ni,r2) be the r2-tuple, which is used for the definition of f(Mi). Now, one can see that
the r1r2 tuple

P = (N1,1, . . . , N1,r2 , . . . , Nr1,1, . . . , Nr1,r2)

with c(P ) = i has the desired properties. �

By induction, Lemma 3, and the fact that Lemma 2 is true for any prime number r, the proof
is completed. �

2.2. Random Kneser Hypergraphs and Schrijver Graphs. In this subsection, we present two
specializations of Lemma 2, which will be useful for computing the chromatic number of random
Kneser hypergraphs KGr

n,k(ρ) and random Schrijver Graphs SGn,k(ρ).

Lemma 4. Let n, k, r and l be nonnegative integers, where r ≥ 2, k ≥ 1, n ≥ rk, and d =
⌈

n−r(k+l−1)
r−1

⌉

≥ 2. Set t =

⌈

(

k+l
k

)

d− 1

⌉

. Then for any coloring c :
([n]
k

)

−→ [C], where 1 ≤ C < d,

there exists an r-tuple (N1, . . . , Nr) with the following properties;

• N1, . . . , Nr are pairwise disjoint (k + l)-subsets of [n].
• For each j ∈ [r], there are t distinct k-subsets e1,j, . . . , et,j ⊆ Nj such that all members of
{ei,j : i ∈ [t] & j ∈ [r]} receive the same color c(N1, . . . , Nr) ∈ [C].

Proof. Consider an arbitrary coloring c :
([n]
k

)

−→ [C], where 1 ≤ C < d =
⌈

n−r(k+l−1)
r−1

⌉

. Clearly,

the assumption d ≥ 2 implies that n ≥ r(k + l). Define the coloring f : V (KGr
n,k+l) −→ [C] as

follows. For each (k + l)-set L ∈ V (KGr
n,k+l), set f(L) to be the most popular color (with respect

to the coloring c) amongst the members of {A : |A| = k and A ⊆ L} ⊆
([n]
k

)

. If there is more than
one such a color, then choose the maximum one. We already know that χ(KGr

n,k+l) = d. Since

C < d = χ(KGr
n,k+l), the coloring f is not proper. Consequently, there are r pairwise disjoint

(k + l)-sets N1, . . . , Nr ⊆ [n] such that f(N1) = · · · = f(Nr) = i ∈ [C]. In view of the definition of
f , one can simply see that P = (N1, . . . , Nr) with c(P ) = i is the desired r-tuple. �

Also, we can have a similar statement for Schrijver graphs.

Lemma 5. Let n, k and l be nonnegative integers, where n ≥ 2k ≥ 2, and d = n− 2(k+ l− 1) ≥ 2.

Set t =

⌈

(k+l

k )
d−1

⌉

. For any coloring c :
([n]
k

)

stable
−→ [C] with 1 ≤ C < d, there is a pair (N1, N2)

with the following properties.

• N1 and N2 are disjoint stable (k + l)-subsets of [n].
• For j = 1, 2, there are t distinct stable k-sets e1,j , . . . , et,j ⊆ Nj such that all members of
{ei,j : i ∈ [t] & j ∈ [2]} receive the same color c(N1, N2) ∈ [C].

Proof. Consider an arbitrary coloring c :
([n]
k

)

stable
−→ [C], where 1 ≤ C < d = n − 2(k + l − 1).

Define the coloring f : V (SGn,k+l) −→ [C] as follows. For each stable (k + l)-set L ∈ V (SGn,k+l),
set f(L) to be the most popular color (with respect to the coloring c) amongst the members of

{A : |A| = k and A ⊆ L} ⊆
([n]
k

)

stable
. If there is more than one such a color, then choose the

maximum one. Since C < χ(SGn,k+l) = d, there are two disjoint stable (k + l)-sets N1, N2 ⊆ [n]
such that f(N1) = f(N2), which completes the proof. �
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3. Proofs of Main Results

This section is completely devoted to the proof of main results.

Proof of Theorem 1. Assume that at least one of two mentioned conditions in the assertion
of the theorem holds. For an arbitrary m ∈ N, set Hm = H. Let � be a total ordering on the
power set of V (H), which refines the partial ordering according to size. Let σ : [n] −→ V (H) be a
bijection for which we have altr(H, σ, q) = altr(H, q).

