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Abstract

Key information extraction (KIE) from visually rich documents (VRD) has been
a challenging task in document intelligence because of not only the complicated
and diverse layouts of VRD that make the model hard to generalize but also
the lack of methods to exploit the multimodal features in VRD. In this paper,
we propose a light-weight model named GraphRevisedIE that effectively em-
beds multimodal features such as textual, visual, and layout features from VRD
and leverages graph revision and graph convolution to enrich the multimodal
embedding with global context. Extensive experiments on multiple real-world
datasets show that GraphRevisedIE generalizes to documents of varied layouts
and achieves comparable or better performance compared to previous KIE meth-
ods. We also publish a business license dataset that contains both real-life and
synthesized documents to facilitate research of document KIE.
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1. Introduction

Optical character recognition (OCR) is a technology to recognize the texts in
the scanned documents, and KIE is the downstream task of OCR that extracts
entity information from the texts. KIE is critical to applications such as docu-
ment indexing, information archival, and information retrieval [1] because it can
save significant amounts of time and resources. Deep learning based approaches
have become the focus of modern research and achieved state-of-the-art (SOTA)
results. However, it remains a challenge to effectively utilize the multimodal fea-
tures in visually rich documents (VRD). As we can see in Figure 1, VRD can
be a structured or unstructured document such as a receipt, ticket, business
license, etc. There are varied formats, layouts, and contents in VRD, and mul-
timodal information is critical to resolving the semantic ambiguity, which can
occur when textual information alone is not enough to distinguish the entities.
For example, in Figure 1(b), texts of both the month and train number are 03,
but they are of different entity types. We can only distinguish them from the
layout and visual information.
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Figure 1: Example VRD of different layouts. (a) Key entities to be extracted are marked
with red rectangles. (b) Same text 03 results in semantic ambiguities for different entities. (c)
Example business license.

Traditionally, template or rule based KIE methods [2, 3] have been widely
adopted in commercial applications. The interpretability of those methods
makes the KIE program easy to be adopted and scaled for different scenar-
ios. However, significant engineering efforts and domain-specific knowledge are
needed to design the handcrafted rules and patterns for different entities. And
those methods only support a limited number of document types and cannot
deal with complicated and unstructured documents. Later KIE systems formal-
ize the problem as a Named Entity Recognition (NER) task, which typically
applies models to predict the beginning-inside-outside (BIO) tags of the tokens.
[4, 5, 6] are based on bidirectional LSTM (BiLSTM) and add an additional
convolutional neural network (CNN) layer to enrich the feature representation
for entity extraction. [7] is a pure image based approach that introduces a fully
convolutional encoder-decoder network based on the VGG architecture. The
semantic features are encoded with the document layout to perform informa-
tion extraction. Other methods [8, 9] use graph based long short-term memory
(LSTM), which allows a varied number of incoming edges at each memory cell,
to jointly learn the entities and relations extraction. While those methods have
been proven effective, they do not make full use of the multiple modal features
available in the VRD and cannot tackle semantic ambiguity.

Efficiently combining multimodal features in the VRD has become the fo-
cus of modern research. Graph based methods represent the document as a
graph, with nodes representing segments and edges representing segment rela-
tions. Graph convolution is utilized to propagate the global context and en-
rich the feature embeddings. [10, 11] utilize predefined graphs to combine the
textual and layout features. [12] uses a graph learning convolutional network
(GLCN) [13] to dynamically learn the graph and generate a richer semantic
representation of the segment. Lately, pre-training based methods such as Lay-
outLMv2 [14], StrucText [15] and BROS [16] have been proposed to deeply fuse
multimodal features from large-scale pre-training datasets and achieved SOTA
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performance in downstream KIE tasks. However, those models have a higher
number of parameters and require larger datasets for effective pre-training. Fur-
thermore, it’s also difficult to deploy and maintain the models in real-life settings
due to the complicated multi-stage training paradigm.

In this paper, we propose a novel, lightweight framework named GraphRe-
visedIE to tackle the problem of multimodal feature embedding. Textual, visual,
and layout features are jointly embedded in the model to address the semantic
ambiguity. We design a graph module inspired by [17] to learn the graph repre-
sentation for the document by graph revision and perform graph convolution to
enrich the multimodal feature embedding with global context. The graph mod-
ule also leverages the sparsification technique to learn the appropriate graph
representation for the sparse document.

