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Abstract

Connectivity modeling in functional neuroimaging has become widely used method of analysis for 

understanding functional architecture. One method for deriving directed connectivity models is 

Group Iterative Multiple Model Estimation (GIMME; Gates & Molenaar, 2012). GIMME looks 

for commonalities across the sample to detect signal from noise and arrive at edges that exist 

across the majority in the group (“group-level edges”) and individual-level edges. In this way, 

GIMME obtains generalizable results via the group-level edges while also allowing for between 

subject heterogeneity in connectivity, moving the field closer to obtaining reliable personalized 

connectivity maps. In this article, we present a novel extension of GIMME, confirmatory 

subgrouping GIMME, which estimates subgroup-level edges for a priori known groups (e.g. 

typically developing controls vs. clinical group). Detecting edges that consistently exist for 

individuals within predefined subgroups aids in interpretation of the heterogeneity in connectivity 

maps and allows for subgroup-specific inferences. We describe this algorithm, as well as several 

methods to examine the results. We present an empirical example that finds similarities and 

differences in resting state functional connectivity among four groups of children: typically 

developing controls (TDC), children with autism spectrum disorder (ASD), children with 

Inattentive (ADHD-I) and Combined (ADHD-C) Type ADHD. Findings from this study suggest 

common involvement of the left Broca’s area in all the clinical groups, as well as several unique 

patterns of functional connectivity specific to a given disorder. Overall, the current approach and 

proof of principle findings highlight a novel and reliable tool for capturing heterogeneity in 

complex mental health disorders.
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Introduction

In recent decades, functional neuroimaging has become an increasingly widely used tool for 

investigating a variety of cognitive behaviors as well as both medical and psychological 

disorders. One specific use of functional imaging is in determining differences in brain 

processes between groups of subjects, such as comparing children diagnosed with autism to 

typically developing controls with regard to functional activation or connectivity.

Functional connectivity approaches have emerged as powerful tools for studying group 

differences in functional organization. However, within the functional connectivity 

framework there are many different methodologies for analyzing group differences, each of 

which have advantages and disadvantages. Many times, investigators interested in assessing 

functional connectivity begin by starting with a graph, or a matrix form that indicates how 

brain regions relate to each other across time. Using a correlation matrix of 

contemporaneous (i.e., lag-0) relations between regions of interest (ROIs) represents the 

most common approach for arriving at such graphs. Here, the correlation coefficients are 

considered “edges,” where the brain regions themselves are considered nodes. The use of 

correlation matrices for group comparisons has limitations – primarily, each paired 

relationship does not take into account the potential influence of other regions (Marrelec et 

al., 2006; Varoquaux & Craddock, 2013). Methods which do consider indirect effects such 

as partial correlations, have been considered as ways to handle this issue (Smith et al., 

2011); however, the use of partial correlations must also be cautioned since each estimated 

coefficient between two given regions has arbitrarily controlled for every other region’s 

potential influence. This heavy-handed approach could cause true edges among regions to be 

missed due to suppression effects (Kutner, Nachtsheim, Neter, & Li, 2005).

A different set of methods, causal search algorithms, provides a means to both account for 

indirect effects, as well as induce sparsity. These algorithms take the BOLD time series of 

the ROIs of interest and return a sparse, directed weighted functional connectivity1 matrix 

that contains only edges that most parsimoniously describe the overall pattern of functional 

connectivity for a subject. A number of desirable qualities emerge. By being directed, the 

algorithms test whether a putative causal relationship exists between two given regions after 

controlling for other relevant brain regions. Additionally, these algorithms provide weighted 

edges, enabling inferences as to whether a given region inhibits (i.e., is negative) or excites 

(positive) another region. The sparsity in these connectivity patterns differs from the sparsity 

induced in correlation and partial correlation approaches in important ways. For one, the 

sparsity is arrived at without the need to arbitrarily threshold at a given value as is often done 

in correlation-based approaches. When using causal search algorithms, sparsity is identified 

through a data-driven approach, rather than specified a priori or inferred post hoc. Two, 

rather than control for all possible influences from other brain regions (as in partial 

correlation) or none of them (as in correlation), estimates obtained from causal search 

algorithms control for only those regions that have been found to have an effect on the target 

1In following convention and technical definitions, “directed functional connectivity” is used rather than “effective connectivity” since 
the latter requires modeling of causal influences which typically requires the probing changes in connectivity patterns in the presence 
of experimental manipulation (Friston, 2011).
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variable. In this way, bias in the estimate is reduced by considering third-party variables but 

suppression is less likely to happen. Three, rather than being symmetric and providing the 

presence of a bidirectional relation, these algorithms ascertain which brain region explains a 

statistically significant amount of variability in a given brain region (controlling for other 

possible regions). Together, these benefits attend more closely to the underlying hypotheses 

of interest in connectivity analysis by detecting relations among brain regions in ways that 

decrease the likelihood of spurious edges and false negatives (Mumford & Ramsey, 2014).

There are a variety of causal search algorithms used in fMRI research (for review see: Henry 

& Gates, 2017), and here we use a novel variant of one of the algorithms found to be most 

reliable: Group Iterated Multiple Model Estimation (GIMME; Gates and Molenaar, 2012). 

We term the variant Confirmatory Subgrouping GIMME (CS-GIMME) since predefined 

classifications of individuals will be taken into account during the model search procedure. 

Prior to the inception of GIMME, Smith and colleagues (2011) revealed that most analytic 

approaches for arriving at directed patterns of connectivity perform poorly when individual-

level analysis is conducted. GIMME performed as well as the best approaches in the 

simulations of Smith and colleagues (2011) in terms of determining the presence of a 

connection, with the added benefit of being uniquely able to detect the directionality of 

effects (Gates & Molenaar, 2012).

Additionally, GIMME is one of few techniques that do not assume this homogeneity in brain 

processes. Said differently, GIMME does not presuppose that brain processes are ergodic 

when looking across individuals (see Molenaar, 2004). The algorithm achieves this by not 

forcing models to be similar across individuals. It does look for similarities, should they 

exist, in patterns of edges across individuals in order to detect signal from noise at the start 

of the algorithm. Looking for edges that replicate across the majority of individuals 

improves the reliability of the results for the search for individual-level, or unique, edges 

(Gates & Molenaar, 2012). By contrast, methods that aggregate individuals that are 

heterogeneous in their dynamic processes lead to spurious results that may fail to describe 

any one individual in the sample (Molenaar & Campbell, 2009). Because of this quality, 

reliable group- and individual-level edges are obtained from GIMME at rates higher than 

most competing approaches. GIMME has been highlighted as one of the best options 

available for recovering the presence of individual-level edges (Mumford & Ramsey, 2014), 

due to its high rate of recovery in both the presence of edges and the direction of those 

edges, and has been used in fMRI studies with focuses ranging from language processing 

(Yang, Gates, Molenaar, & Li, 2015) to substance use (Beltz et al., 2013; Zelle, Gates, Fiez, 

Sayette, & Wilson, 2017) and clinical diagnoses (Gates, Molenaar, Hillary, Ram, & Rovine, 

2010; Price et al., 2017).

