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ROC Curve Equivalence using the Kolmogorov-Smirnov

Test
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Engineering, St Lucia, QLD 4072, Australia.

Abstract

This paper describes a simple, non-parametric and generic test of the equiva-

lence of Receiver Operating Characteristic (ROC) curves based on a modified

Kolmogorov-Smirnov (KS) test. The test is described in relation to the com-

monly used techniques such as the Area Under the ROC curve (AUC) and

the Neyman-Pearson method. We first review how the KS test is used to

test the null hypotheses that the class labels predicted by a classifier are no

better than random. We then propose an interval mapping technique that

allows us to use two KS tests to test the null hypothesis that two classi-

fiers have ROC curves that are equivalent. We demonstrate that this test

discriminates different ROC curves both when one curve dominates another

and when the curves cross and so are not discriminated by AUC. The interval

mapping technique is then used to demonstrate that, although AUC has its

limitations, it can be a model-independent and coherent measure of classifier

performance.
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Neyman-Pearson

1. Introduction1

The Receiver Operating Characteristic (ROC) curve is the graph of a2

classifier’s true positive rate (TPR) against false positive rate (FPR) at var-3

ious operating points as a decision threshold or misclassification cost is var-4

ied (Fawcett, 2006; Swets et al., 2000). Over the past fifteen years ROC5

analysis has become established as an important tool for classifier evalua-6

tion (Bradley, 1997). This is especially the case in biomedical applications7

where TPR and FPR can be directly related to the clinically meaningful8

measures of sensitivity and specificity. However, current tests for the equiv-9

alence of two or more ROC curves are limited in that they either: require10

domain specific knowledge, do not work in a wide variety of situations, are11

based on Normal assumptions, or are computationally expensive. Therefore,12

this paper proposes a simple, non-parametric and general purpose test of13

ROC curve equivalence based on a modified Kolmogorov-Smirnov (KS) test.14

Receiver operating characteristic curves are traditionally used to answer15

two questions about classifier performance (Bradley and Longstaff, 2004):16

1. Does a classifier have better performance than random labelling?17

2. Does one classifier have better performance than another?18

There are two common methods to test the null hypothesis that the predicted19

class labels produced by a classifier are no better than random. For a single20

operating point, all binary classifiers produce results that can be presented21

in a confusion matrix. A confusion matrix is a form of contingency table22
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showing the number of true positive and true negative instances on the lead-23

ing diagonal and the number of false positive and false negative instances in24

the off-diagonals. Therefore, a χ2 test (Press et al., 2007, Section 14.4.1) can25

be used to test the independence of the true and predicted class labels. We26

reject the null hypothesis only when there is sufficient evidence that the pre-27

dicted class labels are dependent on the true class labels. Alternatively, we28

can utilise information from a number of operating points to test the null hy-29

pothesis that the Area Under the ROC curve (AUC) is equal to 0.5 (Bradley,30

1997; Bradley and Longstaff, 2004). When estimated empirically, AUC is31

equivalent to the Wilcoxon-Mann-Whitney test of ranks (Fawcett, 2006).32

Therefore, an AUC of 0.5 implies that the probability that a classifier will33

rank (score) a randomly chosen positive instance higher than a randomly34

chosen negative instance is P (sp > sn) = 0.5. Here sk = m(x) is the “score”35

produced by a classifier for an instance of class k ∈ {p, n} using the feature36

vector x. Again, we only reject the null hypothesis when there is sufficient37

evidence that the classifier can correctly rank positive and negative instances.38

The relationship between ROC curves and the χ2 test is explored in (Bradley,39

1996).40

There are typically three ways to test the null hypothesis that two clas-41

sifiers are equivalent; by comparing:42

1. An appropriate measure of classifier performance, such as accuracy or43

error rate, extracted from the confusion matrix obtained at an individ-44

ual operating point (Bradley, 1997);45

2. The TPR, FPR pair at an individual operating point (Bradley and46

Longstaff, 2004); or47
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3. The AUC measured over all, or a sub-set of, operating points on the48