The main contributions of this paper are summarized as follows:

• In this paper, a novel framework named GraphRevisedIE is proposed to
handle document KIE. Multimodal features in VRD are effectively em-
bedded to cope with the semantic ambiguity.

• As far as our knowledge, GraphRevisedIE is the first graph based model
that utilizes the graph revision technique in document KIE. The graph
module can effectively learn document graphs and contextualize the mul-
timodal feature embedding with global context.

• We publish a dataset that contains real-life and synthesized business li-
censes to facilitate the document KIE research.

• Extensive experiments on multiple public datasets show that GraphRe-
visedIE outperforms existing graph based models. The model also has
comparable performance to pretrained models, while it has significantly
fewer parameters and does not depend on large pre-training datasets 1.

2. Related Works

Early research on entity extraction focuses on the exploitation of a single
modal feature from the document. [18] utilizes BiLSTM to embed the textual
feature. [8, 9] introduce the graph based LSTM that supports cross sentence
semantic relation and entity extraction. [4, 5] utilize both LSTM and CNN to
get better textual embedding to perform sequence labeling. [19] leverages plain-
text semantic features from the document but does not exploit the layout and
image features. [7, 20] use the image features to encode the semantic contents
but leave the textual and layout features untapped. [10, 11] apply BiLSTM to
embed the textual features and GCN to incorporate the layout features. Graph
convolution is used not only to propagate the global contexts but also to generate

1Our code and business license dataset are publicly available at https://github.com/AYSP/
GraphRevisedIE.
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the node embedding. [10] depends on task-specific graphs and needs predefined
data structures, which are hard to extend to other types of documents. [12]
jointly embeds the textual and visual features and uses the absolute layout
feature in the graph module to generate the node and edge embedding.

Pretrained transformer encoder based approaches achieved SOTA results
by deeply fusing multimodal features in pretraining. LayoutLM [21] designs
pre-training tasks that utilize the absolute 2D layout features and the textual
features. Visual features are embedded in fine tuning. LayoutLMv2 [14] moves
the visual feature embedding to pre-training and learns effective multimodal
feature representation. However, those approaches depend on a large corpus
and need significantly more parameters and time to train.

Compared to previous graph based methods [11, 12], GraphRevisedIE differs
in several aspects. First, [11, 12] choose fully connected graph as the initial
graph. Although they can dynamically update the edge weights during training,
they do not support adding new edges due to the element-wise product in the
attention function. If the edge weight is learned to be 0, it is removed and cannot
be added back. When the document graph is highly sparse, the model eventually
learns a suboptimal graph representation. Nevertheless, the graph module in our
framework does not enforce a fully connected graph as the initial graph and it
supports adding new edges as well as updating existing edge weights. Attention
based graph convolution is performed to contextualize feature embedding with
global context to facilitate final prediction. Furthermore, our graph module does
not require a loss function and is seamlessly integrated with the downstream
learning objective, which implicitly entices the graph representation learning.
Finally, we rely on relative positional information to embed the layout feature
instead of using absolute positional information, which can introduce spatial
bias in the case of image twisting, shifting, and rotation. Relative positional
information better captures the global invariant layout relations of entities and
helps improve the model’s performance.

3. Model Architecture

Table 1 gives the notations used in the paper. Given D and I, we first use
an open source OCR tool (e.g. Tesseract 2) to recognize N segments that cor-
respond to the nodes in the graph. The graph is represented by the weighted
adjacency matrix A, in which the element is the edge weight. The model archi-
tecture is illustrated in Figure 2, which comprises three modules: a multimodal
feature embedding module, a graph module, and a decoding module.