The current manuscript extends GIMME by also searching for subgroup-level edges that 

exist for predefined (i.e., user-specified) subsets of individuals. Following the heuristic for 

the group-level edge search, the subgroup-level search identifies patterns of edges that exist 

for the majority of individuals in each subgroup. Prior work has suggested that searching for 

similarities across smaller subsets of individuals using the same algorithmic approach within 

GIMME further improves recovery of edges (Gates, Lane, Varangis, Giovanello, & 

Guiskewicz, 2017; Lane, Gates, Pike, Beltz, & Wright, In Press). A critical benefit of this 
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approach is that it is possible to have no subgroup-level edges - the algorithm only returns 

them if they truly exist. At the end of the model searches, all individuals have unique 

estimates for the group- and subgroup-level edges, in addition to unique edges if needed to 

explain variance in the brain regions. Simulated data studies have demonstrated that the 

algorithm within GIMME for arriving at subgroup-level edges can recover them at very high 

rates (Gates et al., 2017; Lane et al, In press). A drawback of these previously investigations 

is that the user was not able to a priori define the subgroups. With CS-GIMME, a novel 

extension to GIMME developed for use in the present paper, the researcher has control over 

how the participants are organized into subsets for comparisons.

CS-GIMME provides several additional advantages over other network neuroscience 

methods of analysis for examining group differences. As it provides both whole sample level 

edges (i.e., common between groups), as well as subgroup level edges (i.e., unique to a given 

group), researchers can describe differences in the strength of common connections in 

addition to the presence or absence of edges. It must be stressed that searches for edges that 

exist on the group or subgroup levels do not assume that the individuals share 

commonalities. Rather than force them to be estimated for all individuals (as is done in 

multilevel approaches and concatenation), CS-GIMME simply detects them if they are there 

by using an effective method for detecting signal from noise. Furthermore, CS-GIMME 

allows for the analysis of an arbitrary number of groups, pooling information from all 

groups to discover common functional connectivity. This allows for a principled positive 

control analysis, where for example, in addition to analyzing differences from typically 

developing patients, one can compare between clinical groups as well in the same analysis 

while also assessing similarities across all groups.

This article is structured as follows; first we describe CS-GIMME in detail, and describe 

various tuning parameters that govern its behavior. Second, we apply CS-GIMME to an 

empirical dataset of resting state scans of typically developing controls (TDC), children with 

attention deficit hyperactivity disorder combined subtype (ADHD-C), children with 

attention deficit hyperactivity disorder inattentive subtype (ADHD-I) and children with 

autism spectrum disorder (ASD). In this study, we expand on the base output of CS-GIMME 

and describe several inferential techniques to better evaluate specific group differences. 

Finally, we summarize the findings from the empirical example, and discuss other use cases 

for CS-GIMME, as well as several limitations.

Confirmatory subgroup GIMME:

CS-GIMME extends the original GIMME (Gates & Molenaar, 2012) and is implemented in 

the R package gimme, (Lane et al., 2018). The overarching modeling framework is the 

unified Structural Equation Model (uSEM; Gates et al., 2010; Kim et al., 2007), a model that 

incorporates both lagged and contemporaneous directed edges among brain regions. 

Modeling contemporaneous edges is crucial for fMRI studies due to the low temporal 

resolution. The heavy reliance of contemporaneous edges in functional connectivity 

approaches (e.g., correlational and ICA) plus results from simulated data studies (Smith et 

al., 2011) support this notion. However, including lagged edges is also important. For one, 

the measurements used from fMRI studies are based on processes that are known to be 
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autocorrelated due to the hemodynamic response to neuronal activity (Logothetis, 2008), so 

omitting these known influences on the signal likely would result in biased estimates. Two, 

including autoregressive (AR) relations enables Granger causality testing (Granger, 1969). 

Briefly, if a brain region Y is said to “Granger cause” another region Z, that means that 

region Y can explain variability in Z after taking into account the AR effect for region Z. By 

including the AR effects via lagged edges early in the model building process GIMME 

detects directionality at higher rates than if they were omitted (Lane et al., In Press).

The general uSEM may be formally defined as:

ηt = Aηt + ϕηt − 1 + ζt

where A is a p × p matrix containing the directed contemporaneous edges among p brain 

regions (with a zero diagonal to prevent contemporaneous self-prediction), ϕ is a p × p 
matrix containing the lagged edges among p brain regions with AR effect estimates on the 

diagonal, η is the p × 1 observed time series of brain activity at time t, and the p × 1 vector ζ 
contains residuals with a mean of zero and diagonal covariance matrix. The residuals are 

assumed to be white noise processes and thus contain no temporal dependencies. The 

intercept is omitted here for clarity in presentation but would exist if the data are not mean-

centered.

These edges can be decomposed for each individual into group-, subgroup-, and individual-

level relations. That is, certain edges exist for the entire sample; certain edges exist within a 

given subgroup k; and certain additional edges exist for a given individual i. This 

decomposition can be expressed as:

ηi, t = Ai + Ai, k
s + Ai

g ηi, t + ϕi + ϕi, k
s + ϕi

g ηi, t − 1 + ζi, t

Here, A, ϕ, and ζ are defined as before, where the superscripts s and g indicate that these 

edges exist at the subgroup- and group-level, respectively. Importantly, should no subgroup 

division exist (i.e., all individuals are in one “subgroup”), this matrix will only contain zeros 

for individuals in that subgroup. Parameter matrices A and ϕ that lack a superscript denote 

matrices containing only estimates for the individual-level pattern of edges. Finally, the 

subscript i on all matrices indicates that each edge is estimated at the individual-level, even 

in the cases where there are group- and subgroup-level patterns of edges.

Group-level search.—The ultimate goal of CS-GIMME is to find patterns of edges that 

tend to exist for the entire sample, patterns of edges that exist for previously defined 

subgroups of individuals, and additional edges that may exist for particular individuals. In 

this way, signal is detected from noise and the models are not driven entirely by individual 

nuances. If one were to approach the data-driven search the opposite way by first arriving at 

individual-level models and then assessing similarities for the sample and the subgroups, the 

inferences may be driven by noise due to nuances in the individual-level data and potential 

for any algorithm to model noise. By looking for consistencies across individuals in early 

steps of the data-driven search CS-GIMME detects signal from noise – first at the sample (or 
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group) level, then at the subgroup level. The reliably-obtained group-level and subgroup-

level edge patterns in turn greatly aid in accurately recovering individual-level edges (Lane 

et al., In Press). Full details of the model selection procedure can be found in Gates and 

colleagues (2017). Here, we briefly describe the relevant steps. The model selection 

procedure is implemented in the freely distributed R package, gimme (Lane et al., 2018), 

which now allows for both traditional GIMME and CS-GIMME to be implemented.