ROC curve (Bradley, 1997; Landgrebe et al., 2006).49

Comparing classifiers based on a single measure of performance can be prob-50

lematic as the choice of the “best” measure is dependent upon the applica-51

tion domain, class prior probabilities and operating point (Landgrebe et al.,52

2006). In addition, extracting a single measure from a confusion matrix53

does not capture the implicit trade-off between positive and negative classi-54

fications (Bradley, 1997). Comparing classifiers when both TPR and FPR55

differ makes it unclear whether the observed differences are due to classifier56

performance or just different operating points. That is, are these just differ-57

ent operating points on equivalent ROC curves? Comparing TPR or FPR58

individually has the advantage that it effectively implements the Neyman-59

Pearson method (Bradley, 1997). That is, for a specific FPR, do the clas-60

sifiers have the same TPR? (or vice-versa). However, again, the FPR or61

TPR at which to perform the comparison is application dependant. There-62

fore, because of these issues AUC has gained popularity as a single measure of63

classifier performance that is extracted from the whole ROC curve. The AUC64

is independent of prior class probabilities and misclassification costs and has65

a probabilistic interpretation through its equivalence to the Wilcoxon-Mann-66

Whitney test of ranks (Fawcett, 2006).67

Recently, a number of problems with AUC have been highlighted in68

the literature. One of the most significant issues is that, as AUC esti-69

mates P (sp > sn), it’s statistical interpretation relies on an implicit alter-70

native (Berrar and Flach, 2012). This probability of correct ranking only71

has meaning when the evaluation of the classifier is undertaken on a test set72

4



consisting of both positive and negative instances. In practice, end-users are73

primarily concerned with a classifier’s performance on a single instance of74

unknown class. Therefore, error rate or TPR and FPR having meaning; how75

that instance is ranked against a hypothetical alternative does not (Hilden,76

1991). This issue is related to the fact that AUC is estimated from the whole77

ROC curve and so averages performance over all possible operating points.78

This is especially problematic when the differences between two ROC curves79

occur only over a small range of operating points. Classic examples of this80

problem occur when two different, but crossing, ROC curves have a similar81

AUC or when an AUC of 0.5 is obtained from a classifier that is clearly not82

performing random labelling (Hilden, 1991). These issues have recently been83

described and referred to as the early retrieval problem and the fallacy of84

the undistributed middle respectively (Berrar and Flach, 2012). Therefore,85

unless one classifier dominates another over all operating points, AUC will86

not be a sensitive test of the equivalence of their ROC curves (Drummond87

and Holte, 2006; Hand, 2009). Here, dominate is taken to mean that one88

classifier has a higher TPR for all FPR, a condition that appears to occur89

rarely in practice (Bradley, 1997; Hand, 2009).90

It has been argued that it is “fundamentally incoherent” to compare dif-91

ferent classifier types using AUC as they effectively use different misclassi-92

fication costs to generate the ROC curve (Hand, 2009; Hand and Anagnos-93

topoulos, 2012). Again, there is an issue of calculating AUC over the whole94

curve, using inappropriate misclassification cost ratios ranging from 0 to ∞.95

The proposed H measure, an extension of that proposed in (Hand, 2005), has96

two clear advantages: misclassification costs are the same between classifiers97
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and are limited in range. However, from a Neyman-Pearson perspective, an98

end-user wants to determine whether a specific classifier, at a specified sen-99

sitivity or specificity, is better than another (classifier). It is not important100

to an end-user that in order to get to these operating points one classifier101

had to use different cost ratios to another. Therefore, in general for two102

ROC curves to be equivalent there must be no operating points, anywhere103

on the curve, that have significantly different performance (TPR or FPR).104

Of course, equivalent ROC curves have an equivalent AUC, but as the is-105

sues with crossing ROC curves demonstrate: AUC is a necessary, but not106

sufficient, condition for ROC equivalence.107

A number of alternatives to ROC curves have been developed, including108

cost curves (Drummond and Holte, 2006), frequency-scaled and expected-109

utility ROC curves (Hilden, 1991). However, ROC curves are a well-used110

and well-understood methodology and so we must be careful not to reject111

them because of issues with their most commonly applied single number112

summary (AUC) (Hilden, 1991; Berrar and Flach, 2012). Therefore, this113

paper proposes an improved test of equivalence between two empirical ROC114

curves.115

A number of alternatives to AUC have been proposed, such as the H116

and diagnosticity measures (Hand, 2009; Hilden, 1991) and probability cost117

PC(+) (Drummond and Holte, 2006). However, these are all designed to be118

a meaningful measure of classifier performance (or utility), rather than a test119

of ROC equivalence. That is, they are an estimate of how well a classifier120

will perform, on average, over an appropriate range of misclassification costs121

and prior probabilities. Note, AUC is a measure of the ranking performance122
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of a classifier only (Flach et al., 2011; Berrar and Flach, 2012).123