3.1. Embedding

As shown in Figure 2, the multimodal feature embedding module has three
branches, each embedding a single modal feature. First, for textual embedding
TE, it includes all segment textual embeddings:

2https://tesseract-ocr.github.io/
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Symbol Meaning

D The document
I The scanned document image of D
T Text segments recognized by OCR in D
N Number of text segments in D
L Maximum text segment length of T
ti ith text segment
cij jth character of ti
B Bounding boxes of T
bi ith bounding box
d Model dimension
A Weighted adjacency matrix representing the graph
S Similarity matrix of nodes in the graph
vi ith node corresponding to ti
aij Weight of the directed edge from vj to vi
dn Embedding dimension in the graph module
TE Textual embedding of T
tei Textual embedding of ti
V E Visual embedding for segments corresponding to B
vei Visual embedding for the segment corresponding to bi
db Sinusoidal embedding dimension
PEij Relative positional embedding of bi and bj
SE Segment embedding for segments corresponding to B
HE Hidden embedding of SE
DE Document embedding of D
dtags Number of predefined BIO tags
Zij Probability of the ith character token being the jth tag
Tij Transition probability from the ith tag to the jth tag
yi ith predefined BIO tag
YDE The set of all possible tag sequences for DE

Table 1: Notations.

5



Figure 2: Overall diagram of the GraphRevisedIE framework. Note that for illustration
purposes, we use the same color for all tokens in the same segment and different colors for
tokens in different segments. The top section of the diagram demonstrates the process of
multimodal feature fusion. The bottom right section explains the graph module for feature
embedding enrichment. Self-connected edges are omitted. The bottom left section is the
BiLSTM-CRF module that calculates the CRF loss and produces the final prediction.

6



Figure 3: Illustration of generating the image embedding. Inputs are the raw image and
bounding boxes of segments. RoI-Align is used to extract segment level features from the whole
image feature produced by the CNN module. A convolution kernel is applied to transform
the output dimension of RoI-Align to the model dimension.

TE = Concat(te1, ..., teN ) ∈ RN×L×d (1)

tei = Concat(Emb(ci1), ..., Emb(ciL)) ∈ RL×d (2)

, where Concat is the concatenation operation and Emb : R → Rd is the
character token embedding function, e.g. one-hot embedding.

Then we use a CNN as the visual feature extractor to get the visual em-
bedding. The visual features of the segment, such as font, size, and color, can
help enrich the segment embedding. As presented in Figure 3, a CNN module
is first used to get the global feature maps of the whole image, and then the
local feature map of each bounding box is extracted from the global feature
maps via RoIAlign[22]. Finally, we apply the convolution on the local feature
map to generate the segment level visual embedding vei. Given I and B, V E
is calculated as follows:

V E = Concat(ve1, ..., veN ) ∈ RN×d (3)

vei = Conv(RoIAlign(CNN(I), bi)) ∈ Rd (4)

Within bi, all characters share the same vei by design. The final form of V E
after resizing is:

V E = Concat(ve1, ..., veN ) ∈ RN×L×d (5)

Finally, we embed the layout features. Inspired by the 1D positional em-
bedding in Transformer [23], we designed the 2D relative positional embedding,
which normalizes the spatial relations between segments. It’s robust to the posi-
tional shifting caused by the raw image distortion and helps the model learn the
inherent layout. Given T and B, we first normalize the coordinates so they fall
between 0 and 100. Then for ti, bi and tj , bj , we calculate the relative positional

7



Figure 4: Process of generating the relative positional embedding. Relative positions are first
embeded with the sinusoidal embedding function f and then go through a linear projection
layer to get the final embedding.
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embedding between those two bounding boxes in the following equation:

PEij = Concat(fsinu(xtl
i − xtl

j ), f
sinu(ytli − ytlj ),

fsinu(xtr
i − xtr

j ), fsinu(ytri − ytrj ),

fsinu(xbr
i − xbr

j ), fsinu(ybri − ybrj ),

fsinu(xbl
i − xbl

j ), f
sinu(ybli − yblj )) ·W

∈ Rd

(6)

, where fsinu : R → Rdb

is the sinusoidal embedding, which is used in [23] to

help embed the relative positions of segments. W : R8×db → Rd is the linear
projection matrix that maps from the sinusoidal embedding dimension to the
model dimension. The process is also illustrated in Figure 4, where we use the
top left box as the base box for comparison. It is worth noting that we embed
all four vertices of the text segment, allowing the projection matrix to learn
spatial features such as relative height, width, and distance. Since tokens in the
same segment share the same bounding box coordinate, we resize and get the
final relative positional embedding PE ∈ RN×L×d.