The group-level search is guided by the use of modification indices (MIs), related to 

Lagrange multipliers (Engle, 1984), which are scores that indicate the extent to which the 

addition of a potential edge will improve the overall model fit for that individual (Sörbom, 

1989). As MIs are asymptotically chi-square distributed, significance can be directly tested 

for each MI. It has previously been suggested that models built using MIs need to be 

replicated to demonstrate consistency of relations (MacCallum, 1986). As such, GIMME 

only includes edges at the group level that exist across the majority of individuals. The 

GIMME algorithm begins by counting, for each edge, the number of individuals whose 

models would significantly improve should that edge be freely estimated. This results in a 

count matrix, and the element from the constrained set that the edge with the highest count is 

selected. Due to the testing of MIs across all individuals, the criterion for significance uses a 

strict Bonferroni correction of, α = .05/N, where N = the number of individuals. This starkly 

contrasts methods that identify edges to include in the group model by looking at the 

average of edge weights, as the GIMME approach cannot be influenced by outlier cases and 

is impervious to sign differences (such as large absolute values for all individuals that are 

negative for some individuals and positive for others). In fact, information regarding the sign 

of the weight is not used in the group-level search—here, only the absolute magnitude is 

considered. Should there be a tie in the count of significant MIs then the algorithm selects 

the element with the highest sum of MIs taken across all individuals. The selection of group-

level edges terminates when no edge is significant for a prespecified proportion of 

individuals that is considered the majority (see below for a discussion on this in the “Tuning 

Parameters” subsection). By requiring the edges be significant for a majority of individuals 

GIMME ensures the final group-level edges truly apply to the individuals in the sample. 

Other aggregation approaches may lead group-level relations that do not describe a given 

individual in the sample (Molenaar, 2004).

Confirmatory Subgroup-level search.—Following the identification of the group-level 

edges (i.e., edges that replicate for the majority of the sample), CS-GIMME conducts the 

search for edges that exist for the majority of individuals in each respective subgroup. CS-

GIMME searches for subgroup-level edges in a similar manner to the group-level search by 

using MIs to guide the addition of edges. Beginning with the group-level edges as the new 

null model from which to search, CS- GIMME identifies the edge that, if estimated for 

everyone in that subgroup, would improve the greatest number of individuals’ model fits. 

The addition of the edge must improve the majority of individuals’ model fits as indicated 

by Bonferroni corrected p-values obtained from the MI tests. Again, the threshold for what 

constitutes the “majority” for the subgroup can be defined by the researcher. Once identified, 

this edge is then estimated for everyone in the subgroup, with each edge parameter estimated 

uniquely for each. The procedure stops adding edges to the models once there are none that 
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will improve the model for the majority of individuals in that subgroup. Finally, using the 

group- and subgroup-level edges as null models for individual-level searches, CS-GIMME 

searches for any additional edges that are needed to best explain each individual’s functional 

connectivity. Here, MIs are again used and edges with significant MIs are added in a feed-

forward iterative fashion. This method for arriving at subgroup-specific paths has been 

extensively evaluated using simulation studies (Gates et al., 2017; Lane et al., In Press) but 

has yet to be available for predefined subgroup classifications. Nonetheless, as CS-GIMME 

is an extension of the GIMME algorithm, it inherits GIMME’s robustness. A comprehensive 

independent review of causal search methods concluded that GIMME performs as well as 

competing algorithms out there, and in some cases offers advantages (see Mumford & 

Ramsey, 2014). The search algorithm used for subgroup-level paths is the same as that used 

at the group level.

Discussion of tuning parameters for group and subgroup level edges.—The 

group and subgroup-level edge selection processes both require setting thresholds for what is 

considered the “majority”. Informed by prior research and simulations, the default cutoff for 

the majority threshold for the group-level search is 75% since this value resulted in 

exceptionally good recovery of the data-generating models (Gates & Molenaar, 2012). Smith 

et al. (2011) note that the ability to detect signal from noise in data simulated to emulate 

fMRI data varies according to the length of the series. They found in their simulations that 

the best method can be expected to detect the presence of edges 95% of the time when block 

length is 10 minutes, 77% of the time when it is 5 minutes, and 59% of the time when the 

block length is 2.5 minutes. Of course, these rough guidelines will be influenced by the 

repetition time for scans since the power to detect effects relies on the length of the time 

series. In the GIMME function available in R, the researcher can easily adjust this value if a 

more or less strict criterion is desired by adjusting the “groupcutoff =” argument. 

Historically, the subgroup-level edges have used a looser criterion for the majority threshold. 

The rationale here is that the subgroups may be smaller, and reaching a majority threshold as 

high as 75% may require that almost all the of the individuals in the subgroup has the edge 

(e.g., 6 out 7 individuals would have to have an edge for it to be above this threshold). While 

the default is that over 50% of the individuals must have a significant edge (as suggested by 

the corresponding MI) for it to be added to the subgroup-level model, this can be adjusted by 

the researcher by changing the “subcutoff =” argument in the gimme function. We suggest a 

stricter threshold for the use of CS-GIMME, such as .75, as in this case the groups are 

known a priori, and recovery of consistent subgroup level paths is the goal of the analysis 

and the researcher likely has adequately-sized subgroups based on their study design.

Discussion of optimal sample sizes for CS-GIMME.—For functional neuroimaging 

studies both the number of time points and the number of individuals must be considered. In 

terms of the number of time points, GIMME has been previously shown to have excellent 

path presence recovery (92–100%) in simulated data with numbers of time points as low as 

50 (2.5 minutes of data at TR of 3 seconds, see Smith et al., 2011) while GIMME’s ability to 

distinguish the directionality of paths begins to suffer by being no better than chance (Gates 

& Molenaar, 2012). Accurate recovery of both the presence and direction of edges occurs 

consistently with 200 time points (using simulated data from Smith et al., 2011 and in Gates 
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et al., 2017). Regarding the number of participants, the algorithm for detecting signal from 

noise in the edges performs well with as few as 10 individuals (Gates & Molenaar, 2012). 

Given these results, we suggest that the minimum sample size requirements to use CS-

GIMME are as follows: at least 10 subjects per confirmatory group, with at least 200 time 

points (e.g., 400 seconds with a repetition time of 2 seconds) remaining after motion 

correction. We stress that these are minimal suggested requirements, with accuracy and the 

power to detect relations improving with larger numbers of individuals and time points.

Comparing TDC, ASD, ADHD-I and ADHD-C

In this section we apply CS-GIMME to a dataset consisting of resting state scans for age, 

gender and IQ matched typically developing children and children with ASD, ADHD-C or 

ADHD-I. This dataset provides an ideal case to demonstrate the utility of the CS-GIMME 

approach for analyzing differences (and similarities) in directed functional connectivity 

between a variety of groups. First, we present a brief overview of the disorders, along with a 

rationale for the following analysis.

ASD and ADHD: ASD and ADHD are neurodevelopmental disorders. In terms of 

prototypical symptomology, ASD and ADHD exhibit different profiles, with ASD being 

characterized by delays in social communication/language along with restricted interests 

and/or repetitive behaviors (Constantino & Charman, 2016), while ADHD manifests as 

solely inattentive/disorganized or both inattentive/disorganized and hyperactive/impulsive 

behaviors (American Psychiatric Association, 2013; Matthews, Nigg, & Fair, 2013). 