The Event E. Define E to be the event that KGr(H)(ρ) has some proper C-coloring for some 1 ≤
C < min

{

|V (H)|−altr(H,σ,q)
r−1 , d

}

. Clearly, to complete the proof, it suffices to show that Pr(E) → 0

as m → +∞.
Consider an arbitrary P = (M1, . . . ,Mr) such that M1, . . . ,Mr are pairwise disjoint subsets of

[n] and |E(σ(Mi))| ≥ q for each i ∈ [r]. Now, for each i ∈ [r], see all edges in E(H[σ(Mi)]) as a
chain according to the total ordering � and consider the last q edges appearing in this chain. Let
Ui = Ui(P ) be set of those edges.

The Event A. Define A(P ) to be the event that for each i ∈ [r], there is a t-subset Vi ⊆ Ui such
that the subhypergraph KGr(H)(ρ)[V1, . . . , Vr] has no edge. Now, define the event A to be the
union of all A(P )’s, i.e.,

A =
⋃

A(P ),

where the union is taken over all P = (M1, . . . ,Mr) such that M1, . . . ,Mr are pairwise disjoint
subsets of [n] and |E(σ(Mi))| ≥ q for each i ∈ [r].

Let c : E(H) −→ [C] be a proper coloring for KGr(H)(ρ), where C < min
{

|V (H)|−altr(H,σ,q)
r−1 , d

}

.

Consider the r-tuple P = (N1, . . . , Nr) whose existence is ensured by Lemma 2. Without loss
of generality, we may assume that c(N1, . . . , Nr) = 1. Now, for each j ∈ [r], see all edges in
E(H[σ(Nj)]) as a chain according to the total ordering � and consider the last q edges appearing

in this chain. Let Uj = {f j
1 , . . . , f

j
q } be set of those edges. For each j ∈ [r], let Vj ⊆ Uj be the

set of edges receiving color 1. Clearly, the subhypergraph KGr(H)[V1, . . . , Vr] is a monochromatic
subhypergraph of KGr(H). Therefore, since c is a proper coloring, KGr(H)(ρ)[V1, . . . , Vr] has no
edge, which implies that A(P ) ⊆ A is happened. Hence, we have E ⊆ A.

Also, note that since Hm’s are distinct, if m → +∞, then n = n(m) → +∞. Consequently, if
we prove that Pr(A) → 0 as n → +∞, then we have Pr(E) → 0 as m → +∞, as desired. First,
note that

Pr(A) ≤
∑

(

q

t

)r

(1− ρ)t
r

≤ (r + 1)n
(

eq
t

)rt
e−ρtr

≤ e−ρtr+n ln(r+1)+rt(1+ln(d−1)),

where the summation is taken over all P = (M1, . . . ,Mr) such that M1, . . . ,Mr are pairwise disjoint
subsets of [n] and |E(H[σ(Mi)])| ≥ q for each i ∈ [r] (Note that the number of such P ’s is at most
(r + 1)n). Thus, if

n ln(r + 1) + rt(1 + ln(d− 1))− ρtr → −∞,

then Pr(A) → 0. This completes the proof. �

The next proof is almost the same as the prior proof. However, for the ease of reading, we state
it here completely.
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Proof of Theorem 2. In view of the discussion before the statement of Theorem 2, it is enough to
consider that Condition (II) holds. For random Kneser hypergraph KGr

n,k(ρ), similar to the proof
of Lemma 1, we shall introduce two events En and An.
The Event En. Define En to be the event that KGr

n,k(ρ) has some proper C-coloring for some

1 ≤ C < d. Clearly, to complete the proof, it suffices to show that Pr(En) → 0 as n → +∞.
Consider an arbitrary P = (M1, . . . ,Mr) ∈ (Zr ∪ {0})n such that M1, . . . ,Mr are pairwise disjoint
(k + l)-subsets of [n]. Let

Ui = Ui(P ) = {A : |A| = k, A ⊆ Mi} ⊆ V (KGr
n,k).

The Event A. Define An(P ) to be the event that for each i ∈ [2], there is a t-subset Vi ⊆ Ui

such that the subhypergraph KGr
n,k(ρ)[V1, . . . , Vr] has no edge. Now, define the event An to be the

union of all An(P )’s, i.e.,

An =
⋃

An(P ),

where the union is taken over all P = (M1, . . . ,Mr) ∈ (Zr∪{0})n such that M1, . . . ,Mr are pairwise
disjoint (k + l)-subsets of [n].