By now we have all the single modal embeddings, we calculate the merged
multimodal embedding by performing element-wise addition of those embed-
dings and applying transformer encoding:

E = transformer encoder(TE + V E + PE) ∈ RN×L×d (7)

3.2. Graph Module

The graph revised module propagates the non-local and non-sequential con-
texts among segments to enrich the segment embedding. Although similar, our
graph module design differs from [17], which constructs a single large graph for
the entire dataset to address the node classification problem. For the document
KIE task, our graph module needs to learn the graph representation for all doc-
uments in the dataset. The initial graph of each document is represented by an
identity matrix, and the graph module revises it to find the appropriate graph.

As is described in Figure 5, we perform two operations in this module, i.e.
graph revision and attention based graph convolution. Given D, we first ag-
gregate the character multimodal embeddings in the segments to produce the
segment embedding SE ∈ RN×d. With the initial weighted adjacency matrix
A, we calculate the hidden embedding HE from SE:

HE = A · tanh(A · SE ·W1) ·W2, (8)

, where A ∈ RN×N ,W1 ∈ Rd×dn

,W2 ∈ Rdn×d, SE,HE ∈ RN×d and tanh is the
activation function.

The similarity matrix S of segments is then derived from HE:

S = Knn(Kernal(HE,HET )) ∈ RN×N , (9)
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Figure 5: The graph module illustrated on an example SROIE receipt. In the bottom right,
segments corresponding to the nodes are given with the indexes and labels (o: other, c:
company, a: address, d: date). We use an identity matrix as the initial graph. For simplicity,
self-connected edges are omitted. A new segment embedding is produced by graph convolution
on the revised graph using the original segment embedding.
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We use dot product as the kernel function following [17]. Since S is dense, the K
nearest neighbor (Knn) algorithm is applied to sparsify the graph and only keep
the top K neighbors of each node. Unlike [17], where sparsification is mainly
for memory and computation efficiency since important neighbor nodes are rel-
atively constant, this sparsification process is necessary in our task because the
entity in the document can be split into an unknown number of continuous
multi-line segments. Knn helps identify important neighbors efficiently by re-
moving unimportant edges. To obtain the revised adjacency matrix A′, we add
S and A and normalize the result:

A′ = Norm(A+ S) ∈ RN×N (10)

With the element-wise addition operator +, new edges can be added and existing
edges can be reweighted.

Using attention-based graph convolution with A′, we compute the updated
segment embedding SE′:

SE′ = A′ · SE ·W3 ∈ RN×d,W3 ∈ Rd×d (11)

Compared with GLCN [13], our graph module does not have the graph repre-
sentation learning loss, which simplifies the design and experiments. Note that
although the graph module helps the model generalize on documents with varied
and complex layouts, it is not indispensable when the document has a relatively
fixed layout. We study the importance of the graph module in ablation study
(§4.3.3) on various document datasets.

3.3. Decoding

We resize the segment embedding output by the graph module to N ×L×d
and add it to the multimodal character embedding to get the final embedding.
As a result, the character embedding combines not only the textual, image, and
layout features of its own segment but also the global context of neighboring
segments. To begin decoding, we concatenate all character embeddings in the
segments from left to right and from top to bottom to produce the document
level embedding DE ∈ R[N ·L]×d. The reason we do the concatenation is because
if a sentence is broken down into several text segments, we can restore its original
semantic structure. The document embedding series is passed to a BiLSTM
model to encode the long short-term dependencies, and the prediction scores of
BIO tags are calculated by:

Z = BiLSTM(DE) ·WB ∈ R[N ·L]×dtags (12)

, where WB ∈ Rdb×dtags is the linear projection matrix mapping from the hidden
dimension of BiLSTM to the output BIO tags dimension. Z is the scores matrix,
in which Zij indicates the possibility of ith token being the jth tag. Finally,
character level BIO tagging is performed via a CRF layer. CRF is particularly
effective in NER tasks where token labels have strong interdependencies. The
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Dataset Type Language # Keys # Images
SROIE Receipt English 4 Train 526, Val 100, Test 347
CORD Receipt English 30 Train 800, Val 100, Test 100
FUNSD Form English 4 Train 149, Val 0, Test 50
Train Ticket Ticket Chinese 8 Train 1749, Val 100, Test 80
Business License License Chinese 9 Train 1120, Val 100, Test 100