Controversy has led to efforts to identify a specifically inattentive-only group of youth with 

ADHD (ADHD-I), such that new brain imaging data have been called for (Willcutt et al., 

2012).

Despite these differences in symptomology ASD and ADHD presentations show some 

overlaps in neurobiological and cognitive findings such as executive functioning (Gardiner 

& Iarocci, 2017; Semrud-Clikeman, Walkowiak, Wilkinson, & Minne, 2010), although the 

ASD effects may be attributable to comorbid ADHD (Karalunas et al., 2018). Given both 

their unique and overlapping properties, ASD and ADHD are well suited to act as positive 

controls to one another, as examining directed functional connectivity differences between 

disordered groups (and compared to typically developing children) can provide insight into 

how neural correlates of behavior are dissociated between the disorders. In the following 

analysis we focus on three functional subnetworks that have been previously related to either 

executive functioning in general, or the developmental disorders: the Default Mode network 

(DMN), the Salience Network and the Ventral Attention Network.

The DMN has been widely studied for both its overall role in executive functioning, as well 

as its relation with developmental disorders. Previous work has shown atypical organization 

for both ASD and ADHD samples (For reviews see: Henry & Cohen, In Press; Konrad & 

Eickhoff, 2010; Padmanabhan, Lynch, Schaer, & Menon, 2017; Posner, Park, & Wang, 

2014), making the DMN an ideal choice of a functional subnetwork to examine. The 

Salience network has been shown to be involved in task maintenance (Menon & Uddin, 

2010; Seeley et al., 2007) and has been implicated in ASD (Di Martino et al., 2009; Supekar 
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et al., 2013; Uddin et al., 2013; Uddin & Menon, 2009). Finally, the Ventral Attention 

network is vital for response inhibition (Zhang, Geng, & Lee, 2017), which shows deficits in 

ADHD (Booth, Burman, & Meyer, 2005).

Methods

Sample:

Families were recruited from the community and a tertiary ASD clinic. A sample of 152 

children are included here, assigned as ASD (n=39, mean age=11.79), ADHD DSM-IV 

combined type (n=38, mean age=11.17), ADHD DSM-IV primarily inattentive type (n=38, 

mean age=10.83), and typically developing controls (n=37, mean age=11.04), with an 

overall age range of 7–15 years and a mean estimated IQ of 108. Groups were comparable 

on age, gender, and estimated IQ, and no significant differences on these variables were 

found (all p > 0.05). After preprocessing (see below), the final sample used in this analysis 

consisted of 133 children (ASD = 31, ADHD-C = 31, ADHD-I = 34, TDC = 37). Diagnosis 

was carefully characterized with a multi-method, multi-informant research assessment 

protocol based on DSM-V classification. This included parent and teacher standardized 

ratings, a Kiddie Schedule for Affective Disorders and Schizophrenia (Orvaschel, 1994), 

and, for ASD, an Autism Diagnostic Observation Schedule (Lord et al., 1989) confirmed by 

a consensus of research-reliable clinicians using a best-estimate review of all available 

information. ASD symptomotology was measured using the Social Responsiveness Scale 

(SRS; Constantino & Gruber, 2005). Children in the ASD group were permitted to have a 

co-morbid diagnosis of ADHD, although other major psychicatric diagnoses, neurological 

conditions and non-stimulant psychoactive medications were ruled out for all groups. IQ was 

estimated with three subtests of the WISC-IV (Wechsler, 2003), and children with an 

estimated IQ < 70 were excluded. All children on stimulant medication completed a 

minimum washout of 5 half lives (24–48 hours) prior to the MRI. Descriptives of age, 

gender, symptomology, comorbidity status and in-scanner motion are provided in Table 1 

below:

Of the 31 children with ASD, 16 reached criteria for co-morbid diagnosis of ADHD-C. 

Implications of this comorbidity is discussed in the Discussion section.

Rs-fcMRI:

Acquired functional imaging series underwent well described and widely used preprocessing 

steps converted to a Nipype (Gorgolewski et al., 2011) workflow to minimize artifacts and 

spurious noise (Fair et al., 2007, 2009, 2012; Mills et al., 2012; Costa Dias et al. 2013). 

Three resting-state functional MRI scans were attempted (5 minutes each for a maximum of 

15 minutes of resting state data) for each subject using standard acquisition techniques (EPI 

sequence: TR=2500ms, TE=30ms, FA=90°, 3.8mm3 voxels, 36 slices, FOV=240×240mm). 

Of the 133 subjects, 87 had a full 15 minutes of resting state data (360 TRs), and 46 had 10 

minutes of resting state data (240 TRs). Standard preprocessing methods included slice time 

correction, debanding, rigid body head motion correction, and within-series signal intensity 

normalization to a whole-brain mode value of 1000. Anatomical T1-weighted MPRAGE 

images were resampled and transformed to standard Talairach atlas space (Talairach & 

Henry et al. Page 9

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tournoux, 1988) and used for co-registration of the functional series. Connectivity 

preprocessing included detrending the functional signal, removal of nuisance regressors 

(Friston, Williams, Howard, Frackowiak, & Turner, 1996; Power et al., 2013), and (iii) 

temporal low-pass filtering (f > 0.1Hz) via second order Butterworth filter. Nuisance 

regressors applied in step (ii) of connectivity preprocessing consisted of: (a) movement from 

3 rotational and 3 translational parameters obtained in the previous rigid body head motion 

step, (b) the global whole-brain functional signal, (c) the averaged ventricular signal, and (d) 

first-order whole-brain, ventricular, and white matter derivatives (Fair et al., 2013; Power et 

al., 2013). Additionally, all imaging data were visually inspected upon preprocessing 

completion to exclude series with unsatisfactory co-registration or significant blood-oxygen-

level dependent (BOLD) signal dropout. Additional movement correction was applied 

utilizing a framewise-displacement (FD) threshold of 0.3mm, following methods described 

by Power and colleagues (Power et al., 2013; Power, Barnes, Snyder, Schlaggar, & Petersen, 

2011). Observations identified as having high motion were replaced with a “missing” 

placeholder so that temporal ordering was maintained. Children who had at least 60% of 

TRs remaining after scrubbing were retained in this analysis (resulting in a minimum of 216 

TRs for a 15 minute session, and 158 TRs for a 10 minute session). Before scrubbing the 

diagnostic subgroups were marginally different in their frame displacement (F(3, 129) = 

2.23, p = .08). After scrubbing at .3, there were no differences between subgroups in terms 

of frame displacement (F(3, 129) = .6, p = .61). Additionally, there was no correlation 

between age and frame displacement, either before or after scrubbing (r = −.04, .008,p = .

58, .92). Table 2 below shows motion and TR related information.