Let c :
([n]
k

)

−→ [C] be a proper coloring for KGr
n,k(ρ), where C < d. Consider the r-tuple

P = (N1, . . . , Nr) whose existence is ensured by Lemma 4. Without loss of generality, we may
assume that c(N1, . . . , Nr) = 1. Let

Ui = {A : |A| = k, A ⊆ Ni} = {f j
1 , . . . , f

j
q },

where q =
(

k+l
k

)

. For each j ∈ [r], let Vj ⊆ Uj be the set of edges receiving color 1. Clearly, the
subhypergraph KGr

n,k[V1, . . . , Vr] is a monochromatic subhypergraph of KGr
n,k. Therefore, since c is

a proper coloring, KGr
n,k(ρ)[V1, . . . , Vr] has no edge, which implies that An(P ) ⊆ An is happened.

Hence, we have En ⊆ An.
Consequently, if we prove that Pr(An) → 0 as n → +∞, then we have Pr(En) → 0 as n → +∞,

as desired. First, note that

Pr(A) ≤
∑

(

q

t

)r

(1− ρ)t
r

≤
(

n
k+l

)r ( eq
t

)rt
e−ρtr

≤ ( ne
k+l

)r(k+l)
(

eq
t

)rt
e−ρtr

≤ e−ρtr+r(k+l)(lnn+1)+rt(1+ln(d−1)),

where the summation is taken over all P = (M1, . . . ,Mr) such that M1, . . . ,Mr are pairwise disjoint
(k + l)-subsets of [n]. (Note that the number of such P ’s is at most

(

n
k+l

)r
). Thus, if

r(k + l)(ln n+ 1) + rt(1 + ln(d− 1)) − ρtr → −∞,

then Pr(An) → 0. This completes the proof. �

Proof of Theorem 3. If we set r = 2 and use Lemma 5 instead of Lemma 4, the proof follows by
almost “copy-pasting” the proof of Theorem 2. �

Proof of Theorem 4. Let c : V (KGr(H)) −→ [C] be a coloring such that KGr(H) has no

monochromatic Kr
t,...,t subhypergraph, where 1 ≤ C < min

{

n−altr(H,σ,q)
r−1 , d

}

. Let ei,j’s be the
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edges whose existence is ensured by Lemma 2. If we set Wj = {e1,j , . . . , et,j}, then the subhyper-
graph KGr(H)[W1, . . . ,Wr] is a monochromaticKr

t,...,t subhypergraph of KGr(H), a contradiction.�

4. Another Extension of Theorem A

Note that Kupavskii’s result (Theorem A) concerns the chromatic number of Schrijver graphs,

while if we use Theorem 1 (set r = 2 and Hm = ([n],
([n]
k

)

stable
)) to obtain a lower bound for

the chromatic number of random Schrijver graphs, then it implies a lower bound which is not as
well as the lower bound stated in Theorem A. Actually, one can see that this lower bound is the
lower bound stated in Theorem A minus one. Motivated by the this discussion, in this section,
we present another extension of Theorem 1, which immediately implies Theorem A. Actually, with
some slightly modifications in the proof of Lemma 2, we can have a similar statement which is
helpful for the case of Schrijver graphs.

Set Z2 = {+,−}. For each X = (x1, . . . , xn) ∈ {+,−, 0}n, define
X+ = {i ∈ [n] : xi = +} and X− = {i ∈ [n] : xi = −}.

Let H be a hypergraph and σ : [n] −→ V (H) be a bijection. Define

salt(H, σ, q) = max

{

alt(X) : X ∈ {+,−, 0}n s.t. min
ε∈{+,−}

(|E(H[σ(Xε)])|) ≤ q − 1

}

.

Now, set
salt(H, q) = min

σ
salt(H, σ, q),

where the minimum is taken over all bijection σ : [n] −→ V (H). For q = 1, we prefer to use salt(H)
instead of salt(H, 1). The present authors [1] proved that n− salt(H) + 1 is a lower bound for the

chromatic number of KG(H). One can simply see that salt
(

[n],
([n]
k

)

stable

)

= 2k − 1. Hence, in

view of last mentioned lower bound, we have an exact lower bound for the chromatic number of
Schrijver graphs SGn,k. Also, as it is expected, we can have the following lemma which is similar
to Lemma 2.

Lemma 6. Let d, q and t be a positive integers, where d ≥ 2 and q ≥ (d − 1)(t − 1) + 1. Let
H be a hypergraph and � be a total ordering on the power set of V (H), which refines the partial
ordering according to size. Moreover, let σ : [n] −→ V (H) be a bijection. Then for any coloring
c : E(H) −→ [C], where C < min{n − salt(H, σ, q) + 1, d}, there is an ordered pair (N1, N2) with
the following properties.

