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A B S T R A C T

In contrast to 2-D ultrasound (US) for uniaxial plane imaging, a 3-D US imaging sys-
tem can visualize a volume along three axial planes. This allows for a full view of the
anatomy, which is useful for gynecological (GYN) and obstetrical (OB) applications.
Unfortunately, the 3-D US has an inherent limitation in resolution compared to the 2-D
US. In the case of 3-D US with a 3-D mechanical probe, for example, the image quality
is comparable along the beam direction, but significant deterioration in image quality is
often observed in the other two axial image planes. To address this, here we propose a
novel unsupervised deep learning approach to improve 3-D US image quality. In partic-
ular, using unmatched high-quality 2-D US images as a reference, we trained a recently
proposed switchable CycleGAN architecture so that every mapping plane in 3-D US
can learn the image quality of 2-D US images. Thanks to the switchable architecture,
our network can also provide real-time control of image enhancement level based on
user preference, which is ideal for a user-centric scanner setup. Extensive experiments
with clinical evaluation confirm that our method offers significantly improved image
quality as well user-friendly flexibility.

© 2021

1. Introduction

In contrast to computed tomography (CT) and magnetic reso-
nance imaging (MRI), ultrasound imaging (US) offers real-time
imaging without any radiation risk. As such, US imaging is
useful in many clinical areas, including gynecology (GYN) and
obstetrics (OB).

Commonly used 2-dimensional (2-D) US systems capture
images in a single plane along the direction of incidence of
waves and deliver a high-quality image with the aid of a dense
1-D transducer array. On the other hand, 3-D US imaging sys-
tems can create 3-D images by acquiring three-axis data using
mechanical scanning of 1-D transducers or 2-D array transduc-
ers (see Fig. 1(b)(c)).

Unfortunately, when compared to a 2-D imaging system, 3-
D US has fundamental limitations in terms of its resolution.
For the case 3-D US using 2-D array transducer as shown in
Fig. 1(c), a large number of piezo-elements are necessary to
obtain high-resolution 3-D volume. However, this increases the
bandwidth of the RF data considerably, so that a sparse array
is often used at the expense of reduced image resolution. Al-
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though 3-D US with 3-D mechanical probe using 1-D trans-
ducer scanning as shown in Fig. 1(b) may alleviate this, it also
suffer from anisotropic resolution originated from the mechan-
ical scanning. Specifically, while the axial-lateral plane, called
the A-plane image, has a comparably high quality, the axial-
elevation planes called B and the elevation-lateral planes called
C-plane show degraded resolution. Therefore, quality improve-
ment for 3-D US has become an important issue for ultrasound
manufacturers. In 3-D US with a 3-D mechanical probe, which
is the main imaging platform in our study, one of the simplest
approaches to address this anisotropy in the resolution is to ac-
quire more data along the elevation and lateral direction at the
expense of the scan time. Super-resolution approaches in the
3-D volume domain may be another way to improve resolution,
but they may increase the computational burden significantly,
which is not appropriate for real-time imaging.

Recently, various authors have proposed image enhancement
algorithms and beamformers that use deep neural networks
(Yoon et al. (2019); Khan et al. (2020a); Hyun et al. (2019);
Nair et al. (2018); Brickson et al. (2021); Solomon et al. (2019);
Sharifzadeh et al. (2020); Vedula et al. (2017); Perdios et al.
(2017, 2018); Van Sloun et al. (2019); Luchies and Byram
(2018); Khan et al. (2019); Kokil and Sudharson (2020); Lui-
jten et al. (2020); Sadeghi et al. (2021); Zuo et al. (2021); Huh
et al. (2021); Khan et al. (2021a,b, 2020b); Dietrichson et al.
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Fig. 1. US image generation steps. In the top row, various form of 2-D and 3-D probes are presented. The second row presents the three step procedure of
US imaging: data acquisition, scan-conversion, and visualization. (a) Convex array probe for 2-D US imaging, (b) 3-D mechanical probe by scanning 1-D
convex array, and (c) 2-D matrix array for 3-D US imaging.