Table 2: Statistics of each dataset.

tagging decisions for the tokens are jointly considered for the document series.
Given a sequence of predictions y = (y1, y2, ..., yn), the score is defined as:

s(DE, y) = ΣN ·L
i=0 Tyi,yi+1 +ΣN ·L

i=1 Zi,yi (13)

, where T is the transition matrix of scores. Tyi,yi+1
is the score of transitioning

from yi to yi+1. y0 is the start tag and yN ·L+1 is the end tag. The conditional
probability of y given DE is calculated with the softmax operation:

p(y|DE) =
es(DE,y)

Σȳ∈YDE
es(DE,ȳ)

(14)

The loss function is the logarithm of the conditional probability:

Loss = − ln(p(y|DE)) = −s(DE, y) + lnadd
ȳ∈YDE

s(DE, ȳ) (15)

The optimal tag sequence is the one with the highest conditional probability:

y∗ = argmax
y∈YDE

p(y|DE) (16)

We search the optimal tag sequence with dynamic programming.

4. Experiments

4.1. Datasets

Our model is evaluated on multiple real world public datasets: SROIE [24],
CORD [25], FUNSD [26], Train Tickets[20] and Business Licenses.

SROIE dataset is used to extract entity information from scanned receipts.
It contains 626 receipts for training and 347 receipts for testing. Each receipt
has four entities for extraction: company, address, total, and date. The dataset
has relatively complicated and varied layouts and is suitable to validate the
generalizability of the model.

CORD dataset is for both entity extraction and entity linking. It has 800
scanned receipts for the training set, 100 for the validation set, and 100 for
the test set. There are in total 4 categories in this dataset, which are further
classified into 30 subclasses, such as menu name, total price, etc. We use this
dataset to perform entity extraction.

FUNSD dataset consists of 199 forms annotated with 4 entity types: ques-
tion, answer, header, and other. It supports both entity linking and entity
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extraction tasks. The training set has 149 forms, and the test set has 50 forms.
We utilize this dataset to evaluate the model’s performance on large documents.

Train Tickets dataset has a total of 2K real documents and 300K syn-
thetic documents. The document image was taken in real-life settings with all
the possible conditions, such as dim lighting, distortion, background noise, etc.
Entities we need to extract from the train ticket are the ticket number, desti-
nation station, seat category, train number, starting station, date, ticket rates,
and passenger name.

Since the dataset does not provide the OCR results, we used the dataset in
[12], which sampled 400 real documents and 1530 synthetic documents from the
original datasets and annotated them with bounding boxes and transcripts with
OCR. [12] chose 320 real documents and all synthetic documents for training
and 80 real documents for testing. The same setting is used by our model for
fair comparison.

Business Licenses dataset contains 320 real documents and 500 synthetic
documents. We collect the documents either online or by manually taking the
photos in real-life settings. A business license contains nine fields: company
name, company type, company start date, registration capital, legal person,
operation dates, business scopes, company location, and social credit code. The
content consists mainly of numbers and Chinese characters and has different
layouts. Since the images are captured in real life, there is inevitable image
distortion and background noise. We utilized OCR to extract the transcripts
and manually labeled them with different entity types. For synthetic licenses, we
first create the templates in variable layouts, then build our corpus for different
entity types, and finally synthesize documents 3 with the templates and corpus.

4.2. Experiment Settings

Our model is implemented in PyTorch and trained with a NVIDIA GTX
3060 GPU with 12GB memory. An Adam optimizer with a decaying learning
rate is used. The learning rate is initially set to 1e−4 and decays by 0.1 every
50 epochs. The model dimension d, the graph module embedding dimension dn

and the BiLSTM hidden dimension db are all 512. The sinusoidal embedding
dimension db is 1024. K is set to 4 for the Knn algorithm in the graph module.
The dropout ratio is set to 0.1. Resnet50 [27] with default parameters is used
as the image feature extractor. We use the default setting of the transformer
encoder in the embedding module.