Parcellations and functional networks:

Timecourses were calculated as the average signal within the ROIs defined by the 

parcellation schemas by Cary and colleagues (2017). This parcellation schema defines 79 

ROIs using the InfoMap community detection algorithm (Rosvall & Bergstrom, 2008) 

applied to the voxelwise functional connectivity matrix. These 79 ROIs are divided into 19 

functional subnetworks, labeled as follows: Cingulo-Opercular, Default Mode, Cuneus-

Midlingual, Somatosensory-motor, Dorsal Attention, Lateral Occ and Fusiform, 

Frontoparietal Task Control, Hippocampus, Salience, Temporal Pole, Superior Temporal, 

Ventral Attention, PCC Borders, Head. Hippocampus, Temporal Occipital Junction, OFC, 

Frontal Pole, Post OFC and Ventral Lateral Prefrontal. The ROIs are irregularly shaped but 

non-overlapping and only contain grey matter voxels. For visualizations of all ROIs used, 

see Supplementary Materials. In the present analysis we selected only ROIs that were 

members of the Default Mode Network (DMN), Salience and Ventral Attention. The total 

number of ROIs used is 20, and MNI coordinates for the centroid of the ROI along with 

anatomical labels are provided in Table 1. ROI AAL label and Brodmann area are classified 

based on centroid location. A voxelwise visualization of the parcellation is provided in the 

Supplementary Materials.

CS-GIMME:

CS-GIMME was run on the dataset using a .75 threshold for both group and subgroup level 

edges. Subgroup labeling corresponded to clinical group, resulting in four total subgroups 

with nearly identical sample sizes both in terms of number of TRs and participants. CS-
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GIMME produces primarily two sets of applicable results for inquiries regarding subgroup 

differences. The first are group level edge coefficients, which are estimated for each subject 

and allow comparisons of connectivity strength of group edges between all subgroups. The 

second set of results are in the subgroup level edges. These edges are estimated for all 

subjects within a particular subgroup. It is important to note that these edges are not 

necessarily exclusive to a subgroup, as several subgroups might have several of the same 

subgroup edges. Furthermore, subgroup edges can be estimated as individual level edges for 

specific participants. CS-GIMME as an extension of GIMME also produces several other 

sets of output that are not examined in this study. For example, in addition to group and 

subgroup level edges, individual level edges are estimated, allowing good model fits to be 

obtained for every subject. These edges can be examined to see if there are additional (but 

less common) commonalities within subgroup, but this strategy was not pursued here. CS-

GIMME additionally produces participant level model fit information, as well as plots of 

connectivity patterns for the convenience of the analyst. Figures in this study were produced 

using BrainNet Viewer (Xia, Wang, & He, 2013). Note, ROIs are represented visually as 

small spheres at the central point of the ROI to provide better visualization of the edges.

Group-Level Edge Analysis:

As group level edges were estimated for all subjects, the distribution of estimates will be 

approximately normal. Hence the strength of these edges can be compared between 

subgroups. In this study, simple linear regression models were fit to each edge, comparing 

the edge strength of each clinical subgroup (ADHD-C, ADHD-I, ASD) to the TDC 

subgroup. The Benjamani-Hochberg correction for multiple comparisons (Benjamini & 

Hochberg, 1995) was used to adjust each subgroup comparison across all edges tested. This 

type of analysis can be extended to account for subject level demographics or any other 

subject level variable of interest, as the edge strengths are calculated on a per subject basis. 

Group-level analysis is performed only on the contemporaneous paths. As the data is being 

sampled at a rate slower than the actual underlying phenomena, the relations between the 

ROI timeseries may be best captured in the contemporaneous edges, once the lagged 

relations are taken into account (Granger, 1969). Furthermore, previous work examining the 

performance of causal search algorithms suggest that only methods that used 

contemporaneous connections recovered the correct data generating models (Smith et al., 

2011). As such, we restrict our group and subgroup level analyses to contemporaneous 

edges.

Subgroup-Level Edge Analysis:

Subgroup level edges are estimated for all subjects within a particular subgroup, which 

makes comparison between subgroups less useful as some subgroups might not contain that 

edge resulting in zero-inflated distributions of estimates. Instead we can examine the 

presence of common subgroup level edges between subgroups (such as shared edges 

between ADHD-I and ADHD-C), as well as if edges are within a functional network or 

between a functional network.

Additionally, we perform a permutation analysis to assess the probability that a given 

subgroup edge is due to chance. We randomly permute the subgroup labels, which leads to a 
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new label set with the same proportion of subjects in a given subgroup as the original 

subgroup label set. We then apply CS-GIMME to the data using the permuted label set and 

extract any subgroups edges that are estimated. By examining the number of times a 

subgroup edge that was detected in the true label set was also present as a subgroup edge in 

the permuted label set, we obtain a measure of how likely a given subgroup edge is simply 

due to chance. A higher rate of occurrence suggests that a given path is not truly specific to a 

subgroup but is more likely a group level path that was erroneously classified as a subgroup 

level path. A low, or zero, rate of occurrence suggests that a given subgroup level path is 

specific to the subgroup in question. We perform this permutation analysis 1000 times.

Results

Group level edges:

Figure 2 shows the common group level edges, as well as the group level edges with weights 

that are significantly different than TDC weights for each clinical group. Table 4 lists all 

group level paths. Table 5 contains information about the significantly different group edges 

(comparing each clinical subgroup to TDCs).

There are several notable results apparent from examining subgroup differences in group 

level edge magnitudes. The first is the smaller number of significantly different group edges 

for individuals with ADHD-I compared to individuals with ADHD-C, consistent with 

concerns that ADHD-I may capture essentially a clinically mild version of ADHD compared 

to ADHD-C (Willcutt et al., 2012). Individuals with ADHD-I exhibited increased 

connectivity from Region 3, corresponding to BA45 to region 18, corresponding to BA44. 

These two regions correspond to the left Broca’s area. Additionally, individuals with 

ADHD-I showed increased connectivity between Region 8, contained in right precuneus, 

and Region 6, contained in the middle temporal cortex. Notably, individuals with ADHD-C 

show the same two significant connections, as well as additional greater connectivity 

between Regions 2 and 7, and Regions 2 and 17, both within the DMN, as well as between 

Regions 10 and 12, and Regions 4 and 11, both within Salience network connections.

Individuals with ASD showed identical patterns of increased functional connectivity as 

individuals with ADHD-C, with the exception of the edge between Regions 2 and 17, which 

is only significant for individuals with ADHD-C. Finally, across all disorders, the only edges 

that were significantly different from typically developing controls were within network 
edges, and the difference in connectivity was only ever positive, with individuals in the 

clinical subgroups only showing increased connectivity on edges relative to TDCs. This 

suggests that aberrant functional connectivity within functional networks is not only a 

difference in the structure but can also be conceptualized as a difference in the strength of 

the connections.