(2018)). Most of the existing approaches are based on super-
vised learning that requires matched ground-truth data (Yoon
et al. (2019); Khan et al. (2020a); Hyun et al. (2019); Nair et al.
(2018); Brickson et al. (2021); Solomon et al. (2019); Shar-
ifzadeh et al. (2020); Vedula et al. (2017); Perdios et al. (2017,
2018); Van Sloun et al. (2019); Luchies and Byram (2018);
Khan et al. (2019); Kokil and Sudharson (2020); Luijten et al.
(2020); Sadeghi et al. (2021); Zuo et al. (2021)). Unfortunately,
this approach is not suitable for our 3-D US image enhancement
problem as there are no matched high-resolution 3-D US im-
ages that can be used as ground truths for supervision. Another
important limitation of existing deep learning approaches is that
once the neural network is trained, it is designed to produce the
same level of improvement. So if another level of improvement
is required, additional training is required. This is an important
disadvantage that prevents their widespread acceptance in the
clinical settings, as many radiologists may have different pref-
erences for the level of image enhancement, and the common
practice is to adjust the algorithm parameters according to their
preference. Therefore, it would be very useful if deep learning-
based image enhancement could also provide real-time control
of image quality so that radiologists can choose their preferred
setup.

To address this problem, here we propose a novel 3-D ultra-
sound image enhancement technique that can provide real-time
image enhancement and quality control based on user prefer-
ences, and that can be trained with unmatched high quality 2-
D ultrasound images. In particular, our methodology is based
on the recently proposed switchable CycleGAN architecture
(Gu and Ye (2021); Yang et al. (2021)), which has been used
successfully for various unsupervised learning problems. In
contrast to the standard CycleGAN with two different gener-
ators (Zhu et al. (2017)), the switchable CycleGAN (Gu and Ye
(2021); Yang et al. (2021)) has a single generator whose role
can be controlled by Adaptive Instance Normalization (AdaIN)
code (Huang and Belongie (2017)). In addition to the reduced
complexity due to the common generator, one of the most im-

portant by-products of the switchable CycleGAN is its tuneabil-
ity. In particular, once the network is trained, we can provide
a real-time control of the level of image enhancement by sim-
ply interpolating the AdaIN codes (Gu and Ye (2021); Yang
et al. (2021)). Therefore, this architecture successfully ad-
dresses two fundamental limitations of the existing deep learn-
ing approaches for US: lack of matched reference data and user
preference-based control. Extensive experiments with clinical
evaluation also confirm that the proposed method offers signif-
icantly improved image quality compared to the original 3-D
scan.

This paper is structured as follows. Section 2 provides neces-
sary backgrounds and explains the proposed method. The im-
plementation details of the algorithm are presented in Section 3.
Section 4 provides reconstruction results using various exam-
ples, followed by a discussion in Section 5 and a conclusion in
Section 6.

2. Main Contribution

2.1. 3-D Ultrasound Imaging Systems
US imaging is composed of three steps: data acquisition,

scan conversion and visualization. The data acquisition step
is to collect the radio-frequency (RF) data with a 2-D or 3-D
probe. Scan conversion refers to transforming the shape of the
collected RF data into a predefined shape. The visualization
step creates the final image for display.

As shown in Fig. 1(a), a 2-D system receives RF data using
a 1-D array probe in a plane that has lateral and axial axes. On
the other hand, a 3-D US system captures 3-D information with
lateral, axial and elevation axes. In practice, obtaining 3-D RF
data can be achieved by two representative probes: 2-D array
probe (Yen et al. (2000); Huang and Zeng (2017)), and 3-D me-
chanical probe (Huang and Zeng (2017); Fenster et al. (2001);
Fenster and Downey (1996); Fenster et al. (2011)). The 2-D ar-
ray transducer generates a 3-D convex waveform and then col-
lects return echoes. On the other hand, a 3-D mechanical probe
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with a 1-D array transducer provides a 2-D convex waveform
and sweep to acquire multiple 2-D RF data along the elevation
axis.