4.3. Experiment results

Since the model is character based, each character in the segment is labeled
with the entity type that maximizes the conditional probability of the document
series. The label of the segment is decided by the majority of the character
labels. For example, the decoded BIO tags of 01/18 is B-date, I-date, O,

3Our code for synthesizing the business licenses is publicly available at https://github.

com/AYSP/Business-Licenses.
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Dataset
Precision Recall F1

Baseline GraphRevisedIE Baseline GraphRevisedIE Baseline GraphRevisedIE
SROIE 96.79 96.80 95.46 96.04 96.12 96.42
CORD 91.75 93.91 93.26 94.61 92.50 94.26
Train Ticket 98.75 99.07 98.45 98.76 98.60 98.91
Business License 99.05 99.37 99.21 99.37 99.13 99.37

Table 3: Comparison of the baseline model to GraphRevisedIE on four datasets. GraphRe-
visedIE outperforms the baseline model.

Menu
Model

Total
Model

Baseline GraphRevisedIE Baseline GraphRevisedIE
unitprice 86.96 96.40 emoneyprice 28.57 40
num 76.19 95.24 total price 93.72 96.15

sub cnt 90.32 93.75 menutype cnt 54.55 60
sub price 80 77.78 menuqty cnt 81.97 84.38

discountprice 52.63 58.82 creditcardprice 88.89 85

Table 4: Entity level F1 score comparison on the CORD dataset between the baseline method
and GraphRevisedIE. We select the menu and total entity types as examples for easier expla-
nation.

B-date and I-date. While the third character is mislabeled as O, the word
level prediction is still date, which is decided by the majority of the predicted
character labels.

4.3.1. Baseline

We chose PICK[12] as the baseline method because both PICK and GraphRe-
visedIE are graph based, and PICK has been proven effective in document KIE.
We compare PICK with our model on datasets including SROIE, CORD, train
tickets, and business licenses. We evaluate the model’s performance using the
entity-level F1 score.

4.3.2. Results

As shown in Table 3, the baseline method achieves competitive performance
on the datasets. GraphRevisedIE still outperforms the baseline with small im-
provements. In comparison to the baseline, the relative positional embedding in
GraphRevisedIE is critical in allowing the model to learn the document layout
quickly and efficiently. For datasets with relatively fixed layouts, such as train
tickets, GraphRevisedIE achieves 0.3% improvements on the F1 score, although
the baseline almost achieves a full score. For the CORD dataset, GraphRe-
visedIE improves the F1 score by about 1.7%. Finally, for the SROIE and
business license datasets with variable document layouts, GraphRevisedIE still
has a 0.2–0.3% improvement on the F1 score compared to the baseline.

Table 4 illustrates the entity level comparison between the baseline and
GraphRevisedIE on the CORD dataset. Due to the limited space and the
large number of different entity types in this dataset, we only selected a subset
of entity types for easy elaboration. There are entity types with rich rela-
tive positional features. For example, menu.unitprice is usually on the right of
menu.nm and is in the rightmost column, while menu.num is usually on the left
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Model Modality Pretrained # Params
SROIE CORD FUNSD

P R F P R F P R F
BERT T ✓ 340M 90.99 90.99 90.99 88.33 91.07 89.68 54.69 67.10 60.26
RoBERTa T ✓ 355M 91.07 91.07 91.07 - - - 66.48 66.48 66.48
UniLMv2 T ✓ 340M 94.59 94.59 94.59 89.87 91.98 90.92 65.61 72.54 68.90
LayoutLM T+L ✓ 343M 94.38 94.38 94.38 94.37 95.08 94.72 76.77 81.95 79.27
LayoutLMv2 T+L+V ✓ 426M 96.25 96.25 96.25 94.53 95.39 94.95 80.29 85.39 82.76
PICK T+L+V ✗ - 96.79 95.46 96.12 91.75 93.26 92.50 - - -
GraphRevisedIE T+L+V ✗ 68M 96.80 96.04 96.42 93.91 94.61 94.26 76.67 80.22 78.41

Table 5: We compare the model’s performance with other models, including the large version
of the pretrained models and PICK.

Figure 6: Example predictions made by GraphRevisedIE on (a) SROIE receipt and (b)
FUNSD form. (a) JIAWEI HOUSE is incorrectly labeled as other when it should be
part of the company, and 57000 KL is incorrectly labeled as other when it should be part of
the address. (b) The question answer pairs should be in the column direction, while GraphRe-
visedIE bases the prediction on the row direction. The performance of GraphRevisedIE can
be further improved by using more powerful textual embedding to deal with isolated semantic
context.

of menu.nm and is in the leftmost column. The relative positional information
can be effectively captured by the relative positional embedding as illustrated
in Figure 4. GraphRevisedIE outperforms the baseline by a large margin on
those entity types.