Subgroup Level Edges:

Figure 3 below shows the subgroup level edges estimated with CS-GIMME for all sample 

groups. Table 6 provides average weights and average standard errors for these edges.
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There are several interesting findings from the subgroup edge detection. To begin, one 

notable difference between the TDC group and the clinical groups is that the unique edges to 

the TDC group are for the most part within network edges, while the unique edges for the 

clinical groups are entirely between network edges. This suggests that functional 

connectivity associated with the disordered groups is characterized as differences in the 

structure of connections between functional networks in addition to differences in strengths 

of common connections. Similarly to the group edge difference results, individuals with 

ADHD-I exhibit a subset of the edges that individuals with ADHD-C exhibit, where ADHD-

C shows involvement with more default mode regions, specifically Region 17, in the left 

precuneus, and Region 7 in the inferior orbital frontal cortex. Individuals with ASD show 

subgroup edges primarily localized to areas near the right insula, specifically the edge 

between Region 4, contained in the right insula, and Region 7, contained in BA47.

Consistent with emerging evidence of a common liability factor shared across many 

domains of psychopathology (Pettersson, Lahey, Larsson, & Lichtenstein, 2018) and 

neurodevelopment including ASD and ADHD, two subgroup edges that appear in all three 

disorder subgroups, the edge from Region 18 to Region 20, and the edge between Region 18 

and Region 14. Region 18, again, is contained in the left BA44, part of Broca’s area, while 

Region 20 encompasses the left middle temporal cortex, while Region 14 is contained in the 

right middle frontal cortex.

The permutation analysis suggests that subgroup level paths indicated for clinical subgroups 

are specific to the given subgroup labeling, as they did not appear as subgroup level paths 

when the subgroup labeling was permuted randomly. One paths that was indicated for the 

TDC subgroup appears to be less robust, specifically the path from ROI 14 to 5. This 

suggests that this path was close to being considered a group level path and is not specific to 

the TDC group.

Discussion:

GIMME is a search algorithm that consistently and reliably recovers data-generating edges 

in benchmark simulated data that emulates functional connectivity maps (e.g., Smith et al., 

2011). It does so by detecting signal from noise in a manner that does not assume 

homogeneity across individuals. Prior work had arrived at data-driven subgroups within the 

GIMME framework (termed, S-GIMME) and found that adding edges from using the S-

GIMME approach worked well even on these smaller sets of individuals (Gates et al., 2017; 

Lane et al., In Press). However, until researchers could not specify a priori which subgroup 

each individual was in. This proved to be a hindrance to researchers with targeted areas of 

foci who wanted to compare specific groups. Hitherto, researchers would have to run 

GIMME separately on these subgroups of interest to obtain the edges specific to that 

subgroup. Now, with CS-GIMME, researchers can capitalize on the similarities that may 

exist for the sample at large by obtaining group-level edges for the whole while also 

obtaining subgroup-specific edges should they exist.

Broadly speaking, CS-GIMME has a series of advantages over more general methods for 

analyzing functional connectivity. As it is a variant of the GIMME algorithm, it brings the 
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advantages of appropriately analyzing individual heterogeneity, while extracting group level 

directed functional connectivity edges common across the sample. Furthermore, the 

confirmatory aspect of the method allows researchers to analyze specific functional 

hypotheses, involving a priori defined groups. As was shown in the empirical example, the 

results gleaned from the CS-GIMME method can be analyzed post hoc, allowing for 

researchers to examine differences and similarities among groups in both strength of 

functional connectivity for group level edges, and presence or absence of subgroup level 

edges. Finally, though not performed in this study, CS-GIMME produces individual, sparse 

functional connectivity networks suitable for further network analysis, such as with a 

network neuroscience framework (Bassett & Sporns, 2017). As CS-GIMME explicitly 

models subgroup differences, network analysis based on these networks will reflect 

subgroup differences in overall topology more so than a more uninformed network 

construction method.

The importance of generating functional connectivity patterns that truly capture individuals’ 

brain processes is an important step to understanding human cognition and emotions. 

Recently, obtaining subject-specific functional connectivity maps has been highlighted as a 

major goal in the field, with efforts such as “fingerprinting” originally defined by our group 

(Miranda-Dominguez et al., 2014; Miranda-Domínguez et al., 2017), amongst others (Finn 

et al., 2015), and other analytic methods for individual-level analysis being at the forefront 

(Gordon et al., 2017; Laumann et al., 2015; Ramsey, Hanson, & Glymour, 2011; Smith et 

al., 2011; Smith, 2012). Subject-specific functional connectivity maps are particularly 

critical for moving towards the use of MRI and related methods in personalized medicine. 

Still, among the nuances seen when looking across individuals there typically are also some 

similarities. This may be partly due to physiological constraints of the brain, and thus there 

may be some edges that exist for most people regardless of their classifications. CS-GIMME 

provides a reliable method for investigating connectivity across and within subgroups in a 

manner that attends to individual nuances.

Empirical findings unique and interesting to ADHD:

These findings both support findings from previous literature and suggest several new 

productive avenues of research. The first finding of note is that ADHD-I appears to involve a 

subset of the disrupted functional connectivity seen in individuals with ADHD-C, and 

specifically does not show the same involvement of more midbrain DMN regions, such as 

the precuneus, as evidenced by different subgroup edges. This is consistent with previous 

findings suggesting that ADHD-C shows more atypical connectivity in midline default mode 

network regions compared to ADHD-I (Fair et al., 2013). It is also consistent with concerns 

that ADHD-I as defined in the DSM largely captures a milder subset of ADHD than ADHD-

C (Willcutt et al., 2012). Furthermore, the increased connectivity from the left BA45 

(Region 16) to the right insula (Region 4) is consistent with previous findings of disrupted 

functional connectivity in the insula found in individuals with ADHD (Zhao et al., 2017), 

however no research to date has specifically examined subtype differences in insular 

functional connectivity.
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Empirical findings unique and interesting to ASD:

In this sample, individuals with ASD were distinguished from TDCs and both ADHD 

subtypes by unique subgroup edges primarily localized around the right insula, with 

increased connectivity between the right insula (Region 4) and right BA47 (Region 7), as 

well as increased connectivity between the right anterior cingulate (Region 13) and the right 

BA45 (Region 9). Previous research has implicated both the insula and the ACC, in their 

roles as components of the salience network, in ASD (Di Martino et al., 2009; Uddin & 

Menon, 2009), and these findings are consistent with that. Recent research has found that 

functional connectivity of language processing regions is disrupted in individuals with ASD 

(Lee, Park, James, Kim, & Park, 2017; Verly et al., 2014), and the current study suggests 

that there is increased connectivity between the salience network and language processing 

regions. We did not separately consider ASD with and without ADHD for several reasons. 

The first is that splitting the ASD group in two leads to a corresponding reduction in power 

and increase in complexity. The second is that splitting the ASD group leads to unbalanced 

group sizes, which changes the interpretability of the subgroup path threshold parameter. For 

more on this, see the Using CS-GIMME section later in the discussion. Prior work suggests 

that a separate analysis of ASD with and without comorbid ADHD will clarify which 

features of overlap are attributable to co-occurring ADHD in the ASD group (Karalunas et 

al., 2018) and we encourage future research to examine this.