Although the 3-D US system provides volumetric informa-
tion with a single attempt, it should be noted that with a 3-D
imaging system, compared to a 2-D system, less information is
captured in each plane. Specifically, it should take tremendous
information in a short period of time, but there is a limitation
in increasing the piezo-elements due to the transmission band-
width. For this reason, less information is used to form the
image of each slice, which causes blurring throughout the im-
age. In particular, 3-D US systems with 3-D mechanical probe,
which is the target system of our study, the elevation axis con-
sists of more sparse data, so that the axial-elevation plane and
the elevation-lateral plane have a lower quality than the axial-
lateral plane. This fundamental difference inevitably leads to a
deterioration in the quality of the visualization process.

Specifically, as shown in Fig. 1, the red-colored plane, the
axes of which are axial-lateral forms the A-plane, which is sim-
ilar to the 2-D acquisition mode, but of lower quality. The
plane with the axial-elevation axes, the color of which is yellow,
forms the B-plane, whereas the plane of the elevation-lateral
axes with blue color forms the C-plane. As mentioned be-
fore, the B-plane and C-plane are reconstructed from a smaller
amount of RF data compared to A-plane, so they lose some de-
tail and suffer from some blurring artifact.

2.2. Unsupervised 3-D US Enhancement Using 2-D US data

Due to the aforementioned fundamental limitations of 3-D
scanning, image quality degradation compared to 2-D US is in-
evitable. To address this problem, we are interested in improv-
ing 3-D US image quality by learning image quality of 2-D US
images. As shown in Fig. 2, the neural network input is a 2-
D image from any plane in 3-D volume, such as A-, B-, or C-
planes, and our goal is to improve their image quality by learn-
ing image quality from 2-D US images.

Fig. 2. Unsupervised learning to learn 2-D US image quality using A-, B-,
and C- plane images from 3-D US.

Unfortunately, obtaining image from same area under the
same condition using 2-D and 3-D probes is impossible, there-
fore supervised training with the paired dataset is not feasible.
For the unsupervised training with unpaired data set, one of the
most powerful tools is the CycleGAN architecture (Zhu et al.
(2017)). Originally proposed for style-transfer for computer vi-
sion applications, CycleGAN has been successfully used for
various bio-medical imaging fields such as CT (Kang et al.
(2019); Li et al. (2019); Gu and Ye (2021); Yang et al. (2021);

Gu et al. (2021)), MRI (Oh et al. (2020); Chung et al. (2021a);
Cha et al. (2020); Modanwal et al. (2020, 2021)), ultrasound
(Khan et al. (2021b); Huh et al. (2021)), and optics (Chung
et al. (2021b); Lim et al. (2020); Lee et al. (2019)). Moreover,
it was shown that CycleGAN learns the optimal transport map
that can transport one probability distribution to another (Sim
et al. (2020)). Accordingly, when applied to our problem, Cy-
cleGAN can be trained to transport the distribution of A-, B-,
and C-plane images from 3-D US to that of the high-resolution
2-D US images.

Furthermore, it was recently shown that CycleGAN can be
synergistically combined with Adaptive Instance Normaliza-
tion (AdaIN) (Huang and Belongie (2017)) so that only a single
generator can be used as a forward and inverse generator (Gu
and Ye (2021); Yang et al. (2021)). By combining with a light
weighted AdaIN code generator, this architecture not only re-
duces the number of trainable parameters to make the training
more stable, but also enables the tuneability which enables the
inference-time control of the neural network output as demon-
strated in low-dose CT denoising (Gu and Ye (2021)) and CT
kernel conversion (Yang et al. (2021)). In the following, we
provide more details of our switchable CycleGAN architecture.

2.3. Switchable Generator using AdaIN Layers
Fig. 3 illustrates the proposed switchable CycleGAN net-

work for 3-D US image enhancement. The network architec-
ture consists of a single generator Gθ and an AdaIN code gener-
ator, Fζ , which are parameterized by θ and ζ, respectively. The
main generator Gθ in the upper left part converts US images in
3-D quality into a 2-D quality domain according to the AdaIN
code created from Fζ . The right part generator returns the fake
2-D quality images to the original 3-D US quality domain, us-
ing a constant AdaIN code K that corresponds to the instance
normalization. There are also two discriminators Dφ and Dϕ,
parameterized by φ and ϕ, respectively, as in the conventional
CycleGAN.