The question of ROC equivalence has previously been tackled by Camp-124

bell (1994), Venkatraman and Begg (1996) and Antoch et al. (2010) . How-125

ever, the first two of these these methods are computationally complex as126

they involve bootstrap estimates and permutations respectively. The last127

two do not allow the results of the test to be mapped back to the ROC128

curves to highlight where the curves differ from each other. Therefore, this129

paper describes a simple technique, based on on a modified KS test, that finds130

the corresponding points on two ROC curves that are the most dissimilar. If131

there is no such point found anywhere on the curve, at the specified level of132

significance, then the ROC curves are deemed to be statistically equivalent.133

The paper is organised as follows: first we discuss the well-known KS134

test and demonstrate how it can be used to test the null hypothesis that the135

observed performance of a classifier is no better than random. Next we go on136

to propose an interval mapping technique whereby two KS tests are used to137

compare the TPR and FPR of competing classifiers at all operating points.138

We illustrate the efficacy of this technique with examples where one ROC139

curve dominates another and where two crossing ROC curves have an equiv-140

alent AUC. Finally, the interval mapping technique is used to highlight the141

conditions under which AUC is a coherent measure of classifier performance.142

2. Preliminaries143

2.1. ROC Curves144

The empirical ROC curve is the plot of 1 − Fn(s) versus 1 − Fp(s) on a145

test set of instances with known class membership (Hilden, 1991; Campbell,146

1994; Hand, 2009). Here Fk(s) is the cumulative density function (CDF)147

7



of the classifier scores s = m(x) for each class k ∈ {n, p}. An instance148

is classified as positive if the given score s is greater than some decision149

threshold (s > t) and negative otherwise. We denote the prior probability of150

class k in the data set as πk, where πn + πp = 1.151

2.2. The KS test152

The KS test is defined as (Hand, 2005):153

D = max
s

|Fn(s)− Fp(s)| (1)

The KS statistic, D, can be used to test null Hypothesis that the negative154

and positive CDFs are equivalent (Press et al., 2007, Section 14.3.3). That155

is, that the classifier gives, on average, identical scores to instances of both156

classes. Whilst this behaviour is indicative of a classifier that randomly allo-157

cates instances to each class, the KS statistic is not a meaningful measure of158

classifier performance (Hand, 2005). Specifically, D only relates to the valid-159

ity of the null hypothesis for that classifier and requires modification before it160

can be used to compare differences in D between classifiers (Krzanowski and161

Hand, 2011). The KS statistic does, however, indicate the furthest point on162

ROC curve from the diagonal (0,0) to (1,1) (Campbell, 1994), which is the163

expected ROC curve for a classifier that labels instances randomly (Bradley,164

1996).165

2.2.1. Example166

Figure 1 illustrates an example where a ROC curve, with an AUC ≈ 0.5,167

is obtained from a classifier that scores 100 positive instances with the same168

mean value as 100 negative instances, but with a larger variance (specifically,169

N (0, 1) for the negative class and N (0, 4) for the positive). This classifier,170
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Figure 1: Empirical ROC curve showing the operating point of the KS statistic (×).
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is unlikely to be performing a random labelling of the test instances, as171

confirmed by the KS statistic, even though the probability of correct ranking,172

and hence AUC, is 0.5. This demonstrates the limitation of AUC in this173

context and that the KS test correctly indicates that the negative and positive174

distributions differ. Clearly, the KS test and ROC curves are related as they175

both utilise the class conditional CDFs: one finds the maximum difference176

between them; the other plots one against the other. However, application177

of the KS test to the comparison of different classifiers raises two important178

questions: how do we handle multiple class conditional distributions from179

multiple classifiers? and how should the scores from the different classifiers180

be compared?181

3. ROC Equivalence using the KS test182

Suppose, we have two classifiers, Y and Z, which produce scores sY =183

mY (x) and sZ = mZ(x) over the intervals IY ⊆ ℜ and IZ ⊆ ℜ respectively.184

Further, suppose these scores have continuous distributions with densities185

f(sY ) and g(sZ) which are zero outside the intervals IY and IZ . Extending186

the KS statistic to perform a paired comparison between the scores sY and187

sZ requires that they are mapped to the same interval (Antoch et al., 2010).188

However, here our intention is to use the KS test to compare the class de-189

pendent CDF’s produced by the two classifiers. That is, to compare Fn(s)190

to Gn(s) and Fp(s) to Gp(s), rather than comparing Fn(s) to Fp(s) as in the191

standard KS test.192

Under the null hypothesis of equivalent ROC curves, for any operating193

point on ROCY there exists an identical operating point, with the same TPR194

and FPR, on ROCZ . Therefore, any threshold tY ∈ IY has an equivalent195
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threshold tZ ∈ IZ , i.e.,196