Commonalities across disorders:

Finally, CS-GIMME allows for the comparison of the similarities between clinical 

subgroups as well as TDCs. For one, the group-level edges suggest that those connections 

may be generalizable to the population as the majority of individuals, regardless of 

subgroup, had those edges in their models. In addition to these, a number of similar patterns 

emerged among the clinical subgroups. For instance, ADHD-C and ASD showed similar 

patterns of increased connectivity in group edges and were primarily distinguished by 

different subgroup level edges. The commonalities between the group edge differences is 

likely due to the presence of comorbid ADHD in the ASD group, which makes the unique 

edges presented by the ASD group particularly salient. Additionally, all three clinical 

subgroups shared the same two edges from Region 18 to Region 20 and Region 14. The 

centroid for Region 18 is in left BA44 and can be alternately classified as part of the left 

inferior frontal gyrus, while Region 20 encompasses a large part of the left temporal lobe, 

with the centroid contained in the left BA21, Region 14 is contained primarily in right BA9 

and more generally the frontal middle gyrus. While left BA44 is a component of Broca’s 

area, and is related to semantic processing, the left BA21 plays a role in auditory processing 

of language, while right BA9 is related to attention, particularly related to auditory attention. 

This pattern of findings hints at a shared disruption in auditory and language processing 

across all three disorders, suggesting that a further investigation of both functional and 

structural aberration of these regions might further clarify their relation to these disorders. 

Such findings could provide clues to general liability factors for frequently-comorbid 

neurodevelopmental disorders.
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Directionality of paths:

CS-GIMME estimates directed functional connectivity, and the directionality of these paths 

can be used to understand how ROIs and functional subnetworks interact with one another. 

Previous work using Granger causality has shown that in healthy adults the default mode 

network exerts greater influence on various task positive networks, rather than the other way 

around (Uddin, Kelly, Biswal, Castellanos, & Milham, 2009), while elements of the salience 

network, specifically the right anterior insula, appears to have a causal role in switching 

between the central executive network and the default mode network (Menon & Uddin, 

2010). There has been no work we are aware of that examines differences in the 

directionality of the DMN to other network relation in individuals with ADHD or ASD, and 

there has only been a few recent articles examining directional connectivity differences in 

ASD. Notably, Bernas et al., (2018) showed that the causal connectivity from the ventral 

attention network to salience and executive network regions is weaker in males with high 

functioning autism.

The directionality of the paths in the empirical analysis suggest the influence of the default 

mode network on the ventral attention network and salience network is disrupted in both 

ADHD and ASD. Specifically, the majority of between network subgroup paths originated 

from the VAN or Salience network, rather than the DMN, and many of those paths were to 

the DMN. This is contrasted to the estimated group level paths, many of which were from 

the DMN to the VAN or Salience networks. This increase in bi-directional between network 

relations in the clinical subgroups suggests that while between network connectivity is 

increased in clinical subgroups, this increase is explicitly direction, e.g. we cannot say that 

one network is exerting more influence over another for individuals with ADHD. Instead, 

the directionality of between network connections is less well structured in our clinical 

subgroups.

An analysis of the directionality of paths is best suited for a more restricted ROI set where 

researchers have a priori hypotheses regarding differences in direction and strength of edges 

between ROIs. For example, given previous work on ADHD, a natural application of CS-

GIMME would be to examine differences in DMN to task positive network path 

directionality and strength for individuals with ADHD vs. healthy controls. As previous 

literature suggests that the regulatory influence of the DMN is reduced in children with 

ADHD, it would be interesting to examine if there is any change in the directionality of 

between network edges, and which ROIs those are specifically associated with.

Using CS-GIMME:

To provide guidance to researchers interested in using CS-GIMME, we want to summarize 

several important decision points here. The first is determining if one’s own dataset is 

appropriate to use with CS-GIMME. An important assumption of the confirmatory 

subgrouping component of CS-GIMME is that within a subgroup, all subjects have the same 

set of subgroup level paths. What counts as a subgroup level path is determined by the 

subgroup threshold tuning parameter. Researchers can use this parameter to reflect the level 

of heterogeneity they are willing to allow in their subgroup paths. For example, when 

analyzing a demographically matched group of clinical patients who are fairly homogeneous 
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in their symptom expression, the use of a high subgroup path threshold can lead to the 

estimation of a consistent set of subgroup paths. On the other hand, if one’s sample consists 

of a highly heterogenous set of subjects, a high subgroup path threshold could lead to very 

few subgroup paths being estimated. Another consideration in determining the subgroup 

path threshold is the size of the subgroups. In small subgroup sizes, a low subgroup 

threshold could lead to results that reflect sampling variability and would not reflect the 

groups under study. This is a particular concern for unbalanced group sizes. A general rule 

of thumb is that the subgroup path threshold should increase with both increasing group size 

as well as increasing theoretical homogeneity within the groups. In all cases, researchers 

should report and justify the subgroup path threshold value. Model based methods of 

selecting the subgroup path threshold value are an active area of methodological research.

A second aspect of CS-GIMME that researchers should consider is the ability to include a 
priori paths. While our empirical example does not explore CS-GIMME’s (or more 

generally GIMMEs) ability to test a priori hypotheses, researchers can propose that certain 

paths exist at the group or subgroup level before the algorithm is applied. For example, if 

one’s interest is in testing between network connectivity, it would be reasonable to propose 

that all ROIs within a functional subnetwork are connected. We propose researchers with 

strong a priori hypotheses fit CS-GIMME models with and without the a priori paths and 

compare the relative performance of these models subject by subject using BIC values. 

Expanding GIMME’s a priori hypothesis testing capabilities is also an active area of 

research.

Finally, we have included example code in the Supplementary Material for researchers to 

use or adapt to perform the group level significance tests.

Limitations and Future Directions:

There are, of course, several limitations to both the empirical example presented here, as 

well as CS-GIMME more broadly. The specific parcellation and choice of the default mode 

network, salience network and ventral attention network was informed by prior literature, 

but a different choice of functional networks would lead to different findings. Specifically, 

given findings suggesting that the interactions between the DMN and executive control 

networks (ECN; Seeley et al., 2007) are altered in ADHD (for review see: Rubia, 2018), we 

suggest that researchers include ROIs in both the DMN and ECNs in future applications of 

CS-GIMME on individuals with ADHD. CS-GIMME is not a whole brain algorithm due to 

computational constraints and requires researchers to choose specific regions of interest to 

analyze. The choice of these regions will impact results. This is due to CS-GIMME, and 

GIMME more generally modeling functional connectivity of the network as a complete 

whole, and so analysis using CS-GIMME needs to consider each ROI set used as a distinct 

analysis. Finally, CS-GIMME is computationally intensive, with rapid increase in the time 

taken to analyze a sample when both the number of ROIs and the number of subjects 

increases. This however can, and will, be alleviated with further methodological 

developments.