The main mathematical origin of replacing the two gener-
ators with a single baseline network with two specific AdaIN
codes is from the optimal transport theory (Villani (2009);
Peyré et al. (2019)). Specifically, it was shown that the AdaIN
transform corresponds to the optimal transport between two un-
correlated Gaussian probability distribution (Mroueh (2020)).
More specifically, the AdaIN layers take a mean vector cµ and
a standard deviation vector cσ as input:

T (z, Fζ(c)) =
cσ1
σ(z)

(z − µ(z)1) + cµ1, (1)

with (
cµ, cσ

)
= Fζ(c) (2)

where Fζ is the AdaIN code generator, and the c is its input
vector. Then, this corresponds to the optimal transport from
the distribution z ∼ N(µ(z), σ2(z)I) to another distribution
N(cµ1, c2

σI), where N(·, ·) refers to the Gaussian distribution
(Mroueh (2020)).

Accordingly, for the 3-D US quality images to high-quality
2-D US images, we use an auto-encoder as a baseline network
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Fig. 3. Overview of the switchable CycleGAN for 3-D ultrasound image enhancement. The generator Gθ generates the target 2-D quality image from A-,
B-, and C- plane images from 3-D US using the AdaIN code created from the AdaIN code generator, Fζ . The improved images are then transformed into
original image quality through Gθ with constant AdaIN code K. The discriminators Dφ,Dϕ determine whether the image is real or fake.

and then use AdaIN transform to transport the auto-encoder fea-
tures to the 2-D US image features. Similarly, for the translation
from high-quality 2-D US images to 3-D US quality images, the
auto-encoder features are then transported to the 3-D US quality
image features using another AdaIN transform.

In particular, during the 3-D US enhancement task, the mean
and variance vectors for the AdaIN layers are from AdaIN code
generators, whereas for the generator to converting 2-D quality
images to 3-D quality images the AdaIN code is set to a constant
vector K composed of the mean and standard deviation vector
set to zero and one, respectively:

K = (0, 1) (3)

At the inference phase, we use the trained auto-encoder with the
trained AdaIN code generator as the 3-D US image enhance-
ment network so that it gives us an advantage of controlling im-
age quality at the inference phase by interpolating the generated
AdaIN code and the constant vector K:

H(c, α) = (1 − α)K + αFζ(c), 0 ≤ α ≤ 1 (4)

where H(·, ·) is an interpolated AdaIN code between K and
Fζ(c). While the large α value implies more transition to the 2-
D quality features, the small α more preserves 3-D quality fea-
tures. Accordingly, the intermediate level image enhancement
results along the continuous optimal transport path between the
domainY andX are obtained by (Gu and Ye (2021); Yang et al.
(2021))

xα = Gθ(y,H(c, α)). (5)

depending on user-preference, where y denotes the 3-D US
quality input images from A-, B-, or C- planes.

2.4. Network Training
The network training was similar to the conventional Cycle-

GAN. Specifically, the total loss function is represented by

min
θ,ζ

max
φ,ϕ

`total(θ, ζ; φ, ϕ), (6)

where

`total(θ, ζ; φ, ϕ) := λcyc`cycle(θ, ζ)
+ `Disc(θ, ζ; φ, ϕ) + λiden`iden(θ, ζ)

(7)

where the cycle-consistency term is given by

`cycle(θ, ζ) =Ey∼Py [||y −Gθ(Gθ(y, Fζ(c)),K)||1]
+ Ex∼Px [‖x −Gθ(Gθ(x,K), Fζ(c))‖1],

(8)

and the discriminator term is composed of LSGAN loss (Mao
et al. (2017)):

`Disc(θ, ζ; φ, ϕ)

=Ey∼Py [||Dφ(y)||22] + Ex∼Px [||1 − Dφ(Gθ(x,K))||22]

+ Ex∼Px [||Dϕ(x)||22] + Ey∼Py [||1 − Dϕ(Gθ(y, Fζ(c))||22].