∀tY ∈ IY ∃ tZ ∈ IZ where Fn(tY ) = Gn(tZ) & Fp(tY ) = Gp(tZ) (2)

As the distribution functions are strictly increasing on IY and IZ , there exists197

an increasing transformation function τ(t) that maps IZ → IY (Antoch et al.,198

2010) such that Fn(t) = Gn(τ(t)) and Fp(t) = Gp(τ(t)), i.e.,199

τ(t) = G−1
n (Fn(t)) = G−1

p (Fp(t)) ∀t ∈ IY . (3)

Applying this transformation to the mixture distributions for each classifier200

gives,201

F (t) = πnFn(t) + πpFp(t) = G (τ(t)) = πnGn (τ(t)) + πpGp (τ(t)) (4)

That is, if the ROC curves are equivalent, application of the transformation202

τ(t) will map both classifier’s scores to the same interval (IY) with identical203

class conditional and mixture distributions. Note, (4) assumes the case of a204

paired comparison, that is different classifiers evaluated on the same test set205

(as implied in the definition of the scores sY and sZ). Indeed, (Berrar and206

Flach, 2012) have cautioned against comparing ROC curves when the clas-207

sifiers were not trained and tested on the same (paired) data. Importantly,208

there is no requirement that equivalent ROC curves behave in exactly the209

same manner, only that they agree on the same proportion of negative and210

positive instances (Antoch et al., 2010).211

In practice the transformation τ(t) is estimated from a set of data. That212

is, from the empirical mixture distribution213

τ̂(t) = Ĝ−1
(
F̂ (t)

)
∀t ∈ IY . (5)
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This transformation can then be used to map IZ → IY enabling the scores214

from both classifiers to be directly compared.215

sZY = τ̂(sZ) (6)

The transformed scores (sZY ) have the same value and rank order as sY ,216

but potentially different class labels, as the scores come from different clas-217

sifiers. In this way, the classifiers are given identical mixture distributions,218

regardless of the validity of the null hypothesis and the class conditional219

distributions are only identical when the ROC curves are equivalent (when220

mY (x) ≡ mZ(x)). Put another way, as the (monotonic) transformation, τ̂(t),221

preserves rank order sZ → sZY it does not alter classifier Z’s ROC curve or222

AUC (Campbell, 1994); it simply maps the scores from both classifiers to223

the same interval.224

The test for ROC equivalence then consists of two independent KS tests,225

Dn = max
sY

|Fn(sY )−Gn(sZY )| (7)

226

Dp = max
sY

|Fp(sY )−Gp(sZY )| (8)

The KS statistics Dn and Dp indicate the maximum distances between the227

two classifier’s negative and positive CDFs respectively. These can then be228

used to calculate the p-value of the observed Dn and Dp and hence accept or229

reject the null hypothesis that the distributions (and hence ROC curves) are230

the same (Press et al., 2007, Section 14.3.3). The advantage of having two231

KS tests applied independently to the negative and positive CDFs is that232

the critical values of Dn and Dp are based on the number of instances in233

each class. For example, in the case of skewed class priors, the class condi-234

tional distributions will be estimated from significantly different numbers of235
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instances. Therefore, for a given value of D, the class with the larger number236

of instances will have a lower p-value. Of course, as the null hypothesis now237

involves two comparisons, a Bonferroni correction (or similar) should be ap-238

plied to maintain the type I error rate. That is, each individual hypothesis239

should be tested at the α/2 level of significance.240

3.1. Examples241

Figure 2 demonstrates empirical ROC curves from two classifiers Y and Z,242

where Z dominates Y . Clearly, comparing the performance of these classifiers243

at any individual operating point, using error rate or the (TPR, FPR) pair,244

or over a number of operating points using AUC, will indicate the superiority245

of classifier Z. In this example, the scores from classifier Y areN (0, 1) for the246