Table 5 presents the model performance on the public SROIE, CORD, and
FUNSD datasets. Performance metrics of the pretrained models are obtained
from their original papers. Particularly, we compare our model with the large
version of the pretrained models. On the SROIE dataset, GraphRevisedIE
achieves the highest F1 score even with fewer parameters and without pre-
training. On the CORD dataset, GraphRevisedIE achieves comparable perfor-
mance with the pretrained models, which proves its generalization ability on
small datasets with varied layouts. Since the CORD dataset has many more
entity labels than SROIE, we speculate that richer textual embedding can help
the model learn the label semantics better and reduce the ambiguity. Therefore,
pre-training methods achieve the best performance. Despite its effectiveness on
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Train Tickets Business Licenses
Full Model 98.9 99.3
w/o spatial features ↓0.6 ↓0.5
w/o textual features ↓0.7 ↓5.4
w/o image features ↓0.3 ↓0.2
w/o graph module ↓0.4 ↓0.7

Table 6: Ablation study on train tickets and business licenses to evaluate the importance of
each component in the framework.

small documents, GraphRevisedIE does not perform well on large and compli-
cated documents such as the FUNSD form. A large document usually contains
richer semantic information than a small document. Since our model only lever-
ages the vanilla one-hot textual embedding, it is hard to embed the semantic
features effectively, especially when the semantic context is split into multiple
segments as shown in Figure 6. This observation is aligned with the findings
in the CORD dataset. Other limitations of GraphRevisedIE include the re-
quirement of some initial experiments to determine the optimal K for the graph
module and post-processing to generate the word level predictions since our
model is character based.

4.3.3. Ablation Study

In this section, we first do an ablation study on the train ticket and business
license datasets to evaluate the importance of components in the model. As
is shown in Table 6, one observation is that removing the textual feature does
not reduce the F1 score much on the train ticket dataset. The model can
still rely on the layout and visual features to achieve good performance. For
the business licenses dataset, the F1 score decreases by 5.4% when the textual
feature is removed. This is aligned with the fact that the business license has
more semantic information than the train ticket. Intuitively, visual features
also contribute to the model’s performance. Information such as font, color, size,
background, etc. can only be captured by the visual encoder, which is important
to reduce ambiguity. Last but not least, since the graph module enriches the
character embedding with global context, removing the graph module causes
decreased F1 scores on both datasets.

We perform another ablation study to evaluate the impact of K, the number
of neighbors used in the Knn algorithm in the graph module, on the CORD
and train ticket datasets. From Figure 7, gradually increasing K from 1 results
in better performance, and then the performance starts to decrease after some
point. For the CORD dataset, the best F1 score is achieved when K equals
4. Further increasing K only brings in more noise from distant segments and
reduces the performance. For the train tickets, similarly, the best F1 score is
achieved when K is 2. This study demonstrates that a sparse graph, i.e., K is
small, better captures the document graph than a dense graph, i.e., K is large,
on the CORD and train ticket datasets and results in optimal performance.
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Figure 7: Experiments on the CORD and Train Ticket datasets to evaluate model performance
under different K in the Knn algorithm.

5. Conclusion

In this paper, we propose a novel framework named GraphRevisedIE, which
can effectively combine multimodal features from VRD, to perform the KIE
task. We integrate with a graph module to model the underlying document
graph, which is used to propagate the global context among segments to enrich
the character embedding. GraphRevisedIE is has been proven to achieve good
performance on multiple public datasets, and it is able to generalize over small
documents with varied layouts. It’s worth mentioning GraphRevisedIE does
not perform well on large documents. Replacing character level embedding
with pretrained word level embedding to utilize more semantic features can
possibly improve the model’s performance. Besides, although GraphRevisedIE
provides flexibility to customize the number of neighbors in the graph module for
different datasets, it adds more manual effort and could be automated. Finally,
we set the kernel function to be the dot product in the graph module, while
more options could be explored in future work.
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