• N1, N2 are pairwise disjoint subsets of [n].
• For j = 1, 2, |E(H[σ(Nj)])| ≥ q.
• For j = 1, 2, there are t distinct edges e1,j, . . . , et,j ⊆ σ(Nj) chosen from the last q largest
edges in σ(Nj) (according to the total ordering �) such that all edges in {ei,j : i ∈ [t] & j ∈
[2]} receive the same color c(N1, N2).

Sketch of Proof. Consider an arbitrary coloring c : E(H) −→ [C] such that 1 ≤ C < min{n −
salt(H, σ, q) + 1, d}. Without loss of generality and for simplicity of notation, we may assume
that V (H) = [n] and σ = I is the identity map. In view of the definition of salt(H, I, q), for any
X ∈ {+,−, 0}n \ {0} with alt(X) ≥ salt(H, I, q) + 1, we have |E(H[Xε])| ≥ q for each ε ∈ {+,−}.
See all edges in E(H[Xε]) as a chain (according to the total ordering�) and consider the last q edges
of this chain and define g(Xε) to be the maximum most popular color amongst colors assigned to
these q edges. Now, set g(X) = max (g(X+), g(X−)). Note that if there is an X ∈ {+,−, 0}n \ {0}
with alt(X) ≥ salt(H, σ, q)+1 and such that g(X+) = g(X−) = i, then for N1 = X+ and N2 = X−,
one can simply see that the pair (N1, N2) with c(N1, N2) = i has the desired properties. Therefore,
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we may assume that g(X+) 6= g(X−) for each X ∈ {+,−, 0}n \ {0} with alt(X) ≥ salt(H, I, q)+ 1.
Note that it implies that g(X) ≥ 2 for each X ∈ {+,−, 0}n \ {0} with alt(X) ≥ salt(H, I, q) + 1.
Set p = 2, α = salt(H, I, q) and m = salt(H, I, q) + C − 1. Now, we are ready to define a map
λ : {+,−, 0}n \ {0} −→ {+,−} × [m]. Consider an arbitrary X ∈ {+,−, 0}n \ {0}. If alt(X) ≤ α,
then define λ(X) = (ε, alt(X)), where ε is the first nonzero coordinate of X. If alt(X) ≥ α + 1,
then set λ(X) = (ε, α + g(X) − 1), where ε is + if g(X+) > g(X−) and is − otherwise. By the
same approach as in the proof of Lemma 2, the proof follows with no difficulty. �

With the same approach as we used to derive Theorem 1 from Lemma 2, we can prove the
following theorem from Lemma 6.

Theorem 5. Let A = {Hm : m ∈ N} be a family of distinct hypergraphs and set n = n(m) =
|V (Hm)|. Also, let t = t(n), d = d(n), and q = q(n) be integer functions, where d ≥ 2 and
(d− 1)(t− 1) + 1 ≤ q ≤ (d− 1)t, and let ρ = ρ(n) ∈ (0, 1] be a real function. Then we a.s. have

χ(KG(Hm)(ρ)) ≥ min {|V (Hm)| − salt(Hm, q) + 1, d}
provided that n ln 3 + 2t(1 + ln(d− 1))− ρt2 → −∞ as n tends to infinity.

Since KG
(

[n],
([n]
k

)

stable

)

= SGn,k and saltKG
(

[n],
([n]
k

)

stable

)

= 2k−1, Theorem 5 implies The-

orem A. Hence, it is a generalization of Theorem A with a combinatorial proof. Also, similar to the
proof of Theorem 2, we have a purely combinatorial proof for the Kupavskii’s heorem (Theorem A).

It might be intriguing that we state Theorem 5 just in the case of graphs while it seems that
these results remain true even for hypergraphs. Actually, For a hypergraph H, we can naturally
generalize salt(H) to saltr(H). However, for any hypergraph H, the value of saltr(H) is equal to
|V (H)|, which clearly makes this generalization useless.

In the proof of Theorem 4, if we set r = 2 and use Lemma 6 instead of Lemma 2, then we have
the following theorem. It should be mentioned that this result is already proved in [1] for t = 1.

Theorem 6. Let H be a hypergraph and σ : [n] −→ V (H) be an arbitrary bijection. Also, let d, q
and t be be positive integers, where q ≥ (d − 1)(t − 1) + 1. Then any coloring of KG(H) with no
monochromatic Kt,t uses at least min {n− salt(H, σ, q) + 1, d} colors.
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