(9)

and the identity term is given by

`iden(θ, ζ) =Ey∼Py [||y −Gθ(y,K)||1]
+ Ex∼Px [‖x −Gθ(x, Fζ(c))‖1].

(10)

During the training, the discriminator Dϕ tries to differentiate
between the real image x and the generated image Gθ(y, Fζ(c))
to confirm whether it is real or fake. Similarly, Dφ tries to find
real or fake values between y and Gθ(x,K). It should be noted
that the proposed method has the inter-dependent Gθ and Fζ so
that they should be trained at the same time.

3. Implementation Details

3.1. Network Architecture
As shown in Fig. 4(a), we employed the simple U-Net ar-

chitecture with residual learning. It is composed of three
down-sampling and up-sampling steps. The convolution with
stride 2 is utilized for down-sampling operation. The bilinear-
upsampling with a single convolution layer is used for up-
sampling operation. In the green box, we used the instance
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Fig. 4. The proposed network architecture. (a) The proposed generator architecture. (b) The proposed discriminator architecture.

Table 1. Image Quality Scoring Criteria
Score Conventional US artifact Contrast Overall quality Score Blurring by denoising

5 Subtle Excellent Excellent
2 Substantial (negative effect on image quality)

4 Mild Good Good

3 Moderate Moderate Moderate
1 Minimal

2 Severe Poor Poor

1 Non-diagnostic Non-diagnostic Non-diagnostic 0 None

normalization instead of the batch normalization. The AdaIN
operation is applied in each step with instance normalization
where marked as blue box.

The discriminator is shown in Fig. 4(b). We used PatchGAN
which classifies the local image whether it is real or fake. It is
simply composed of three convolution sets of 4×4 kernel size
with stride 2 and LeakyReLU. The fourth convolution is same
as the previous three convolution steps except for the stride size.
In the last layer, there is only 4×4 convolution with stride 1.

The AdaIN code generator, Fζ , receives constant one vector
of 1 × 128 dimension as input, which is converted into AdaIN
code that has the statistical information of 2-D quality domain.
The AdaIN code generator is simply composed of four fully
connected layers. It has multi-head structure: one convolution
layer for mean and the other layer for variance. There is an ad-
ditional ReLU step for the variance to avoid the negative value.
While the four fully connected layers share their parameters,
the last multi-head layer has its own parameters to generate a
value according to the number of channels in each step. In this
study, the output of AdaIN code generator is 9 pairs of mean
and variance.

3.2. Dataset

The datasets are composed of US image volumes from gy-
necology (n=208) and obstetrics (n=115) for routine clini-
cal check. All subjects underwent US examinations through
WS80A, HERA W10 US machines (Samsung Medison, Seoul,

Korea) using CV1-8AD(1∼8 MHz), CV1-8A(1∼8MHz), V4-
8(4∼8MHz) US probes for GYN examinations and V5-
9(5∼9MHz), EV3-10B(3∼10MHz) US probes for OB exami-
nations, respectively.

Because OB data showed severe heterogeneity in image char-
acteristics according to the fetal age, position and body part, we
decided to use only the GYN data as training input data and all
OB volumes as test data. We divided a total of 208 GYN vol-
umes into 100 for training, 15 for validation and 93 for test. In
each volume, we chose the plane along the three axes around
the center of the volume. A total of 18,424 images were used
for training input and 630 images for validation. In the case of
OB, we used 13 volumes with 567 images for validation and
102 volumes for test. In particular, we tried to acquire different
types of images in order to cover the broad range of structural
properties for the use of GYN training set and OB validation
dataset. For example, we used images of bilateral ovaries and
uterus for GYN training set. In terms of OB validation set, the
whole body images of the first trimester were used, whereas fe-
tal abdomen, extremities, head and spinal images were selected
in case of the second trimester. However, to fair comparison,
we used only ovary region for GYN and head, face region for
OB to evaluate the method.