Confirmatory Subgrouping GIMME is a powerful new tool for researchers to use to examine 

differences in directed functional connectivity between a priori defined subgroups, and one 
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that is grounded in the well validated GIMME algorithm. Further extensions of GIMME 

such as latent variable modeling of functional networks, improvements in estimation 

methods, implementation of HRF functions and dynamic modeling of functional 

connectivity will all further improve the capabilities of CS-GIMME in the near future and 

continue to improve its usefulness in studying directed functional connectivity differences in 

both clinical disorders, as well as subgroups of healthy controls.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
ROI Centroid Coordinates. Color corresponds to functional network, with red being the 

default mode network, yellow being the ventral attention network and green being the 

salience network.
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Figure 2: 
Comparison of clinical groups to TDC with regard to group level edge strength. Top Left 

Panel shows all contemporaneous group level edges and directions. Other panels show 

significantly different (after BH correction) group level edges for a given clinical group 

compared with the TDC group. All significantly different edges were stronger in clinical 

groups. Grey arrows represent between functional subnetwork edges, colored arrows 

represent within functional subgroup edges. Numerical differences are presented in Table 5.
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Figure 3: 
Subgroup specific edges. Each panel shows edges that are specific (though not necessarily 

unique) to each group. Grey arrows represent between functional subnetwork edges, while 

colored edges represent within functional subnetwork edges. Note that TDC specific 

subgroup edges were primarily within functional subnetwork, while clinical groups exhibit 

subgroup paths between functional subnetworks.
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Table 1:

Demographics. Mean (SD). % M is percent males in group. H-Score is total hyperactivity symptom score. I-

Score is total inattentive symptom score. SRS is total SRS score.

Group N % M Age IQ H-Score I-Score SRS

TDC 37 62 11.1 (1.42) 111.86 (13.83) 2.78 (3.85) 3.78 (4.23) NA

ADHD-I 34 76 11.3 (1.64) 108.42 (13.23) 5.74 (5.46) 14.09 (5.59) NA

ADHD-C 31 80 11.25 (1.42) 105.64 (16.27) 14.39 (4.94) 17.06 (5.35) NA

ASD 31 83 11.59 (2.39) 102.21 (17.56) 5.22 (4.05) 10.67 (7.1) 89.89 (29.83)
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Table 2:

Motion information. Mean (SD). FD is framewise displacement.

Group FD FD After Scrub Remaining TRs

TDC 0.14 (0.05) 0.11 (0.03) 284.11 (59.29)

ADHD-I 0.17 (0.07) 0.12 (0.02) 270.44 (61.1)

ADHD-C 0.17 (0.09) 0.12 (0.03) 267.35 (58.75)

ASD 0.15 (0.06) 0.12 (0.03) 281.55 (55.74)
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Table 3:

ROI Centroid Locations and Labels

Node Label Network X Coord Y Coord Z Coord AAL Label Brodmann Area

1 DMN −14 35 33 Frontal_Sup_L Left BA9

2 DMN −45 −67 31 Angular_L Left BA39

3 Ventral Attention −49 33 3 Frontal_Inf_Tri_L Left BA45

4 Salience 33 22 −8 Insula_R Right Insula

5 DMN 12 40 28 Frontal_Sup_R Right BA9

6 DMN 58 −15 −19 Temporal_Mid_R Right BA21

7 DMN 39 31 −16 Frontal_Inf_Orb_R Right BA47

8 DMN 4 −54 29 Precuneus_R Right BA31

9 Ventral Attention 50 26 6 Frontal_Inf_Tri_R Right BA45

10 Salience −8 25 30 Cingulum_Ant_L Left BA32

11 Salience −32 19 −9 Insula_L Left Insula

12 Salience −26 43 27 Frontal_Mid_L Left BA10

13 Salience 7 28 29 Cingulum_Ant_R Right BA8

14 Salience 25 46 29 Frontal_Mid_R Right BA9

15 DMN 43 −64 32 Angular_R Right BA39

16 DMN −52 22 11 Frontal_Inf_Tri_L Left BA45

17 DMN −7 −55 29 Precuneus_L Left BA31

18 Ventral Attention −49 16 9 Frontal_Inf_Oper_L Left BA44

19 DMN −40 31 −14 Frontal_Inf_Orb_L Left BA47

20 DMN −58 −18 −18 Temporal_Mid_L Left BA21
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Table 4:

Group Level Paths

From To Edge Type

1 20 Within DMN

2 17 Within DMN

3 18 Within Ventral Attention

4 13 Within Salience

4 11 Within Salience

5 2 Within DMN

2 7 Within DMN

3 1 Ventral Attention to DMN

6 5 Within DMN

7 14 DMN to Salience

8 6 Within DMN

5 19 Within DMN

9 16 Ventral Attention to DMN

10 12 Within Salience

7 3 DMN to Ventral Attention

6 10 DMN to Salience

11 15 Salience to DMN
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Table 5:

Significantly different (from TDC) group edges.

From To Edge Type Subgroup Difference (Subgroup - TDC) Corrected p

3 18 Within VA ADHD-I 0.091186 0.003878

8 6 Within DMN ADHD-I 0.081496 0.029656

3 18 Within VA ADHD-C 0.087411 0.000831

2 17 Within DMN ADHD-C 0.047516 0.009066

2 7 Within DMN ADHD-C 0.101253 0.000217

8 6 Within DMN ADHD-C 0.078122 0.000188

10 12 Within Salience ADHD-C 0.042201 0.044368

4 11 Within Salience ADHD-C 0.048907 0.000135

3 18 Within VA ASD 0.088543 0.00128

2 7 Within DMN ASD 0.102563 0.000357

8 6 Within DMN ASD 0.079133 0.002375

10 12 Within Salience ASD 0.042747 0.009066

4 11 Within Salience ASD 0.04954 0.011747
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Table 6:

Subgroup Level Edges

From To Edge Type Subgroup Mean Beta Mean SE Permute %

18 16 VA to DMN TDC 0.605 0.062 0

3 9 Within VA TDC 0.383 0.054 7

2 1 Within DMN TDC 0.354 0.039 0

17 8 Within DMN TDC 0.866 0.043 0

5 1 Within DMN TDC 0.554 0.043 0

8 15 Within DMN TDC 0.610 0.056 .3 %

6 20 Within DMN TDC 0.470 0.045 0

11 10 Within Sal TDC 0.311 0.049 0

10 13 Within Sal TDC 0.578 0.055 0

14 5 Sal to DMN TDC 0.292 0.042 16 %

14 12 Within Sal TDC 0.470 0.052 .02 %

13 14 Within Sal TDC 0.342 0.053 3.6 %

18 20 VA to DMN ADHD-I 0.218 0.031 0

18 14 VA to Sal ADHD-I 0.313 0.035 0

16 4 DMN to Sal ADHD-I 0.400 0.068 0

18 20 VA to DMN ADHD-C 0.275 0.034 0

18 14 VA to Sal ADHD-C 0.302 0.035 0

16 4 DMN to Sal ADHD-C 0.279 0.045 0

14 17 Sal to DMN ADHD-C 0.320 0.053 0

4 7 Sal to DMN ADHD-C 0.192 0.03 0

18 20 VA to DMN ASD 0.176 0.03 0

18 14 VA to Sal ASD 0.291 0.037 0

4 7 Sal to DMN ASD 0.227 0.04 0

13 9 Sal to VA ASD 0.427 0.076 .09 %
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