negative class and N (1, 1) for the positive. For classifier Z the distributions247

are unchanged for the negative class and N (3, 1) for the positive. In both248

cases there are 100 instances in each class.249

Figure 3 shows the cumulative density functions for the negative class250

(top) and positive class (bottom) for classifier scores sY , sZ and sZY . For251

the negative class it shows that originally Fn(sY ) and Gn(sZ) are simi-252

lar, but for the positive class Fp(sY ) > Gp(sZ) resulting in an improved253

TPR and FPR at all operating points (score thresholds). The superior-254

ity of classifier Z is maintained after IZ → IY as it can be seen that255

Fn(sY ) < Gp(sZY ) and Fp(sY ) > Gp(sZY ) at virtually all operating points256

(as of course ROCZY ≡ ROCZ). In this case, both Dn and Dp occurred at257

the same operating point (score ≈ 0.7) and so there is one operating point258

where classifier Z is maximally different to Y in both TPR and FPR. We can259

can therefore reject the null hypothesis that ROCY and ROCZ are equivalent260
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Figure 2: Empirical ROC curves where classifier Z dominates Y , showing the operating
points related to the KS statistics Dn (◦) and Dp (×).
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at the p = 0.05 level of significance.261

Figure 3: Class conditional CDFs for classifiers Y (sY ) and Z (sZ); and for Z mapped to
the same interval as Y (sZY ).
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Figure 4 demonstrates empirical ROC curves from two classifiers Y and262

Z that not only cross, but have the same AUC (0.78). In this example, the263

scores from classifier Y are N (0, 1) for the negative class and N (1, 1
3
) for the264

positive. For classifier Z the distributions are swapped and negated so that265

they are N (−1, 1
3
) for the negative class and N (0, 1) for the positive. This266

results in the classifiers having the same minimum (Bayes) error rate, with267

TPRY = 1 - FPRZ and FPRY = 1 - TPRZ . In both cases there are 140268
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instances in each class.269

Figure 4: Crossing ROC curves for classifiers Y and Z showing the operating points related
to the KS statistics Dn (◦) and Dp (×).
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Figure 4 shows that we can can reject the null hypothesis that ROCY and270

ROCZ are equivalent at the p = 0.05 level of significance. The maximum271

difference in TPR (Dp) occurs between the operating points (0.007, 0.615)272

and (0.2, 0.422). The maximum difference in FPR (Dn) between (0.386,273

0.986) and (0.579, 0.805). While these difference occur at the same score274

for both classifiers, there is no constraint that they occur at the same TPR275

or FPR, as in the Neyman-Pearson method. To determine if classifier Y276

performs better than Z depends on whether the application domain requires277
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that we operate at a high TPR (where Y is likely to be preferred) or low278

FPR (where Z is likely to be preferred).279

Figure 5: Empirical ROC curves for three classifiers X, Y and Z showing the operating
points related to the KS statistics Dn (◦) and Dp (×) where Y most differs from Z.
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Figure 5 demonstrates empirical ROC curves from three classifiers X, Y280

and Z, where Y and Z are equivalent, but both dominate X. In this ex-281

ample, the scores from classifiers X, Y and Z are estimated by merging the282

posterior probabilities obtained using 10-fold cross validation (Fawcett, 2006;283

Bradley, 1997). The classifiers are all of the same type (quadratic discrimi-284

nant functions), but are trained using different feature sub-sets. Specifically,285

a two-class (Versicolor, Virginica) version of Fisher’s Iris dataset is used286
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where the species is predicted: by classifier X using two features only (sepal287

length and width); by classifier Y using three features (previous two plus288

petal length) and by classifier Z using all four features (previous three plus289

petal width). For simplicity Figure 5 only shows the operating points where290

classifiers Y and Z differ the most. There are no operating points where X291

and Y differ significantly and so on the available data (50 instances per class)292

they are deemed equivalent.293

4. Discussion294

The examples presented in this paper demonstrate that, once the scores295

from different classifiers are mapped to the same interval, the KS statistic296

can be used to test the null hypothesis that their ROC curves are equivalent.297

The proposed test consists of measuring the maximum difference between298

both the positive and negative CDFs when mapped to the same interval.299

The advantage of the method is that the threshold at which this maximum300

difference occurs relates to a specific TPR and/or FPR and therefore to spe-301

cific operating points on both ROC curves. Therefore, if the null hypothesis302

can be rejected the operating points that differ the most in terms of TPR303

and FPR can be displayed.304

It is of interest here to note the difference between (5) and the method305

proposed by Antoch et al. (2010) which tests the null Hypothesis that the306

transformations applied to the negative and positive distributions are equal,307

i.e.,308

τn(t) = τp(t) ∀t ∈ IY . (9)