The target datasets consist of 2-D US images acquired
from WS80A, HERA W10 using C2-6(2∼6MHz), CA1-
7A(1∼7MHz). Only OB datasets are used as these are more
suitable for the purpose of this research such as artifact suppres-
sion and sharp boundary. The images are captured by various
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structures and status. We selected 14,995 images for the target
dataset.

3.3. Training details
To train the network, we used the Adam optimizer with

β = 0.5. The learning rate was started from 1e-4 and decreased
linearly after 10 epochs. We set the total epoch as 50 and se-
lected the 15 epoch which show the best result. We imple-
mented with patch-processing whose size is 256 and the batch
size was 1. To avoid the over-fitting problem, we used data
augmentation technique like flipping, and rotating. The hyper-
parameters were set as 10, 5 for λcyc and λiden, respectively. We
implemented all work on the Python 3.6.12 with Tensorflow
1.14.0 and MATLAB 2017a. We trained the network with the
NVIDIA GeForce GTX 1080 Ti GPU.

3.4. Evaluation metric
A 15-year experienced board-certified abdominal radiologist

(ESL) evaluated the result of the proposed method using a test
set in a blinded manner. Note that the test set was completely
invisible during training. We acquired 93 volumes for qual-
ity assessment, which confined to the ovaries for the consis-
tency of evaluation regardless of subjects’ factor as possible.
Evaluation statistics was implemented for input and result from
α = 0.6, 0.7, 0.8, 0.9.

There are four categories for assessing image quality: 1)
conventional US artifacts, including reverberation, side-lobes,
beam thickness and etc; 2) image contrast, for example, inter-
organ contrast (ovaries and adjacent structures) and intra-organ
contrast (focal lesion contrast within ovaries); 3) blurring by de-
noising process, which means blurred textures and boundaries
frequently seen after usual noise reduction; 4) overall image
quality, determined subjectively. The simple evaluation criteria
and scoring system are listed in the Table. 1. All statistical anal-
ysis were carried out with MedCalc version 20.015 (MedCalc
software).

4. Experimental Results

4.1. Gynecology Results
To validate our proposed method, we applied our algorithms

to real gynecology (GYN) clinical data sets. The results are
shown in Fig. 5. The first row shows the input image. From
the second to the last row, each row refers to the outputs of the
proposed network with different α values. The left column is
the A-plane, which is cut along the elevation axis, the second
and third are the B-plane and the C-plane, respectively, which
are cut along the lateral axis and axial axis, respectively. We
have presented the images from α = 0.6 to α = 0.9, the change
being clearly visible.

As shown in the Fig. 5, the input image is gradually changed
to the target style depending on α, which can be again verified
from the magnified area. The follicle boundaries are not clear
from the input image. However, the proposed method connects
the structures smoothly. The contrast is increased so that the
follicle borders can be clearly seen. In addition, tearing artifacts
in the B-plane is well suppressed and their resolution appears to

be increased. The side lobe artifacts, which is one of the basic
artifact in US image, are clearly visible in the input image. On
the other hand, the proposed method has suppressed it and its
boundaries become sharp and easily discernible as the value of
α is increased.

4.2. Computational Time
Our method is based on a deep neural network, so that after

training the network, the improved images can be generated in
real time. The average computation time of our method is 0.139
seconds when it reconstructs the 968 × 968 image. The time is
only calculated with GPU NVIDIA GeForce GTX 1080 Ti. We
obtained the mean value of the computing time with 270 test
images, half of which consist of GYN and half of OB.

4.3. Clinical Evaluation
A professional abdominal radiologist evaluated the proposed

method according to the criteria of image analysis. We took
about 15 images of the A-, B- and C- planes around the ovarian
region. It was processed with the proposed method using α =
0.6, 0.7, 0.8, 0.9. Then we randomly shuffled the set. We used
93 volumes for clinical test, so there were 1395 mixed sets for
clinical evaluation.

We implemented the Friedman test with the Bonferroni cor-
rection (Friedman (1937); Bonferroni (1936)). The evaluation
results are shown in Fig. 6. The first and second graphs show
the artifact and contrast rating. The third and fourth graphs rep-
resent degree of blurring and the overall quality score. Accord-
ing to artifact and contrast graphs, it can be easily seen that the
higher the value of α, the higher the score. In particular, the
entire proposed method has a high score compared to the input
image. What should be noted here is that even though blur-
ring effect occurs, the overall image quality from the proposed
method overwhelms the input images.

To check how meaningful the statistical information is, we
implemented a p-test with Wilcoxon paired test, which is shown
in the Table. 2 (Conover (1999)). Each a, b, c, d, e denotes the
input and from α = 0.6 to α = 0.9. Each row is the scoring
category. We calculated a p-value that shows how significant
the statistical differences are. The part marked in red is the sta-
tistically significant one. It should be noted that all the results
of the proposed method in overall quality categories show a sig-
nificant difference comparing with the input image.

4.4. Obstetric Results
We tested our algorithm with the OB images that were not

used in network training. The goal was to demonstrate that our
method can be robustly applied to a wide range of datasets.

In Fig. 7, we have visualized the head bone of the fetus. Each
row denotes the input and its output of the proposed method
with different α values. Each column shows the A-, B- and C-
planes. As shown in Fig. 7, the input image has ambiguous
boundaries, in particular its structure in the head bone is not
easy to see. However, the result of the proposed method is that
the internal structure is more visible than the input image. In
addition, its boundary becomes sharp as the value of α is in-
creased. In particular, the side-lobe artifact is well suppressed
according to the α variation.
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Fig. 5. Results of the proposed method for gynecology test set. The first row is the input image. The result image using the proposed method is displayed
from the second to the last row according to the α value variation. The yellow box is the magnified region.

Fig. 6. Clinical evaluation results. Each statistic is calculated using the Friedman test with Bonferroni correction. The first and second graphs are artifact
and contrast values. The third and fourth graphs are the blurring effect and the overall quality score. Each bar in the chart shows the input and results of
the proposed method from α = 0.6 to α = 0.9.

Table 2. Wilcoxon paired test result
Score Category a & b a & c a & d a & e b & c b & d b & e c & d c & e d & e

Artifact 0.0471 0.0290 < 0.0001 < 0.0001 0.8233 0.0091 < 0.0001 0.0294 < 0.0001 < 0.0001
Contrast < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0468 < 0.0001 < 0.0001 0.0017 < 0.0001 0.0139
Blurring 0.0046 < 0.0001 < 0.0001 < 0.0001 0.0003 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Overall Quality 0.0214 0.0011 < 0.0001 < 0.0001 0.3854 0.1223 0.0191 0.4081 0.2319 0.6175

a : Input, b : α = 0.6, c : α = 0.7, d : α = 0.8, e : α = 0.9.
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Fig. 7. Results of the proposed method using obstetric test set. The first row is the input image. The result images using the proposed method are displayed
from the second to the last row as a α value change. The yellow box is the magnified region.

5. Discussion

5.1. Comparison with conventional CycleGAN

The proposed method is based on the CycleGAN. However,
one of the big problems with applying traditional CycleGAN
to this task is that the level of translation in 2-D quality cannot
be controlled as desired. This means that once the network is
trained, the input image is translated into 2-D quality directly.
Unfortunately, there is a lot of concern that too much changes
in image quality makes sense of disparity for most radiologists.
It also leads to unacceptable changes in the image that hinder an
accurate diagnosis. For this reason, we believe that our Switch-
able CycleGAN is very useful.

Specifically, the comparison results are shown in Fig. 8. We
visualized OB A-, C- planes and GYN A-, C- planes. The first
column is the input image and the second, third column are the
results of the proposed method and CycleGAN. Both the pro-
posed method and the CycleGAN results show an improvement
in image quality such as noise reduction and contrast enhance-
ment. However, as can be seen in the first row where the red
arrow is pointing, the bone is emphasized too much by Cycle-
GAN. It leads to misinterpretations in the case of biparietal di-
ameter assessment. In the second row, the red arrow points to

the float in the amniotic fluid. It contains important information
to interpret the status of the fetus. For example, the movement
of the particles can be crucial criteria to diagnose the diges-
tive system disorders. However, the CycleGAN recognized this
as a noise and suppressed it. On the other hand, the proposed
method retains it with high contrast, in particular it can be more
visible by controlling the α value. In the third and fourth rows,
the red arrow points to the ovarian structure, which can deter-
mine the status of the follicle. Since the 2-D quality emphasizes
the contrast too much, it sometimes suppresses the weak signal.
As you can see in the third and fourth rows, the structure be-
comes invisible in the CycleGAN result. On the contrary, the
proposed method shows sharp boundaries compared to the in-
put image.