This requires the development of a bespoke test statistic and, if the null hy-309
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pothesis is rejected, does not indicate where on the ROC curves the classifiers310

differ. Also, the modification to the KS test presented here differs from that311

described in (Campbell, 1994) in that initially a conventional KS test is used312

to created confidence intervals on a single ROC curve. Then the KS test is313

applied to the maximum distance between two ROC curves along a line with314

slope b = −
√
πn/πp, using a bootstrap technique to estimate the p-value.315

This joint confidence interval was shown to be “too loose” by Macskassy and316

Provost (2004).317

It has been argued that displaying ROC curves with confidence inter-318

vals is more meaningful that p-values (Berrar and Flach, 2012). However,319

when there are multiple ROC curves to compare, p-values are of use for au-320

tomatically detecting equivalent ROC curves; thereby reducing the number321

(unique) ROC curves to compare in detail. Again, having a hypothesis test322

that can indicate on the ROC curve which operating points are significantly323

different can guide this detailed (and application dependent) comparison.324

Hand (2009) showed that using AUC to compare classifiers is equivalent325

to taking an average of the losses at different thresholds, using the mixture326

distribution as a weighting function. He then went on to argue that the im-327

plication of this, is that AUC is “fundamentally incoherent” as it depends328

on the classifier’s score distribution (effectively F (t) and G(t)) and so the329

weight distribution used to combine different cost ratios varies from classifier330

to classifier. However, (4) demonstrates that by applying the transforma-331

tion, τ(t), the scores from any two classifiers can always be given identical332

mixture distributions. In addition, when the ROC curves are equivalent, this333

transformation also ensures that the scores have identical class conditional334
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distributions. Therefore, for equivalent ROC curves, after the application335

of the transform the weight distributions become equal and AUC is coher-336

ent. When two ROC curves are not equivalent, the transformation produces337

identical mixture distributions, but different class conditionals. In this case,338

an additional constraint is required, as per the Neyman-Pearson method, so339

that the classifiers are compared at the same sensitivity or specificity (Hand340

and Anagnostopoulos, 2012).341

It is well known that ROC curves (and AUC) are invariant to any mono-342

tonic transformation, as rank order is preserved (Campbell, 1994). This343

is also the implication of the equivalence between AUC and the Wilcoxon-344

Mann-Whitney test of ranks. Therefore, provided AUC is estimated inde-345

pendently of the costs, it is always coherent. Specifically, as Flach et al.346

(2011) show, AUC is coherent when estimated using both optimal and non-347

optimal thresholds. While this is the implicit choice for calculating AUC348

(using as many thresholds as there are test instances) it is often not realistic.349

For example, Figure 4 shows the “incoherent” example of two very differ-350

ent ROC curves producing identical AUCs. While they both have the same351

overall probability of correct ranking, this probability does not distinguish a352

classifier with a high sensitivity (Y ) from one with a high specificity (Z).353

Future work could apply extensions of the KS test, such as the Anderson-354

Darling statistic, that have been shown to be more sensitive in the tails of355

this distributions (Press et al., 2007, Section 14.3.4). This may be important356

to increase the sensitivity of the proposed ROC equivalence test, as the tails357

of the distributions are likely to be where practically important differences358

between different classifiers can be found, e.g., when TPR ≥ 0.9. It may also359
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be beneficial to in indicate on the ROC curves all values of Dn and Dp that360

exceed the critical value, so that an end-user can see if the ROC curves differ361

at an operating point of practical significance.362

5. Conclusions363

This paper has presented a straight-forward extension of the KS test that364

allows two competing ROC curves to be compared for equivalence. If the365

curves are found to be not equivalent the method indicates the operating366

points where the two ROC curves are most dissimilar in both TPR and367

FPR. The proposed KS test was shown to correctly handle cases where the368

ROC curves can be distinguished based on AUC, but also the confounding369

case of where two different and crossing ROC curves have the same AUC.370

Therefore, the test is a useful addition to the classifier evaluation toolbox.371
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