5.2. Spatial Control
Another great advantage of the proposed method is that the

user can select the area to be improved. Since AdaIN changes
its content feature map using the style statistics generated by
the AdaIN code generator, the user can control it spatially. As-
sume there is a mask like in the first row of Fig. 9. There are
four areas marked as green, purple, blue, and orange. Instead
of applying the masking procedure four times, our method can
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Fig. 8. The comparison result between the proposed method and standard CycleGAN. The first and second rows are obstetric A- and C- planes. The
third and fourth rows are gynecology A- and C- planes. The first columns denotes the input image. The second and third columns are the result from the
proposed method and the CycleGAN, respectively. The differences seen at the red arrows are discussed in the main text.

easily generate a spatially enhanced image with a single feed-
forward process. Specifically, the mask enters the network with
the image. Then it is multiplied by the content feature map
to normalize only the selected area of with a certain α value
through AdaIN code interpolation. Accordingly, we can apply
four different α values to four different regions with a single
feed-forward network.

As shown in Fig. 9, when the mask area in the top row is
applied to each image, the proposed method naturally produces
spatially varying quality improvement. This provides more na-
ture views with only enhancing area with diagnostic interest.

5.3. 3-D Volume Rendering

In order to verify the effect of the proposed method in the 3-
D volume image, we generated a 3-D rendering view with the
system Paraview 5.10.0. In Fig. 10, we have shown two GYN
and OB volume data sets. The first row is an input image and
the second row is output by the proposed method. We have all
generated A-plane images that are cut along the elevation axis
and fed into the trained network. Then the output planes are

concatenated along the elevation axis to acquire original vol-
ume data. All inputs and proposed paired volume images were
visualized using the same intensity scale.

As shown in Fig. 10, the structure boundaries are clearer in
the proposed volume than in the input volume. In particular, the
side-lobe artifact has been suppressed and its structure is then
better visible. While artifacts are shown in input volume images
which is highlighted as a yellow box at the top of the image,
the proposed method suppresses well. The arm and head of
the fetus are more clearly visible compared to the input volume
image. In the fourth column in particular, the spine of the fetus
can hardly be found on the input volume image, but it is easy to
identify with the proposed method.

6. Conclusion

Compared to the 2-D systems, the 3-D US can acquire signif-
icant rich information in a single trial. However, due to their im-
age generation process, the 3-D US imaging suffers from dete-
riorated image quality. To overcome this problem, we proposed



10 J. Huh et al.

Fig. 9. Spatial control results. The first row is the mask that shows where
and which α value was applied. The second and third rows are the input
and output, respectively. The first column is gynecology dataset and the
second column is obstetric dataset.

a 3-D US image enhancement method based on the Switchable
CycleGAN that translates the A-, B-, and C- planes of 3-D US
into high-resolution 2-D image quality. Thanks to the use of
AdaIN, a single network could translate images at any planes
in 3-D US into the high-quality images, and also provided con-
tinuous translation between the input and target domain. Using
extensive experiments with clinical evaluation, we have con-
firmed that the proposed method can improve 3-D US from low
quality to high quality. In addition, we have certified the ro-
bustness of the proposed method through tests with completely
invisible data sets such as obstetric datasets. Furthermore, we
confirmed that the tunable nature of our method is very useful
for clinical purpose by avoiding over-smoothing clinically use-
ful features and provide a user-centric control of image quality
depending on user’s preference. Thanks to the outstanding per-
formance and flexibility, we believe that the proposed method
can be a useful platform for clinical 3-D US systems.
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